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Background: The synthetic control method evaluates the impact of vac-
cines while adjusting for a set of control time series representing diseases 
that are unaffected by the vaccine. However, noise in control time series, 
particularly in areas with small counts, can obscure the association with 
the outcome, preventing proper adjustments. To overcome this issue, 
we investigated the use of temporal and spatial aggregation methods to 
smooth the controls and allow for adjustment of underlying trends.
Methods: We evaluated the impact of pneumococcal conjugate vac-
cine on all-cause pneumonia hospitalizations among adults ≥80 
years of age in 25 states in Brazil from 2005 to 2015. Pneumonia hos-
pitalizations in this group indicated a strong increasing secular trend 
over time that may influence estimation of the vaccine impact. First, 
we aggregated control time series separately by time or space before 
incorporation into the synthetic control model. Next, we developed 
distributed lags models (DLMs) to automatically determine what 
level of aggregation was most appropriate for each control.
Results: The aggregation of control time series enabled the synthetic 
control model to identify stronger associations between outcome and 
controls. As a result, the aggregation models and DLMs succeeded in 
adjusting for long-term trends even in smaller states with sparse data, 
leading to more reliable estimates of vaccine impact.

Conclusions: When synthetic control struggles to identify important 
prevaccine associations due to noise in control time series, users can 
aggregate controls over time or space to generate more robust esti-
mates of the vaccine impact. DLMs automate this process without 
requiring prespecification of the aggregation level.

Keywords: Brazil; Distributed lag model; Horseshoe prior; 
Pneumococcal conjugate vaccine; Synthetic control model; Vaccine 
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Vaccines are introduced for routine use in immunization pro-
grams after a careful assessment of their efficacy and safety 

in clinical trials. Following the widespread introduction of the 
vaccine, the population-level impact – a composite of direct and 
indirect effects and vaccine uptake – should be estimated to help 
decision makers and donors evaluate immunization policies.1,2 
Administrative and surveillance databases are often the only 
sources of data for vaccine evaluation. Compared to other types 
of data (e.g., those from case control studies and cross-sectional 
studies), these databases generally cover larger geographic 
areas and a longer duration of time in both prevaccine and post-
vaccine periods, which are critical for vaccine evaluation. These 
data, however, are likely influenced by various temporal factors, 
such as changes in healthcare systems and surveillance effort. 
Unfortunately, these changes are often difficult to quantify and, 
therefore, are challenging to adjust for using traditional meth-
ods such as a simple pre–post comparison or trend adjustment.

The synthetic control method has been used for the 
evaluation of public health interventions. This method can 
adjust for underlying trends in an outcome of interest using 
information on time-varying controls that are not influenced 
by the interventions.3,4 For example, previous studies have 
evaluated the impact of pneumococcal conjugate vaccines 
(PCVs) on pneumonia hospitalizations using data on other 
causes of hospitalizations as controls (e.g., diseases of the cir-
culatory system, digestive system, etc.).5–7 Given a large set 
of control disease time series, the synthetic control approach 
uses Bayesian variable selection techniques to select the opti-
mal set of controls based on relationships between the out-
come and controls in the prevaccine period. These estimated 
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associations are used for predicting the counterfactual out-
come in the absence of vaccines in the postvaccine period 
and the predictions are used to evaluate the vaccine impact. 
A limitation is that estimating important associations can be 
difficult when the control disease counts are small because 
of the noise in the time series.6 As a result, the model can-
not detect and adjust for underlying trends in the prevaccine 
period and fails to generate accurate estimates of the coun-
terfactuals in the postvaccine period, which are needed to 
describe vaccine impact.

One way to overcome the issue of control disease data 
sparsity is to create a “consensus trend” from smoothed control 
disease time series using principal component analysis, and 
use it in a regression analysis to control for underlying trends.6 
A simulation study demonstrated that this approach leads to an 
improved estimation of vaccine impact. However, using prin-
cipal component analysis results is a less interpretable solu-
tion and results in a potential loss of predictive information 
when compared to using the individual control disease time 
series for modeling and prediction. Therefore, in this study, we 
investigate an alternative solution to the problems caused by 
sparsity of control disease by incorporating additional infor-
mation from neighboring geographic areas or nearby time 
periods into the synthetic control model to stabilize estima-
tion of key associations. First, we use control disease time 
series aggregated at different levels of time (month, quarter, 
semester, or year) or space (state, region, or nation) in the syn-
thetic control model, and evaluate if this approach improves 
the ability of the synthetic control model to estimate associa-
tions, leading to improved vaccine impact estimates. Because 
the most appropriate level of aggregation may be unknown a 
priori or may change across different control diseases, we next 
propose temporal and spatial distributed lag synthetic control 
models (DLMs), which automates the entire process. The mod-
els simultaneously select the appropriate level of aggregation 
separately for each control disease variable and estimate their 
association with the primary outcome. Another strength of the 
DLM is that it closely resembles the usual synthetic control 
model in the case where incorporating outside information is 
not needed to estimate associations with control diseases, sug-
gesting that it may be used whenever auxiliary information is 
readily available but the user is unsure of its utility.

We apply these methods to evaluate the population-
level impact of the introduction of 10-valent PCV (PCV10) 
in children in Brazil against all-cause pneumonia hospitaliza-
tions among adults ≥80 years old. We chose this population 
as an example, as Brazil has a sufficient amount of pre- and 
post-PCV data with a high geographic resolution. This 
enabled us to perform both temporal and spatial aggregation 
of control disease time series. We selected the elderly, which 
was not the age group targeted by PCV10, because previous 
studies identified a strong long-term increasing trend in pneu-
monia hospitalizations among this age group that could not 
be solely explained by the increasing population size.6 The 

synthetic control model was unable to adjust for this increas-
ing trend at the state level in small states due to noise in the 
control disease time series data. As a result, it appeared that 
PCV10 had a negative impact (i.e., disease rates were higher 
than expected after vaccine introduction). Therefore, in this 
article, we aim to show that these aggregation methods can 
capture and control for this strong secular trend in the elderly 
at the state level without resorting to dimension reduction 
techniques.

METHODS

Data
We used publicly available hospital discharge data 

between January 2005 and December 2015 from Brazil pro-
vided by the Department of Vital Statistics, a branch of the 
Brazilian Ministry of Health. As Brazil introduced PCV10 
in March 2010, there were 5 years and 2 months of data in 
the prevaccine period and 5 years and 10 months of data in 
the postvaccine period. Brazil has 27 states that belong to 
the following five regions: North (seven states), Northeast 
(nine states), Southeast (four states), South (three states), 
and Center-West (four states). We excluded two states in the 
North region from the analysis as their data for the elderly 
were unavailable. The Human Investigation Committee at Yale 
School of Medicine determined that this research is exempt 
from review.

Details of the hospitalization data can be found else-
where.8 Briefly, causes of hospitalizations were recorded using 
International Statistical Classification of Diseases and Related 
Health Problems tenth revision (ICD-10) codes. The primary 
outcome was all-cause pneumonia hospitalizations, defined as 
having an ICD-10 code in the range of J12–J18. Control dis-
eases were other ICD-10 chapters and sub-chapters (eTable 1;  
http://links.lww.com/EDE/B785) and were excluded from 
analysis if they were likely affected by PCV10 or if their rela-
tionships with the outcome changed over time.

One of the common issues with administrative data is 
inconsistency in the reporting system over time. As long as 
the inconsistency affects both the outcome and control dis-
eases similarly, the synthetic control model should be able 
to generate reliable counterfactual adjusted for underlying 
trends. However, if changes in the reporting system affect each 
disease differently, that should be adjusted in order to obtain 
valid results from the synthetic control approach. In Brazil, 
the ICD-10 coding practice changed in 2008 due to the change 
in the government’s reimbursement policy. Before 2008, hos-
pitals were required to submit cause-specific ICD-10 codes 
(e.g., J13: pneumonia due to Streptococcus pneumoniae) to 
receive reimbursement for their healthcare cost. The reim-
bursement scheme changed in January 2008, resulting in the 
increased proportion of unspecified codes (e.g., J18: pneumo-
nia, unspecified organism).1 We adjusted for this shift using a 
cubic spline as was done previously.5

http://links.lww.com/EDE/B785
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Approach 1: Synthetic Control Models with 
Control Disease Time Series Aggregated by 
Time or Space

To determine if aggregating control disease data improved 
the performance of the synthetic control model, we investi-
gated the following six combinations of aggregation levels for 
control diseases: (1) month and state-level (“reference” model 
without aggregation); (2) quarter and state-level; (3) semian-
nual and state-level; (4) annual and state-level; (5) month and 
regional; and (6) month and national time series (eTable 2; 
http://links.lww.com/EDE/B785). For each combination, every 
control disease variable was aggregated in the same way (i.e., 
no mixing of aggregation types across the set of variables). To 
create quarterly, semiannual, and annual control time series for 
a selected control disease, we calculated the mean number of 
control cases per respective time period (eFigure 1; http://links.
lww.com/EDE/B785). Regional and national control time series 
are simply the number of each control disease in each region 
where the selected state is located or at the national level. The 
outcome variable (all-cause pneumonia hospitalizations) was 
always modeled on the monthly time scale at the state level, 
with individual control diseases input to the synthetic control 
model at the different levels of aggregation.

Given a selected combination of aggregation levels for 
the control disease variables, we used a modified version of 
the synthetic control model to relate the observed number of 
all-cause pneumonia hospitalizations at month t in a selected 
state (Yt ) as a function of p different time-varying control dis-
eases ( xtj , j = 1, …, p) and other nondisease related covari-
ates, also possibly time-varying ( zt ). Specifically, the Poisson 
regression model is given as

Yt t t| ~λ λPoisson( )
 where

ln .λ β φt t
T

j

p

j tj tx( ) = + +
=

∑z gg
1

The xtj  variable represents the aggregated (over space 
or time) value of control disease j corresponding to calendar 
month t. For example, for the monthly/state control disease 
analyses (reference model), this simply represents the number 
of cases of disease j during calendar month t in the selected 
state; for the quarterly/state analyses, this represents the aver-
age number of hospitalization in the quarter containing calen-
dar month t across the state; and for monthly/regional analyses, 
this represents the total number of hospitalizations across the 
region containing the selected state in the given calendar month. 
Other combinations are similarly defined. We added 0.50 to 
each raw monthly control disease case count, log-transformed 
it, and adjusted it for the change in coding practice in 2008 
before any aggregation taking place. The aggregated predictor 
was then standardized before analysis to improve the compu-
tational stability of the algorithm. The zt  vector includes an 

intercept, monthly dummy variable (December serving as the 
reference), and indicator for the 2009 influenza outbreak (equal 
to 1 for August and September 2009 and 0 for all other months). 
We included independent, normally distributed random effects 
( φt ), centered at zero with a shared variance parameter at each 
month of analysis, to account for potential overdispersion.

We performed variable selection for the control diseases 
by assigning the horseshoe prior distribution to the correspond-
ing regression parameters such that β λ τ λ τj j j| N, ~ ,( ) ( )0 2 2  
with λ j C~ ,+ ( )0 1  and τ ~ ( , )C + 0 1 , where N(.,.)  repre-
sents the normal distribution and C + ( )0 1,  is a half-Cauchy 
distribution.9,10 For the horseshoe prior, local shrinkage of a 
specific regression parameter is controlled by λ j , whereas τ  
describes global shrinkage across all parameters; values close 
to zero for either lead to small values of the corresponding 
regression parameter(s) and suggest that the control disease(s) 
are not associated with pre-vaccine variability in pneumonia 
hospitalizations. A relative importance weight for control dis-
ease j is estimated using the posterior mean of 1−κ j , where 
κ λj j= +1 1 2/ ( ) .9,10 An estimated weight near one indicates 
that the control disease had a strong relationship with the out-
come in the prevaccine period. We considered a control dis-
ease as “selected” in the model if this estimated weight was 
>0.50. We decided to use the horseshoe prior distribution 
instead of the spike and slab prior distribution that was used 
in the previous studies because it generally led to improved 
model convergence.5,6

We fit models with control time series aggregated at the 
aforementioned six levels separately for each state. Models 
were fit to the pre-vaccine data, and the counterfactual num-
ber of pneumonia hospitalizations in the postvaccine period 
was generated from their posterior predictive distributions 
using the observed post-vaccine data on control diseases. To 
complete the model specification, we selected independent 
normally distributed prior distributions centered at zero with 
a standard deviation of 100 for the γ k  parameters, and used a 
uniform prior distribution for the standard deviation parameter 
for φt with a lower bound of zero and upper bound of 1,000. We 
fit the models in the Bayesian setting using JAGS.11 For each 
model, we collected 20,000 nearly independent samples from 
the joint posterior distribution after removing at least 200,000 
iterations before the model converged (amount varied by state/
level of aggregation) and thinning the total number of collected 
samples from two separate chains by a factor of 40 (i.e., result-
ing in near independence of the samples). Model convergence 
was evaluated based on visual inspection of trace plots and 
calculation of Geweke diagnostic for the posterior predicted 
samples of the calculated rate ratios (RRs) (see “Evaluation 
of the Impact of 10-valent Pneumococcal Conjugate Vaccine” 
section for more information on this quantity).12

Approach 2: Distributed Lag Synthetic Control 
Models

The structure of the DLMs is similar to the previously 
described model. However, a key difference is that the user 
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is not required to select a level of data aggregation a priori. 
Instead, the DLMs include parameters that weight each con-
trol disease covariate at different spatial or temporal “lags” 
based on their association with the outcome. Importantly, 
these weights are estimated by the prevaccine data and can 
differ by control disease. The key assumption is that control 
disease counts from states and time periods further away from 
the current state/time under analysis will receive less weight. 
Specifically, we utilize modeling techniques from and define 
the spatial DLM as

ln λ β ω φt t
T

j

p

j
k

m

jk tjk tx( ) = +




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+
= =

∑ ∑z gg
1 1

where many of the terms have been previously described 
and xtjk  is now the count of control disease j during month t 
from state k.13–15 The weight corresponding to counts of con-
trol disease j from state k is denoted by ω jk  and is defined as

ω
η

η
jk
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m
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− −
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exp{ || ||}
1

where || ||s si k−  is the Euclidean distance between the 
centroids of states i and k, m is the total number of states in the 
analysis (i.e., 25), state si  is where pneumonia hospitalization 
data are being analyzed from, and η j > 0  is the parameter that 
describes how much weight control disease j receives at differ-
ent distances. This definition ensures that the weights sum to 
one, leading to a weighted average of counts from surrounding 
states at each time period and for each different control disease 
being used in the regression model. Additionally, by incorpo-
rating distances between the states, the definition ensures that 
states far away from the state of analysis receive smaller values. 
When η j  is large, this suggests that only the home spatial loca-
tion receives a large weight, resulting in a model very similar 
to the previously described reference model. As η j  decreases, 
the weights at larger spatial distances increase. Allowing η j  
to differ by control disease means that different controls can 
receive different weights at the same spatial distances.

In a similar way, we also introduce the temporal DLM 
such as
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where xt k j− ,  is now the count of control disease j from 
time period t-k and the weights are defined as
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In the temporal DLM, instead of including control dis-
eases from states surrounding the state under analysis, we 

include control disease counts from the state under analy-
sis from up to d lags in the past. This definition ensures that 
counts further in the past receive less weight and again, η j  is 
the control disease-specific.

We fit the DLMs using JAGS with many of the prior 
distributions previously described. We specify a uniform prior 
distribution for the η j  parameters with a lower bound of zero 
and upper bound determined by the observed spatial distances 
and selected maximum time lag. Convergence was moni-
tored as previously described and we again collected a total 
of 20,000 approximately independent samples from the joint 
posterior distribution across all models.

Evaluation of the Impact of 10-valent 
Pneumococcal Conjugate Vaccine

For each fitted model, we quantified the impact of 
PCV10 using an RR, which was defined as the cumulative 
number of observed J12–18 hospitalizations divided by the 
cumulative number of counterfactual predicted J12–18 hos-
pitalizations (sampled from the posterior predictive distribu-
tion) in the evaluation period (from March 2011, a year after 
the introduction of PCV10, to December 2015). For each set 
of disease case predictions generated during this time period, 
we calculated the RR, giving us a total of 20,000 posterior pre-
dicted samples of this quantity. To summarize the RR, poste-
rior medians were used as point estimates and the 95% highest 
density credible intervals (CrIs) were calculated.

Model Comparison
We compared the performance of the models using 

the evidence ratio of deviance information criterion (DIC) 
weights,16,17 which was calculated as

exp

exp ref

{ . }

{ . }

−
−

0 50

0 50

∆
∆

m

where ∆m  and ∆ ref are the differences in the DIC val-
ues between the best model (i.e., the model with the smallest 
value of DIC) and model m and the reference model, respec-
tively. The evidence ratio tells us how likely model m is to be 
the best model in comparison to the reference model. To fairly 
compare the DLMs to the aggregated versions, we fit each 
model to the exact same dataset with appropriate lag periods 
removed.

RESULTS

Approach 1: Synthetic Control Models with 
Control Disease Time Series Aggregated by 
Time or Space

We estimated RRs for adults aged ≥80 years in 25 states 
with six different synthetic control models using either origi-
nal or aggregated control time series (eTable 2; http://links.
lww.com/EDE/B785). In 10 (40%) of 25 states (Rondônia, 
Acre, Tocantins, Pernambuco, Alagoas, Sergipe, Mato Grosso 

http://links.lww.com/EDE/B785@line 2@@line 2@@line 2@@line 2@
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do Sul, Mato Grosso, Goiás, and Distrito Federal), the refer-
ence model generated RRs with 95% CrI lower bounds >1, 
suggesting that pneumonia hospitalizations increased after 
vaccine introduction (Figure 1A). Except for Pernambuco and 
Goiás, these states had small population size with the average 
population of adults ≥80 years of age during the study period 
under 30,000. Due to the data sparsity, control diseases had 
noise in their time series which obscured the association with 
the outcome, preventing the synthetic control model from 
identifying an appropriate set of control disease and properly 
adjusting for long-term increasing trends.

In contrast, the aggregation models generated RRs 
around one, meaning no detectable estimated effect of PCV10, 
in the majority of the states (22 states with the quarter/state 
model, 23 states with the semester/state model, 25 states with 
the year/state model, 22 states with the month/region model, 

and 22 states with the month/nation model) (Figure 1, eFigure 
2; http://links.lww.com/EDE/B785, and eFigure 3; http://links.
lww.com/EDE/B785). The aggregation of controls improved 
the model fit (i.e., DIC values of the aggregation models 
became smaller than that of the reference model) in all 25 
states, although the DIC evidence ratio and differences in the 
model likelihood were small in some states (Table and eTable 
3; http://links.lww.com/EDE/B785). The aggregation model 
with the smallest value of DIC (referred as the “best” model 
for each state in Figure 2) adjusted for the long-term underly-
ing trends and generated RRs closer to the null in some of the 
aforementioned 10 states where the reference model gener-
ated questionable estimates of RRs (e.g., Tocantins, Alagoas, 
Goiás, and Distrito Federal).

The aggregation models were able to capture long-term 
underlying trends because they identified stronger relationships 

FIGURE 1.  Rate ratios for adults ≥80 years of age in 25 states in Brazil by population size, estimated by the reference model (A), 
synthetic control models using aggregated controls (B, C, D, F, and G), and distributed lag models (E and H). Rate ratios were the 
cumulative number of observed all-cause pneumonia hospitalizations (ICD-10 code: J12-18) divided by the cumulative number 
of counterfactual pneumonia hospitalizations in the evaluation period (March 2011–December 2015). Dots and bars represent 
posterior medians and 95% highest density CrIs, respectively. Dots and bars are in red when rate ratios were significantly greater 
than one. C and D, 95% credible intervals exceeded the limit of y axis in a few states. Figures S2 and S3 show the full length of 
95% CrIs in all states. 
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between the outcome and controls. For example, in Tocantins 
(the fourth smallest state in terms of population), an estimated 
coefficient for K00_99 (diseases of the digestive system) was 
0.024 in the reference model, whereas it was 0.270 and 0.218 
in the quarterly and semiannual model, respectively (eTable 4; 
http://links.lww.com/EDE/B785). The other mechanism that 
helped models to adjust for underlying trends was that the spa-
tial aggregation models were able to use information on a larger 
number of control diseases, by borrowing data from neighbor-
ing states. For example, Alagoas had information on 11 control 
diseases available (eTable 5; http://links.lww.com/EDE/B785). 
By incorporating data from other states in the same region or 
from all states in the country, the spatial aggregation models 
were able to include 22 or 24 control diseases, respectively, in 
the regression. The spatial aggregation models selected more 
control diseases (i.e., relative importance weights were >0.50 
in eTable 5; http://links.lww.com/EDE/B785), resulting in 
more reliable estimates of the RRs (Figure 2).

Approach 2: Distributed Lag Models
The DLMs, which automatically selected an appropri-

ate set of controls and their aggregation levels, also generated 

similar results by employing lagged information. Compared 
to the reference model, the DLMs had larger DIC evidence 
ratios (Table) and model likelihood (eTable 3; http://links.
lww.com/EDE/B785) in 23 of 25 states, although differences 
were sometimes small. The DLMs were also able to capture 
the underlying trends by incorporating lagged information in 
some states, such as Alagoas, Goiás, and Distrito Federal, and 
estimated RRs moved toward the null (Figures 1E and H and 2).  
The temporal DLM resulted in reduced posterior uncertainty 
surrounding the RR estimates when compared to the other 
temporal aggregation methods. The spatial DLMs tend to out-
perform in smaller states, as they were able to use the informa-
tion on more control diseases provided by surrounding states 
(Table and eTable 5; http://links.lww.com/EDE/B785). In 
larger states, the spatial lagged information was less important 
and temporal DLMs were preferred (Table).

DISCUSSION
The synthetic control method is a powerful tool to dis-

entangle changes caused by an intervention of interest from 
those caused by other unaffected time-varying factors. The 

TABLE. Deviance Information Criterion Evidence Ratios Comparing the Reference Model to the Best Models of Approaches 1 
and 2

State
Rate Ratio by the  

Reference Model (95% CrI)
Average  

Population

Approach 1  
(Simple Aggregation) Approach 2 (DLM)

DIC Best Model DIC Best Model

Acre 1.35 (1.03–1.68) 4,671 2.1 Quarter/state 0.9 Spatial DLM

Rondônia 1.32 (1.06–1.64) 7,965 8 Year/state 6.4 Spatial DLM

Distrito Federal 1.2 (1.01–1.42) 8,273 2,631.4 Year/state 223.1 Temporal DLM

Tocantins 1.33 (1.12–1.59) 10,474 25.9 Quarter/state 11 Spatial DLM

Amazonas 1.14 (0.93–1.4) 18,763 180.6 Year/state 2.1 Temporal DLM

Mato Grosso 1.29 (1.07–1.45) 18,808 1.5 Month/regional 1 Spatial DLM

Sergipe 1.46 (1.19–1.91) 21,729 1.2 Semester/state 0.8 Spatial DLM

Mato Grosso do Sul 1.35 (1.16–1.58) 23,016 1.6 Month/national 1.8 Temporal DLM

Alagoas 1.39 (1.15–1.62) 29,414 12 Semester/state 276 Spatial DLM

Piauí 1.03 (0.87–1.23) 31,741 5.7 Year/state 1.3 Temporal DLM

Espírito Santo 1.18 (0.93–1.44) 32,103 86.9 Semester/state 308.1 Temporal DLM

Rio Grande do Norte 0.99 (0.81–1.22) 44,067 1,343.6 Year/state 53.8 Spatial DLM

Pará 1.06 (0.83–1.31) 48,667 4.4 Semester/state 1.8 Temporal DLM

Goiás 1.52 (1.22–1.76) 49,414 15.2 Quarter/state 7.2 Spatial DLM

Paraíba 1.19 (0.98–1.41) 57,171 2 Month/national 1.1 Temporal DLM

Santa Catarina 0.99 (0.86–1.14) 57,614 22.5 Month/national 96.5 Spatial DLM

Maranhão 1.03 (0.76–1.35) 58,709 18.4 Quarter/state 3.6 Spatial DLM

Paraná 0.94 (0.8–1.1) 96,581 80.1 Month/national 10.7 Spatial DLM

Pernambuco 1.37 (1.15–1.64) 107,174 4.5 Semester/state 2.1 Temporal DLM

Ceará 0.99 (0.85–1.16) 112,506 6 Semester/state 2.2 Temporal DLM

Rio Grande do Sul 0.96 (0.83–1.11) 142,994 3.1 Year/state 8.7 Temporal DLM

Rio de Janeiro 1 (0.85–1.18) 163,895 6.3 Quarter/state 1.6 Temporal DLM

Bahia 0.94 (0.82–1.07) 181,109 1.5 Month/regional 1.2 Temporal DLM

Minas Gerais 0.88 (0.75–1.01) 216,353 1.1 Month/regional 1.9 Temporal DLM

São Paulo 0.99 (0.86–1.13) 350,428 1.1 Quarter/state 1.2 Temporal DLM

Best models were defined as the models with the smallest DIC values for each state.
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model, however, can fail to adjust for trends when control dis-
ease time series are sparse. In Brazil, the reference model using 
the original, nonaggregated control time series suffered from 
this issue, and estimated that there was an increase in pneu-
monia hospitalizations in the postvaccine period especially in 
states with sparse data. Due to limited healthcare access and 
resources and small population size, low-income states were 
more likely to have sparse data, making it challenging for the 
synthetic control model to adjust for underlying trends and 
obtain robust estimates of the impact of PCV in these states. 
To overcome this issue, we proposed the use of aggregated 
control time series. Aggregation of controls enabled the mod-
els to capture relationships between the outcome and controls 
more effectively and to use information on more control dis-
eases by borrowing data from neighboring geographic areas. 
As a result, the models successfully adjusted for underlying 
trends and resulted in more robust estimates of the impact of 
PCV10 in some of the states where the reference model failed 
to adjust for underlying trends. In other states, however, the 
use of aggregated controls did not improve the model perfor-
mance. One of the reasons is that their population size was too 
small and control time series were still very noisy/sparse even 
after aggregation. It suggests that aggregation of control time 
series is not a perfect solution that can be universally applied 

to all states; it is rather one of many ways that researchers can 
try when this issue arises.

A question then becomes how to choose an appropri-
ate aggregation level. The DLMs are useful tools that auto-
mate this process, including the selection of controls and their 
aggregation levels. All steps are carried out in one seamless 
procedure. Additionally, the DLM can essentially collapse to 
the standard synthetic control model in the case that lagged 
information is not helpful. One disadvantage is that the tem-
poral DLM needs to remove lag periods at the beginning of 
the time series data, which might become an issue when only 
a short period of prevaccine data is available.

We used DIC to compare the performances of the stan-
dard synthetic control (SC) model, aggregation SC models, 
and DLMs. Although the aggregation models and DLMs had 
smaller DIC values than the reference model in all 25 states 
and in 23 states, respectively, the differences in DIC values 
were sometimes negligible. Focusing solely on model fit in 
the prevaccine period as DIC does may not tell the entire 
story in terms of predicting accurate counterfactuals. Thus, 
as a supplementary analysis, we aimed to compare predic-
tive performance of the models using a mean absolute error 
of the predictions for all-cause pneumonia hospitalizations 
averaged across the first 12 months of the postvaccine period 

FIGURE 2. Rate ratios for adults ≥80 years of age, estimated by the reference model and the best models from approaches 1 and 
2, in 10 states where the reference model generated rate ratios with 95% CrIs greater than 1. Rate ratios were the cumulative 
number of observed all-cause pneumonia hospitalizations (ICD-10 code: J12–18) divided by the cumulative number of counter-
factual pneumonia hospitalizations in the evaluation period (March 2011–December 2015). Dots and bars represent posterior 
medians and 95% highest density CrIs, respectively. Best models were defined as the models with the smallest DIC values for 
each state. 
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(eTable 6; http://links.lww.com/EDE/B785). We assumed 
that PCV had not yet impacted hospitalizations during these 
months, as the elderly were not routinely immunized by 
PCV and the impact of herd immunity takes a longer time 
to appear. There was no consistent “winner” among these 
models; however, in 10 states where the reference model 
failed to adjust for long-term increasing trends during the 
evaluation period (i.e., RRs > 1 in the main analysis), one 
of the aggregation models or DLMs had the smallest mean 
absolute error, supporting our main conclusion that these 
approaches yielded more reliable estimates of the impact 
of PCV in states with sparse data. Generally, this approach 
may be problematic for applications with shorter time series 
lengths, as the focus is on the longer-term predictive abil-
ity of the methods which requires more prevaccine data for 
validation. Therefore, alternative approaches may be needed 
to formally compare the explanatory and predictive perfor-
mance of these types of models.

In conclusion, when the synthetic control model fails 
to select appropriate controls because of the noise in control 
time series, we propose that users try aggregating control time 
series, either temporally or spatially. It helps the synthetic 
control model to select appropriate control diseases and can 
lead to more robust estimates of vaccine impact. The DLMs 
can automatically select the appropriate set of controls and 
their aggregation levels.
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