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The flux qubit revisited to enhance coherence
and reproducibility
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The scalable application of quantum information science will stand on reproducible and

controllable high-coherence quantum bits (qubits). Here, we revisit the design and fabrication

of the superconducting flux qubit, achieving a planar device with broad-frequency tunability,

strong anharmonicity, high reproducibility and relaxation times in excess of 40 ms at its

flux-insensitive point. Qubit relaxation times T1 across 22 qubits are consistently matched

with a single model involving resonator loss, ohmic charge noise and 1/f-flux noise, a noise

source previously considered primarily in the context of dephasing. We furthermore

demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual

thermal-photons in the readout resonator. The resulting photon shot noise is mitigated using

a dynamical decoupling protocol, resulting in T2E85ms, approximately the 2T1 limit. In

addition to realizing an improved flux qubit, our results uniquely identify photon shot noise as

limiting T2 in contemporary qubits based on transverse qubit–resonator interaction.
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O
ver the past 15 years, superconducting qubits have
achieved a remarkable five-order-of-magnitude increase
in their fundamental coherence metrics, including the

energy-decay time T1 , the Ramsey free-induction decay time T2*
, and the refocused Hahn-echo decay time T2E. This spectacular
trajectory is traceable to two general strategies that improve
performance: (1) reducing the level of noise in the qubit
environment through materials and fabrication improvements,
and (2) reducing the qubit sensitivity to that noise through design
advancements1.

The charge qubit evolution is a quintessential example2. Early
demonstrations (Cooper-pair box) exhibited nanosecond-scale
coherence times3. Since then, operation at noise-insensitive bias
points (quantronium)4, the introduction of capacitive shunting
(transmon)5, the use of two-dimensional6 and three-dimensional
(3D)7 resonators to modify the qubit electromagnetic
environment, the development of high-Q capacitor materials
and fabrication techniques8,9, and the introduction of alternative
capacitor geometries (Xmon)10 have incrementally and
collectively raised coherence times to the 10–100ms range10,11

and beyond12,13. In addition, the capacitive shunt has generally
improved device-to-device reproducibility. The trade-off,
however, is a significant reduction in the charge qubit intrinsic
anharmonicity (that is, the difference in transition frequencies f01

and f12 between qubit states 0, 1 and 1, 2) to 200–300 MHz for
contemporary transmons, complicating high-fidelity control and
exacerbating frequency crowding in multi-qubit systems14.

In contrast, the performance of the persistent-current flux
qubit15,16 has progressed more slowly over the past decade. Device
asymmetry was identified early on to limit flux qubit coherence17

and, since 2005, symmetric designs have generally achieved 0.5–5ms
(refs 18,19) with a singular report of T2E¼ 23ms E2T1 (ref. 20).
Despite respectable performance for individual flux qubits, however,
device-to-device reproducibility has remained poor. An early
attempt at capacitive shunting21 improved reproducibility, but
coherence remained limited to 1–6ms (refs 22,23). Recently, flux
qubits embedded in 3D (ref. 24) and coplanar25 resonators
exhibited more reproducible and generally improved relaxation
and coherence times: T1¼ 6–20ms, T2*¼ 2–8ms. Nonetheless,
further improvements in these times and in reproducibility are
necessary if the flux qubit is to be a competitive option for quantum
information applications.

In this context we revisit the design and fabrication of the flux
qubit. Our implementation, a capacitively shunted (C-shunt) flux
qubit21 coupled capacitively to a planar transmission-line
resonator, exhibits significantly enhanced coherence and
reproducibility, while retaining an anharmonicity varying from
500–910 MHz in the four devices with the highest relaxation
times. We present a systematic study of 22 qubits of widely
varying design parameters—shunt capacitances Csh¼ 9–51 fF and
circulating currents Ip¼ 44–275 nA—with lifetimes at the flux-
insensitive bias point ranging from T1o1 ms (small Csh, large Ip)
to T1¼ 55ms (large Csh, small Ip). Over this entire range, the
measured T1 values are consistent with a single model comprising
ohmic charge noise, 1/f-flux noise, and Purcell-enhanced
emission into the readout resonator. We furthermore
investigated and identified quasiparticles as a likely source of
observed T1 temporal variation. For the highest coherence
devices, the Hahn-echo decay time T2E¼ 40mso2T1 does not
reach the 2T1 limit, as is also often observed with transmons
coupled transversally to resonators7,10,26. We demonstrate that
this is due to dephasing caused by the shot noise of residual
photons in the resonator (mean photon number �n0 ¼ 0:006),
observing a lorentzian noise spectrum with a cutoff frequency
consistent with the resonator decay rate. We then use
Carr–Purcell–Meiboom–Gill (CPMG) dynamical decoupling to

recover T2CPMGE2T1 in a manner consistent with the measured
noise spectrum.

Results
C-shunt flux qubit. Our circuits each contain two C-shunt flux
qubits—with different frequencies—placed at opposite ends of a
half-wavelength superconducting coplanar waveguide resonator
(Fig. 1a). The resonator, ground plane and capacitors (Fig. 1b)
were patterned from MBE-grown aluminium deposited on an
annealed sapphire substrate8 (Supplementary Note 1). We used
both square capacitors (Fig. 1b) and interdigital capacitors (IDCs,
not shown) coupled capacitively to the centre trace of the
coplanar waveguide resonator to enable qubit control and
readout. In a second fabrication step, the qubit loop and its
three Josephson junctions (Fig. 1c) were deposited using double-
angle, electron-beam, shadow evaporation of aluminium. One
junction is smaller in area (critical current) by a factor a, and each
of its leads contacts one electrode of the shunt capacitor. An
equivalent circuit is illustrated in Fig. 1d (Supplementary Note 2).

Varying the qubit design enables us to explore a range of qubit
susceptibilities to flux and charge noise with impact on both T1

and T2 (ref. 21). Compared with the conventional persistent-
current flux qubit15,16, our best C-shunt flux qubits have two key
design enhancements. First, a smaller circulating current—
achieved by reducing the area and critical current density of the
Josephson junctions (Fig. 1c)—reduces the qubit sensitivity to
flux noise, a dominant source of decoherence in flux qubits.
Second, a larger effective junction capacitance—achieved by
capacitively shunting the small junction (Fig. 1b)—reduces the
qubit sensitivity to charge noise, and improves device
reproducibility by reducing the impact of both junction
fabrication variation and unwanted stray capacitance. Further-
more, the use of high-quality fabrication techniques and
physically large shunt capacitors reduces the density and
electric participation of defects at the various metal and
substrate interfaces1.

The system is operated in the dispersive regime of circuit
quantum electrodynamics and is described by the approximate
Hamiltonian27

Hdisp � ‘oq Fbð Þŝz=2þ ‘orðn̂þ 1=2Þþ 2‘w Fbð Þðn̂þ 1=2Þŝz=2 ;

ð1Þ
where, the three terms are respectively the qubit (represented as a
two-level system), resonator and qubit–resonator interaction
Hamiltonians, ŝz is the Pauli operator defined by the qubit energy
eigenbasis, or is the resonator angular frequency and n̂ is the
resonator photon-number operator. The qubit angular frequency
oq(Fb) is set by the magnetic flux bias Fb, measured relative to an
applied flux (mþ 1/2)F0 where m is an integer and F0 is the
superconducting flux quantum, and attains its minimum value
oq(0)�D at the flux-insensitive point Fb¼ 0. The quantity w(Fb)
is the qubit-state-dependent dispersive shift of the resonator
frequency, which is used for qubit readout. In the Supplementary
Notes 3–5, we discuss further the two-level system approximation
for the C-shunt flux qubit, an approximate analytic treatment
which goes beyond equation (1), and the numerical simulation of
the full qubit–resonator Hamiltonian used to make quantitative
comparisons with our data.

T1 relaxation and noise modelling. We begin by presenting the
T1 characterization protocol for the device in Fig. 1. We first
identify the resonator transmission spectrum (Fig. 2a) by scan-
ning the readout-pulse frequency oro about the bare resonator
frequency or/2pE8.27 GHz. Using standard circuit quantum
electrodynamics readout, qubit-state discrimination is achieved
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by monitoring the qubit-state-dependent transmission through
the resonator27. Next, we add a qubit driving pulse of sufficient
duration to saturate the ground-to-excited-state transition and
sweep the pulse frequency od (Fig. 2b). The resulting spectra for
qubits A and B (Fig. 1a) exhibit minima DA/2pE4.4 GHz and
DB/2pE4.7 GHz at the qubit flux-insensitive points and increase
with magnetic flux (bias current) away from these points. Finally,
using a single p-pulse to invert the qubit population, we measure
the T1 relaxation of qubit A (T1¼ 44 ms) and qubit B (T1¼ 55 ms)
at their flux-insensitive points (Fig. 2c). High-power spectroscopy
(see Supplementary Note 6) reveals transitions among the first
four qubit energy levels that are well matched by simulation, and
identifies anharmonicities of 500 MHz in the two measured
devices.

Using this protocol, we investigated 22 C-shunt flux qubits
from five wafers (fabrication runs), spanning a range of
capacitance values (Csh¼ 9–51 fF) and qubit persistent currents
(Ip¼ 44–275 nA) and featuring two capacitor geometries (inter-
digital and square). The junction critical currents were adjusted to
maintain D/2pE0.5–5 GHz (see Supplementary Note 7).

The data were analysed using simulations of the full system
Hamiltonian and a Fermi’s golden rule expression for the exited
state decay rate21,

1
T1
¼
X

l

2
eh jD̂l gj i
�� ��2

‘ 2 SlðoqÞ; ð2Þ

where | g i(| e i) indicates the qubit ground (excited) states, and
the sum is over four decay mechanisms: flux noise in the qubit
loop, charge noise on the superconducting islands, Purcell-
enhanced emission to the resonator mode, and inelastic
quasiparticle tunnelling through each of the three junctions.
The operator D̂l is a transition dipole moment, and Sl(oq) is the
symmetrized noise power spectral density for the fluctuations
which couple to it. For example, D̂F is a loop current operator for

flux noise SF(o), and D̂Q is an island voltage operator for charge
noise SQ(o) (Supplementary Notes 8 and 9).

We considered both Sl(o)p1/og (inverse-frequency noise)
and Sl(o)po (ohmic noise)—the two archetypal functional
forms of noise in superconducting qubits20,28–33—for our
magnetic flux and charge noise models, and used the frequency
dependence of T1 for specifically designed devices to distinguish
between them. While the following results are presented using
symmetrized power spectral densities, we are careful to account
for the distinction between classical and quantum noise processes
in making this presentation (Supplementary Note 9).

For example, in Fig. 3a, Qubit C (Csh¼ 9 fF) has a large
persistent current (Ip¼ 275 nA) and a small qubit frequency
(Dc/2p¼ 0.82 GHz), making it highly sensitive to flux noise.
Consequently, the measured T1 is predominantly limited by flux
noise over a wide frequency range. This T1-trend constrains the
flux noise model to the form SF(o)�AF

2 (2p� 1 Hz/o)g over the
range 0.82–3 GHz (black dashed line, Fig. 3a). For comparison,
the functional form for ohmic flux noise (grey dashed line), scaled
to match T1 at Dc/2p¼ 0.82 GHz (green dot), is clearly
inconsistent with all other data over this frequency range. The
noise parameters AF

2 ¼ (1.4 mF0)2/Hz and g¼ 0.9 used to match
the data in Fig. 3a are derived from independent measurements—
Ramsey interferometry31 and T1r noise spectroscopy32

(Supplementary Note 10)—made at much lower frequencies in
the context of classical noise related to qubit dephasing
(Fig. 3b). These values are commensurate with earlier work on
qubits20,31–33 and d.c. Superconducting QUantum Interference
Devices (SQUIDs)34. The consistency between the magnitude and
slope of the flux noise power spectra, spanning more than twelve
decades in frequency—millihertz to gigahertz—is remarkable,
made even more so by the fact that the data in Fig. 3b were
measured with a different device (qubit B, Fig. 3c).

In contrast, Qubit B (Csh¼ 51 fF) has a much smaller persi-
stent current (Ip¼ 49 nA) and larger qubit frequency
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Figure 1 | C-shunt flux qubit. (a) Optical micrograph of the 2.5� 5.0 mm2 chip, aluminium (black) on sapphire substrate (white, where the aluminium has

been etched away), featuring two qubits (A and B) and a l/2 coplanar waveguide resonator (or/2p¼8.27 GHz). Scale bar, 0.5 mm. (b) SEM image of the

shunt capacitor (Csh,A¼ 51 fF) for qubit A. Each square plate of the capacitor is 200� 200mm2. The lower plate capacitively couples the qubit to the l/2

resonator. Scale bar, 50mm. (c) Magnified view of the shadow-evaporated qubit loop and its three Josephson junctions. The left junction area is smaller by a

factor aA¼0.42. Scale bar, 1mm. (d) Device and measurement schematic. Experiments are performed in a dilution refrigerator at 20 mK. A global magnetic

field B provides a magnetic flux bias Fb to each qubit. A qubit drive tone (od), readout tone (oro) and externally generated noise (Padd, see Figs 5 and 6)

enter the l/2 resonator defined by capacitances Cin and Cout. The resonator is capacitively coupled (Cg,A/B) to qubits A and B. The qubit junctions (‘x’) have

internal capacitance, CJ,A/B and aA/BCJ,A/B, and are externally shunted by capacitance Csh,A/B. Each qubit loop supports a circulating persistent current Ip,A/B.

Readout signals at the resonator output pass three isolators (‘-’), are amplified at cryogenic and room temperatures, and subsequently detected. See

supplementary online material for more information.
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(DB/2p¼ 4.7 GHz). Its value of T1 is most strongly influenced
by charge noise (magenta dashed line, Fig. 3c) in the 5.0–6.5 GHz
range, consistent with an ohmic charge noise model
of the form SQ(o)�AQ

2o/(2p� 1 GHz) with the parameter
AQ

2 ¼ (5.2� 10� 9e)2/Hz adjusted to match the data. In addition
to flux and charge noise, the predicted value of T1 due to Purcell
loss (light blue dashed line) is also included in Fig. 3a,c and
involves no free parameters (see Supplementary Note 8). The
resulting net value of T1 due to all three mechanisms (inverse-
frequency flux noise, ohmic charge noise and Purcell loss) is
indicated with a red solid line and is in relatively good agreement
with the ceiling of measured T1 values. As we describe below,
quasiparticles are responsible for reducing the T1 below this
ceiling.

Using these models, Fig. 3d shows a comparison of the
measured and predicted T1 values for all 22 qubits. The flux noise
model (from Fig. 3a,b) is applied to all qubits, and the Purcell loss
is included with no free parameters. For the charge noise model,

to achieve agreement across all devices, it was necessary to use
AQ,SQ

2 ¼ (5.2� 10� 9e)2/Hz for square capacitors (from Fig. 3b)
and AQ,IDC

2 ¼ (11.0� 10� 9e)2/Hz for IDCs, presumably reflecting
the larger electric participation of the surface and interface defects
for the IDC geometry1. The agreement is noteworthy, given that
these qubits span a wide range of designs across five fabrication
runs (see Supplementary Note 7).

We note that inverse-frequency charge noise was incompatible
with these data over the entire frequency range investigated (not
shown), implying that the cross-over between inverse-frequency
and ohmic charge noise occurred at a frequency below 0.82 GHz.
However, while ohmic flux noise SF(o)po was inconsistent with
T1 over the frequency range 0.82–3 GHz, its functional form is
plausibly consistent with data above 3 GHz when appropriately
scaled (upper dashed grey line, Fig. 3a) and, therefore, cannot be
conclusively distinguished from ohmic charge noise. Although
the best agreement across all 22 qubits (Fig. 3d) did not require
ohmic flux noise, we could not rule out its presence in the
3–7 GHz range. In Supplementary Note 11, we compare models
that use ohmic charge noise (as in Fig. 3) and ohmic flux noise.
Differentiating between such charge and flux noise at higher
frequencies will be the subject of future work. Indeed, for both
ohmic flux noise SF(o)po and inverse-frequency charge noise
SQ(o)p1/o, it is certainly possible (even expected) that the
former (latter) dominates the flux (charge) noise at sufficiently
higher (lower) frequencies.

The measured data for qubit B (Fig. 3c) exhibit fluctu-
ations in the range T1¼ 20–60ms for qubit frequencies
oq/2p¼ 4.7–6.5 GHz. To investigate their temporal nature, we
measured T1 repeatedly at the qubit flux-insensitive point
oq
�

2p ¼ DB=2p ¼ 4:7GHz over a 10-h period and collected
the data into sets of 50 individual decay traces. Fig. 4a,b show the
results of two such experiments, with set 2 being taken B17 h
after set 1. The average of all traces from set 1 exhibits a purely
exponential decay, whereas the corresponding average for set 2
exhibits a faster short-time decay and clear non-exponential
behaviour (Fig. 4a). Histograms of the T1 values for individual
traces exhibit a tight, Gaussian-shaped distribution centred at
55 ms for set 1 and a broader, quasi-uniform distribution centred
near 45 ms for set 2. Over the course of several weeks, we observed
transitions between these two characteristic modes of behaviour
every few days for this device35.

We attribute the temporal fluctuations and non-exponential
decay function to excess quasiparticles—above the thermal equili-
brium distribution—near the qubit junctions36–39. Following
ref. 40, we define �T1qp as the average relaxation time associated
with a single quasiparticle and take the quasiparticle number nqp

to be Poisson-distributed with mean value �nqp. This results in a
qubit polarization decay function,

hPeðtÞi ¼ e�nqp expð� t=�T1qpÞ� 1ð Þe� t=T1R ; ð3Þ

where T1R captures the residual exponential decay time in the
absence of quasiparticles ð�nqp ¼ 0Þ. The non-exponential decay
function observed for set 2 is well described by equation (3)
(black line in Fig. 4a) with fitting parameters �nqp ¼ 0:26,
�T1qp ¼ 23 ms and T1R¼ 60 ms.

We use a quantum treatment of quasiparticle tunnelling
to model the impact of single quasiparticles on the T1 of
qubit B (Supplementary Note 8). Using a quasiparticle density
xqp¼ 4� 10� 7 (per superconducting electron), the calculated
�T1qp recovers the fitted value �T1qp ¼ 23ms at the flux-insensitive
point. Both �T1qp and xqp are comparable to the quasiparticle-
induced relaxation rates and quasiparticle density reported for
similar devices24,41. The shaded region in Fig. 3a,c indicates the
range of predicted T1 in the presence of �nqp ¼ 0� 1:0
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Figure 2 | Spectroscopy and T1 of two capacitively shunted flux qubits.

(a,b) Resonator and qubit spectra versus bias current used to induce the

global magnetic field B. The qubit transition frequencies oq/2p have

minima DA/2p¼4.36 GHz and DB/2p¼4.70 GHz at the qubit flux-

insensitive points, which are intentionally offset in bias current (magnetic

flux) by using different qubit-loop areas. (c) Energy-decay functions of

qubits A and B measured at their respective degeneracy points using the

inversion-recovery pulse sequence (inset). Solid lines are exponential fits

with decay constant T1.
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quasiparticle. Most T1 data lie within this region, supporting the
hypothesis that their scatter (particularly for qubit B in Fig. 3c)
and the observed temporal T1 variation (Fig. 4b) arise from the
common mechanism of quasiparticle tunnelling. In addition, the
residual relaxation time T1R for set 2 is similar to the exponential
time constant obtained for set 1, indicating an underlying
consistency in the noise models between the two data sets in the
absence of quasiparticles. Unlike qubit B, qubit C consistently
exhibited an exponential decay function (Fig. 4c) with little
temporal variation (Figs 3a and 4d), indicating that quasiparticles
did not strongly influence this device.

The results of Figs 3 and 4 demonstrate clearly that
1/f-type flux noise is the dominant source of qubit relaxation
for frequencies below 3 GHz. To further strengthen this
claim, it is instructive to compare relaxation times for
qubits with similar frequencies and shunting capacitances, but
where the persistent current (and thereby the sensitivity to flux
noise) differs. We find that by reducing Ip from 170 nA to
60 nA, we improve the measured T1 from 2.3 to 12 ms (see
qubits 11 and 13 in Supplementary Table 1 in Supplementary
Note 7).

Pure dephasing and thermal-photon noise. We now address the
transverse relaxation time T2 and our ability to refocus coherent
dephasing errors. Efficient refocusing implies that T2 is limited
entirely by T1, since 1/T2¼ 1/2T1þ 1/Tj, where Tj is the
dephasing time. Generally, T2 is maximal at the flux-insensitive
point for conventional flux qubits18–20, and the device reported in
ref. 20 was efficiently refocused with a single echo pulse
(T2E¼ 23 msE2T1). In the current work, however, a single
refocusing pulse is no longer completely efficient (T2Eo2T1).
This suggests that an additional, higher-frequency noise channel
has been introduced. Unlike the device in ref. 20, which was
coupled to a d.c. SQUID for readout, our C-shunt flux qubits are
transversally coupled to a resonator (Fig. 1). Such inefficient
refocusing is also reported for transmons similarly coupled to
resonators7,10,26.

As we show below, the main source of dephasing in C-shunt
flux qubits biased at their flux-insensitive point is photon-number
fluctuations (shot noise) in the resonator, which vary the
qubit frequency via the a.c. Stark effect (as in the transmon
case26,27). Given a small thermal-photon population
�n ¼ 1=ðe‘or=kBT � 1Þoo1 in the resonator (see Supplementary
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Note 12), the photon-induced frequency shift DStark
th and

dephasing rate Gth
j of the qubit are42

Dth
Stark ¼ Z2w�n ; ð4Þ

Gth
j ¼ Z

4w2

k
�n: ð5Þ

The factor Z¼k2/(k2þ 4w2) effectively scales the photon
population seen by the qubit due to the interplay between the
qubit-induced dispersive shift of the resonator frequency w and
the resonator decay rate k. Both the strong dispersive (2w44k)
and weak dispersive (2wook) regimes have been previously
addressed26,43,44. Here, we use qubit B to focus primarily
on the intermediate dispersive regime (2w/2p¼ 0.9 MHz,
k/2p¼ 1.5 MHz, see Fig. 5a) relevant for high-fidelity qubit
readout45.

We begin by intentionally injecting additional thermal-photons
�nadd Paddð Þ into the resonator from an external noise generator
with power Padd (Fig. 5b and Supplementary Note 2). In the
small-�nadd limit, the measured qubit spectrum exhibits a
linear relationship between the effective qubit frequency
o0q ¼ oqþDLambþDth

Stark ð�naddÞ and the generator power Padd

(Fig. 5c,d). For completeness, we have included the Lamb shift
DLamb, a fixed frequency offset due to the resonator zero-point
energy. Combining the extracted slope with equation (4), we
calibrate the dependence of the added-photon population �nadd (in
the resonator) on the generator power Padd.

Next, we measure the Hahn-echo dephasing rate for several
photon populations using the calibrated �nadd Paddð Þ. All echo
traces (Fig. 5e) feature exponential decay rates G2E¼ 1/T2E,
indicating little (if any) impact from 1/f noise (charge, flux and so
on) and consistent with photon shot noise featuring a short
correlation time 1/kooT2E. The extracted pure dephasing rate
GjE¼G2E�G1/2 scales linearly with photon population
�nadd Paddð Þ (Fig. 5f). The extracted slope agrees with
equation (5) to within 5%. The non-zero dephasing rate at
�nadd ¼ 0 corresponds to a residual photon population �n0 ¼ 0:006,
equivalent to an effective temperature Teff¼ 80 mK. By compar-
ison, the qubit effective temperature determined from its first
excited-state population is 35 mK (ref. 13).

To confirm that the noise arises from residual thermal-
photons, we directly measure the noise power spectral density
(PSD) using the T1r (spin-locking) method32. This method (inset
Fig. 6a) collinearly drives the qubit along the y-axis with a long Y
pulse, which ‘locks’ the qubit state in the rotating frame.
Measuring the qubit relaxation rate in the rotating frame,
G1r(ORabi)¼ Sz(ORabi)/2þG1/2, effectively samples the noise
PSD Sz(o) seen by the qubit at the locking (Rabi) frequency
ORabi (see Supplementary Note 10). By varying the locking drive
amplitude, which is proportional to ORabi, we sample the noise
spectrum over the range o/2p¼ 0.1–100 MHz (Fig. 6a). Below
10 MHz, the resolved noise spectra for all �nadd (including
�nadd ¼ 0) have similar shapes: flat (white) at low frequencies
with a 3-dB high-frequency cutoff at the resonator decay rate
o¼ k. This form is consistent with the expected lorenzian PSD
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for thermal-photons in a resonator as seen by the qubit (see
Supplementary Note 10),

SzðoÞ ¼ 2wð Þ2 2Z�nk
o2þk2

; ð6Þ

which includes the dispersive coupling w and the filtering factor Z
[see equations (4 and 5)]. Equation (6) agrees with the measured
PSDs for all photon populations �n ¼ �naddþ �n0, with the residual
photon number �n0 extracted from equation (6). This agreement
eliminates the driving or readout field as the source of the residual
photons, because such coherent-state photons follow Poisson
statistics with a resulting cutoff frequency k/2 (half the observed
value)46,47.

Finally, we apply dynamical decoupling techniques to validate
the functional form of the measured noise PSD and to recover

T2E2T1. We use the CPMG (inset Fig. 6b) pulse sequence,
comprising a number Np of equally spaced p-pulses. The
application of p-pulses in the time domain can be viewed as a
bandpass filter in the frequency domain which shapes the noise
spectra seen by the qubit21,48–50. Since the filter passband
is centred at a frequency inversely related to the temporal
spacing Dt between adjacent pulses, increasing Np for a fixed
sequence length will shift this passband to higher frequencies
(see Supplementary Note 13).

Figure 6b shows the measured CPMG decay time T2CPMG

versus p-pulse number Np with no added noise �ndd ¼ 0ð Þ. From
Np¼ 1 (Hahn-echo) to Np¼ 100, the decay time T2CPMG remains
near 40 ms, consistent with the white-noise (flat) portion of the
noise PSD in Fig. 6a. Above Np¼ 100, the passband frequency
traverses the cutoff region of the PSD and, as the integrated noise
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level decreases, T2CPMG rises. For Np41,000, the refocusing
becomes efficient with T2CPMG � 85ms � 2T1. The close
correspondence between the noise spectral density in Fig. 6a
and the mitigation of that noise by CPMG in Fig. 6b strongly
supports our methods and interpretations.

Discussion
The C-shunt flux qubit is a planar device with broad-frequency
tunability, relatively strong anharmonicity and high reproduci-
bility, making it well suited to both gate-based quantum
computing and quantum annealing. The anharmonicity can be
significantly higher than that of transmon qubits, allowing for
faster (even subnanosecond51,52) control pulses and reduced

frequency crowding in multi-qubit systems. The addition of a
high-quality-factor shunt capacitance to the flux qubit, together
with a reduced qubit persistent current, has enabled us to achieve
values of T1 as high as 55 ms at the qubit flux-insensitive point.
We are able to account for measured T1 values across 22 qubits
with a single model involving ohmic charge noise, 1/f-flux noise,
and the Purcell effect, with temporal variation in T1 explained by
quasiparticle tunnelling. On the basis of this model, we anticipate
further design optimization leading to even higher coherence will
be possible. Finally, we used spin-locking to directly measure the
photon shot noise spectral density, and we verified its functional
form using a CPMG pulse sequence to reach a T2 of
85 ms—limited by 2T1—at the flux-insensitive point. These
measurements identify photon shot noise as the dominant
source of the observed dephasing, and have direct implications
for any qubit in which the readout involves its transverse
coupling to a resonator.

The role of high-frequency 1/f-flux noise in qubit relaxation is
intriguing. Our T1 data and their frequency dependence across 22
different qubits strongly support the conclusion that 1/f-flux
noise contributes to qubit relaxation up to at least 3 GHz in our
devices. Above 3 GHz, there is some ambiguity between ohmic
flux and ohmic charge noise, and clarifying the roles of these
respective noise sources is the subject of future work. A detailed
understanding of such a broadband 1/f-flux noise mechanism and
its transition from classical to quantum behaviour is of great
practical interest and awaits theoretical explanation.

Data availability
The data that support the findings of this study may be made
available from the corresponding author upon request and with
the permission of the US Government sponsors who funded the
work.
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