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A B S T R A C T   

The increasing throughput of experiments in biomaterials research makes automatic techniques more and more 
necessary. Among all the characterization methods, microscopy makes fundamental contributions to bio-
materials science where precisely focused images are the basis of related research. Although automatic focusing 
has been widely applied in all kinds of microscopes, defocused images can still be acquired now and then due to 
factors including background noises of materials and mechanical errors. Herein, we present a deep-learning- 
based method for the automatic sorting and reconstruction of defocused cell images. First, the defocusing 
problem is illustrated on a high-throughput cell microarray. Then, a comprehensive dataset of phase-contrast 
images captured from varied conditions containing multiple cell types, magnifications, and substrate materials 
is prepared to establish and test our method. We obtain high accuracy of over 0.993 on the dataset using a simple 
network architecture that requires less than half of the training time compared with the classical ResNetV2 
architecture. Moreover, the subcellular-level reconstruction of heavily defocused cell images is achieved with 
another architecture. The applicability of the established workflow in practice is finally demonstrated on the 
high-throughput cell microarray. The intelligent workflow does not require a priori knowledge of focusing al-
gorithms, possessing widespread application value in cell experiments concerning high-throughput or time-lapse 
imaging.   

1. Introduction 

High-throughput techniques are turning impractical experiments 
into routines. A variety of studies [1–9] has demonstrated the potential 
of high-throughput experiments in biomaterials science, where the op-
tical microscope is one of the most efficient and accessible instruments 
for the characterization of cells. Focusing, throughout the imaging 
process in microscopy, is a crucial step to high-quality data. Automatic 
cell imaging nowadays mainly relies on specific focusing algorithms 
[10–12] which are normally widely applicable but may not be precise 
enough on some cellular images with background noises which are, 
however, very common for biomaterials (the word noises here refer to 
entities such as micro air bubbles in hydrogel instead of the hot pixel 
noises caused by the light sensor in general). Additionally, with the 
accidental errors caused by mechanical equipment or software, defo-
cused cell images can still be acquired from time to time. In common 

experiments, these images can be removed manually and re-taken 
immediately, but the efficiency of manual operation is unacceptable in 
high-throughput experiments. In addition, there is inherently no chance 
for re-taking in automatic time-lapse imaging experiments once the time 
point is missed. Accordingly, achieving the automatic sorting and 
reconstruction of defocused cell images is of great significance. 

Deep learning based on convolutional neural networks (CNNs) is a 
rising tool in the biomedical field. The inputs of a CNN model are usually 
various biological images from single-cell images to whole-slide tissue 
images. Through a series of black-box operations, the input image can be 
converted to another image or specific values representing categories or 
biological indexes. The potential of CNN has been illustrated not only in 
image-to-category tasks [13–22] (e.g., classification of stem cell states 
[14,16]) but also in image-to-image tasks [23–32] (e.g., generating 
virtual stained images from unlabeled cell images [24,25,30,31]). These 
two kinds of tasks fit well with our targets of sorting and reconstruction 
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of defocused images. Furthermore, as a black-box process, deep learning 
does not require users of a priori knowledge of imaging or optics, which 
is an important advantage for wide-range applications. Based on its 
superiorities, here, we present a deep-learning-based workflow to ach-
ieve the fast and high-accuracy sorting and the subcellular-level recon-
struction of defocused phase-contrast cell images to deal with the 
defocusing problem in high-throughput experiments. 

In this study, we first prepared a high-throughput cell microarray to 
illustrate the defocusing problem in practice. Then, to establish the deep 
learning models in the workflow, a comprehensive dataset containing 
images of two magnifications, three types of cells, and three substrate 
materials was prepared. On the dataset, we compared the performance 
of a ResNet50V2 [33] architecture with our self-defined convolutional 
neural network (SDCNN) with a very simple architecture. We found that 
with a proper approach to adjust image resolution, the time required for 
the training process can be significantly compressed without the sacri-
fice of classification accuracy. The SDCNN model achieved an accuracy 
of more than 0.993 and required only approximately 0.5 h for the 
training process on a dataset containing 10,000 images which was less 
than half of the time needed for ResNet50V2. A modified UNet [34] 
architecture was used in the reconstruction of defocused images and it 
was shown that subcellular structures could be precisely reconstructed 
even when most of them could not be sensed by human eyes in images 
before reconstruction. The model also performed great generalization 
ability that it could be directly applied to images of new cell types and 
substrates without further training. Moreover, the complete workflow 
had practical performance in images collected from the high-throughput 
cell microarray, where all the defocused images were found and 
reconstructed, showing its potential in experiments concerning auto-
matic cell imaging. 

2. Results 

2.1. The defocusing problem in high-throughput experiments 

To illustrate the defocusing problem in practice, we prepared a high- 
throughput cell microarray on polydimethylsiloxane (PDMS) via the 
approach shown in Fig. 1A. We used the routine two-step automatic 
focusing to acquire cell images at each spot. In total, 120 images were 
captured and 8 of them were found to be defocused at different extents. 
Empirically, more of these defocused images could be acquired with 
smaller cell densities, higher background noises of substate materials, 
and faster speed of autofocusing. Throughout the rest of the article, we 
will show how the deep-learning-based workflow of sorting and recon-
struction of defocused images is established and the performance of the 

workflow on data collected in this section. 

2.2. The intelligent workflow and dataset preparation 

The intelligent workflow was presented in Fig. 2. It started with high- 
throughput imaging in our study but was also applicable to other ex-
periments such as time-lapse imaging. Once the CNN models were 
trained on the existing data, the workflow can be used to sort and 
reconstruct new images produced in routine experiments. Furthermore, 
with a small amount of new data, models could be retrained to fast adapt 
to images in various conditions. To prove the practicability of our 
method in a variety of situations, we collected focused and defocused 
cell images containing 18 different conditions, including two magnifi-
cations of 100 × (10 × objective & 10 × eyepiece) and 200 × (20 ×
objective & 10 × eyepiece), three cell types of 3T3 cells, smooth muscle 
cells (SMCs), and endothelial cells (ECs) and three substrates of glass, 
tissue culture polystyrene (TCPS), and PDMS. Images of these conditions 
all showed very different characteristics caused by factors including the 
objective lens, cell morphologies, cell densities, and substrate textures 
(Fig. S1), possessing sufficient complexity to represent datasets pro-
duced in common research of biomaterials. More details about the 
dataset (e.g., the total numbers and ratios of images of each condition) 
are presented in section 4.3. 

2.3. Sorting of defocused images with different CNN architectures and 
image resolutions 

We assumed that classification, as a relatively mature task of deep 
learning, does not require a very deep and complex CNN architecture on 
a laboratory-scale dataset. Thus, we first used a simple SDCNN (Fig. S2) 
and a ResNet50V2 to compare the effectiveness of these two architec-
tures in terms of classifying defocused cell images on the dataset of EC 
(the total number of training images was shown in Table S1). In addi-
tion, less training time brought higher practicability of the model, so we 
tried to compress the resolution of input images for the decrease of 
training time and to maintain the accuracy at the same time. To preserve 
more details, we initially cropped smaller images from the center of the 
original images (Fig. 3A). With the decrease of image size, the classifi-
cation accuracy decreased obviously on both two models (Fig. 3B and 
C). The trend was also illustrated in the receiver operating characteristic 
(ROC) curves (Fig. 3D and E). We reckoned this was due to the reduction 
of image areas containing effective information, so we tried the resizing 
approach to adjust image resolutions for retaining holistic information 
as much as possible (Fig. 3F). Bilinear interpolation was used to resize 
images and no obvious loss of accuracy or area under the curve (AUC) 

Fig. 1. The high-throughput cell micro-
array. (A) The preparation process of the 
high-throughput microarray. The prepol-
ymer of PDMS was spin-coated on a glass 
slide and then solidified. A metal mask was 
covered on the PDMS substrate during the 
air plasma treatment to obtain a microarray 
for cell adhesion. The prepared chip was 
then used for the cell culture of 3T3 mouse 
embryonic fibroblast cells (3T3 cells). (B) 
Part of the cell microarray (40 × magnifi-
cation). (C) 120 such images (200 ×

magnification) were captured using auto- 
focusing.   
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was observed for both two models until resizing the resolution to 67 ×
67 px2 (Fig. 3G and H). 134 × 134 px2 was chosen for the following 
experiments, at which resolution, the model took only approximately 1/ 
4 time for training compared with the original resolution of 536 × 536 
px2 (Fig. S3). Detailly, a training of SDCNN performed on a graphics 
processing unit (GPU) of RTX 2080 Ti required approximately 0.3 h for 
50 epochs on the training set containing 7560 images (134 × 134 px2). 
We finally compared the robustness of the two models with the variation 
of training set size (Fig. S4). SDCNN outperformed ResNet50V2 with 
obvious superiority. SDCNN still maintained AUC over 0.9988 when the 
training set was reduced to 1/16 of the original data amount while the 
AUC of ResNet50V2 decreased to less than 0.99. Accordingly, SDCNN 
was used for further tests. 

2.4. Transfer learning of the SDCNN model 

To illustrate the practicability of rapidly applying our model to new 
images, we compared the data amount needed respectively for transfer 
learning and new training (start with a randomly initialized model) to 
achieve convergence. The SDCNN model trained in the last section on 
the EC dataset was transferred to the 3T3 or SMC dataset here (Fig. 4A 
and B). Compared with new training, transfer learning could save 
hundreds of images needed to achieve the same accuracy and AUC. The 
superiority of transfer learning vanishes gradually when the size of the 
training set reaches a certain extent. We also trained our model with 
images of one magnification containing all cells and substrates and then 
transferred the model to the dataset of another magnification (Fig. 4C 
and D). A similar trend was observed that transfer learning out-
performed new training when the training set size was relatively small. 
Especially for transfer learning from 200 × magnification to 100 ×
magnification, near 5000 images were saved through the transfer 
approach (Fig. 4D). Thus, transfer learning is worth trying when the data 
amount is relatively limited. 

2.5. Five-fold cross-validation on the mixed dataset 

High-throughput research normally covers a variety of materials or 
cell phenotypes, leading to images with various features within one 

experiment. It is not feasible that users prepare many different models 
for images with different features. To thoroughly evaluate the practical 
performance of SDCNN, we mixed up all images of the 18 different 
conditions and applied five-fold cross-validation on the mixed dataset 
(21,600 images). 20% of the dataset (4320 images) was set as the vali-
dation set in turn (Fig. 5A), and the accuracy of the model was quite 
robust on each fold with differences less than 0.003 (less than 0.0005 for 
AUC, Fig. 5B and C). Compared with training separately on datasets of 
different cell types (Figs. 3G and 4A, B), the AUC and accuracy had only 
a very moderate decrease. We randomly extracted some wrongly clas-
sified images (Fig. S5) and found that some of these images were 
inherently hard to define whether they were defocused or not with 
human eyes. Moreover, some images were labeled with wrong tags, so 
the accuracy should be slightly higher than presented. 

2.6. Reconstruction of 3T3 cell images 

To achieve the image-to-image task of reconstruction of defocused 
images, a modified UNet architecture was used (ResUNet, Fig. S6). We 
introduced the improved residual structure in ResNetV2 into the original 
UNet architecture and added instance normalization [35] layers to 
normalize each input image independently. Images used to train the 
reconstruction model were chosen as 3T3 cells grown on the TCPS 
substrate. We collected focused images as training labels and defocused 
images taken from above and below the cell plane at fixed distances 
(defocus distance) as inputs. The defocus distances were determined as 
±10 & ±20 μm under the 100 × magnification and ±5 & ±10 μm under 
the 200 × magnification and controlled by the mechanical stage auto-
matically (±10 here represented two values of +10 & − 10 instead of all 
values within the range. ±20 & ±5 were the same). Images with the 
same magnification were put together for training and the model per-
formance was presented in Figs. 6 and 7. According to the work of Zhao 
et al. [36], we compared L1 loss, structural similarity [37] (SSIM) loss, 
and a combinatory loss of L1 and SSIM for better reconstruction quality 
(Fig. S7). Based on the results, SSIM loss was used as the loss function of 
the model, and SSIM was used as the evaluation index. 

After reconstruction, the SSIM of each image was significantly 
improved (Figs. 6 and 7, S7). From the perspective of human vision, 

Fig. 2. Overview of the intelligent workflow. (A) Images in our study were collected using an automatic high-throughput microscope. (B) Part of the images was used 
to train and validate the sorting model which was then applied to the testing set for the evaluation of classification performance. (C) The trained model can be fast 
applied to a new dataset through transfer learning requiring only a small amount of new data. (D) All sorted defocused images are finally applied with automatic 
reconstruction with another CNN model. 
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Fig. 3. Different approaches for resolution adjustment and corresponding model performance. Results on training and testing sets are both included in figure. (A) 
Smaller images (67 × 67 px2, 134 × 134 px2, 268 × 268 px2) were cut from the centers of original images (536 × 536 px2) before input. (B, C) AUC and accuracy as a 
function of the resolution (pixel number of a single edge) of input images through cropping of (B) SDCNN and (C) ResNet50V2. (D, E) The ROC curves of different 
input resolutions through cropping of (D) SDCNN and (E) ResNet50V2. The inserts were the enlarged part of the left-upper corner of the original curves. (F) Original 
images were resized to different resolutions (the same as the cropping approach) before input. (G, H) AUC and accuracy as a function of the resolution of input 
images through resizing of (G) SDCNN and (H) ResNet50V2. (I, J) The ROC curves of different input resolutions through resizing of (I) SDCNN and (J) ResNet50V2. 
The inserts were the enlarged part of the left-upper corner of the original curves. 

Y. Xue et al.                                                                                                                                                                                                                                      



Bioactive Materials 11 (2022) 218–229

222

almost all subcellular structures were reconstructed to a level that was 
very close to the focused images. Details including cell edges, nuclei, and 
textures were very clear after reconstruction while they were almost 
unobservable in original defocused images of ±20 μm under 100 ×
magnification and ±10 μm under 200 × magnification. This can also be 
observed in the intensity profiles of the original and reconstructed im-
ages. Even cell edges completely lost in the defocused image can still be 
partly reconstructed (Fig. 6B). Still, not all lost details can be restored. 
Small differences between reconstructed images and ground truths can 
be found in all images especially at places where brightness varied 
significantly within small areas. Notably, although we captured defo-
cused images from four fixed defocus distances, images used in our study 

have a continuous variation in defocus distances due to the mechanical 
precision (Fig. S8). Accordingly, the model can process images of 
random defocus distances which accord with the real situation. 

With the increase of magnification and defocus distance, the per-
formance of the ResUNet model decreased accordingly (Fig. 7), which 
was reasonable because there were more details to reconstruct at higher 
magnification and less useful information at farther defocus distance in 
defocused images. We also trained the model separately with images of 
each defocus distance and magnification to observe whether the model 
performed better on the dataset with lower complexity. It was illustrated 
that the complexity of the dataset had no obvious influence on the model 
performance in our study (Fig. 7), which was an advantage of our 

Fig. 4. Accuracy and AUC as a function of the 
training set size (number of training images) 
through transfer learning or new training. Results 
on testing sets are included in figure. (A, B) The 
model was first trained on the EC dataset and then 
transferred to (A) 3T3 or (B) SMC dataset. (C) 
Transfer learning of models from images of 100 ×
magnification to 200 × magnification. Datasets of 
each magnification contained images of all three 
cells and three substrates. (D) Transfer learning of 
models from images of 200 × magnification to 100 
× magnification. “No transfer” represented that the 
training was started from a randomly initialized 
model on the target dataset. The gray dotted lines 
with arrows illustrated the approximate data 
amount saved through transfer learning to reach the 
same accuracy.   

Fig. 5. Results of five-fold cross-validation. (A) The dataset was randomly divided into five equal parts and one of them was set as the validation set for evaluation 
and the rest as the training set in turn in each fold. (B) The ROC curves of the five folds on validation sets. The insert was the enlarged part of the left-upper corner of 
the original curves. (C) The accuracy and AUC of different folds on training and validation sets. 
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Fig. 6. Reconstruction performance of the ResUNet model. (A, B) Reconstruction results with defocus distances of (A) ±10 & (B) ±20 μm under 100 ×
magnification. Scale bars are 50 μm for the original images and 20 μm for the enlarged images. (C, D) Reconstruction results with defocus distances of (C) ±5 & (D) 
±10 μm under 200 × magnification. The inserted yellow curves were the grayscale intensity plot between two yellow arrows. The insert numbers represent the SSIM 
values (ranging from − 1 to 1, higher is better) of the defocused and reconstructed images compared with the corresponding focused images. Scale bars are 25 μm for 
the original images and 10 μm for the enlarged images. 

Y. Xue et al.                                                                                                                                                                                                                                      



Bioactive Materials 11 (2022) 218–229

224

method in practice that images generated in varied experiments could be 
handled with only one well-trained model in the workflow. The per-
formance of the original UNet architecture with instance normalization 
layer was also tested and our model outperformed UNet in terms of SSIM 
for over 0.2 (Fig. S9). We also tried the Richardson–Lucy (RL) 

deconvolution [38] which is a classical method for image deblurring and 
is still used to be compared with newly developed deep-learning 
methods for cellular image processing [26,27]. It had poor perfor-
mance on our data that the reconstructed images could not be used in 
any form of analysis (Fig. S10), proving the necessity of the 
deep-learning-based method. 

To further evaluate the reconstruction ability of the ResUNet model, 
the reconstructed images and the ground truth images were mixed up to 
cheat the sorting model trained in the five-fold cross-validation 
(Fig. S11). When using the original focused and defocused images, the 
sorting model achieved the AUC of 0.9953. After replacing the defo-
cused images with the corresponding reconstructed images outputted by 
the ResUNet model, the AUC of the sorting model decreased to only 
0.6951, meaning that plenty of the reconstructed images were authentic 
enough to cheat the computer, which again illustrated the great recon-
struction ability of the model. More of the reconstructed images with 
different features (cell densities, shapes, brightness) used to cheat the 
sorting model are presented in Fig. S12. We also tested the model with 
stitched images because whole-slide scans are also very common in high- 
throughput experiments. The result indicated that the splice would not 
cause any obvious abnormality (Fig. S13). 

2.7. The generalization ability of the reconstruction model 

We directly applied the ResUNet model to EC and SMC images which 
were specifically collected for sorting experiments to test its general-
ization ability (Fig. 8). Taken overall, the model could generate images 
with useable quality. As pointed by the yellow arrows, cytoskeleton and 
cell nuclei were clearly visible, and very slim structures almost lost in 
the defocused images could be reconstructed as well. It was also noticed 

Fig. 7. SSIM on testing sets with different training approaches. Training 
together represents that all images with the same magnifications were mixed 
together to train one model. Two models were trained and evaluated in total. 
Training separately represents that one model was trained for each image 
dataset (e.g., images of +10 μm and 100 × magnification). Eight models were 
trained and evaluated in total. 

Fig. 8. Reconstruction performance of the ResUNet model on EC and SMC images. The model was trained with 3T3 cell images collected specifically for 
reconstruction experiments on TCPS and accepted no further training before being applied to EC and SMC images. Scale bars apply to all images with the same 
magnification. 
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from the image of EC on PDMS (200 × ) that not in all conditions could 
the model be directly applied to images with new features. 

2.8. The performance of the workflow on the high-throughput cell 
microarray 

As mentioned in section 2.1, 120 cell images were collected from 
different spots using automatic focusing, and 8 of them were found to be 
defocused. To illustrate the applicability of the workflow in practice, the 
models trained earlier were directly applied here. First, the sorting 
model trained in the five-fold cross-validation was used to sort the 120 
images, and all the 8 images were successfully found and no focused 
images were wrongly classified as invalid data (Fig. 9A). Then, all the 
defocused images were reconstructed using the model trained in section 
2.6, and the most defocused image was presented in Fig. 9B (The rest 7 
were presented in Fig. S14). The model successfully reconstructed the 
image that cell nuclei and edges were very clear although the model was 
trained on images collected on TCPS instead of PDMS. Notably, the 
automatic sorting of 120 images and the reconstruction of 8 images took 
less than half a minute in total, which was much faster than manual 
sorting and re-taking. These results proved the applicability of our 
method in actual high-throughput experiments. 

3. Discussion and conclusion 

Here, a deep-learning-based workflow for the sorting and recon-
struction of defocused cell images is presented. It has widespread us-
ability in various experiments concerning cell imaging under phase- 
contrast channel that the processing of invalid data is completely 
automatic, requiring not a priori knowledge of imaging or optics. The 
sorting step in our study is to determine defocused images, while more 
types of invalid data can be included such as the artifacts caused by 
impurities or floating cells and the images containing no target cells, in 
which the first type of invalidity may also be reconstructed using the 
method. We have proved that for a regular laboratory-scale dataset, the 
SDCNN model is efficient enough and is also very convenient for usage 
that the training on a dataset containing 10,000 images takes only about 
0.5 h (when resizing images to 134 × 134 px2). The time is even shorter 
for transfer learning with fewer images. When coming into a more 
complicated situation, our method is also flexible enough that the 
SDCNN can be replaced by other advanced CNN architectures to adapt 
to datasets containing abundant types of images which may be more and 
more common in the future. 

Before us, researchers have addressed some of the problems related 
to focusing quality or super-resolution in biological images using deep 
learning. Yang et al. [39] evaluated the focusing quality of each object 
independently in fluorescent images. Regretfully, they did not offer 
instant solutions to defocused objects. Ozcan’s group successively 
applied deep learning to the reconstruction of holographic images [40] 
and the super-resolution of fluorescent images [27]. Their work pro-
vided inspiring insights into the deep-learning-based enhancement of 
biological images, but cannot be directly applied to phase-contrast cell 
images. Zhang et al. [41] achieved a similar target of the deblurring of 
defocused cell images like us. However, they concentrated on small-size 
grayscale images of single cells collected in flow cytometry. Our model, 
in comparison, can achieve the one-step reconstruction of three-channel 
colorful images containing multiple cells with different defocusing dis-
tances. Most importantly, none of the existing studies took background 
noises from substrate materials, which are extremely common in bio-
materials experiments and are one of the main reasons for defocusing, 
into account. As we achieve the subcellular-level reconstruction of 
phase-contrast images with an easy-to-train CNN model (single model, 
single loss function, and optimizer with only default parameters), the 
deep-learning-based ways of dealing with low-quality or invalid images 
are further broadened. Since three-channel color images were directly 
set as the output of the ResUNet model, with the complexity of the 
phase-contrast images in our study, it is reasonable to assume that the 
workflow can also be used to process other types of images in life science 
such as multichannel fluorescent images and stained tissue images. 

The virtual reconstructed images in our study already exhibit high 
authenticity in terms of cheating the sorting model and human obser-
vation. If even higher authenticity of images is required, the ResUNet 
model may also be integrated into generative adversarial networks 
(GANs) as a generator like the existing studies of virtual image gener-
ation [27,30,31,42]. However, extensive discussions on the internet 
about a recent study of the up-sampling of photos of human faces [43] 
strongly suggest that GAN might fill images with details that are 
inherently not there. Meanwhile, GAN usually meets more difficulties in 
training (e.g., proper choices of more hyperparameters and loss func-
tions) and requires more computational resources compared with a 
single generator model, so the use of GAN should be circumspect. 

It is worth noting that there is yet no universal standard of SSIM 
above which the reconstructed image can be considered as completely 
reliable. No matter how authentic the reconstructed images are, at the 
current stage, we do not recommend the use of them in some biological 
analyses concerning calculations at pixel-level precision (e.g., the 

Fig. 9. The performance of the workflow in the high-throughput experiment. (A) The confusion matrix of the sorting model. N refers to negative samples 
(defocused) and P refers to positive samples (focused). (B) The most blurry one in the 8 defocused images, the corresponding reconstructed image, and the ground 
truth image captured manually. The insert numbers are the SSIM values of the labeled images compared with the ground truth image. 
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quantitative analysis of cytoskeleton textures). However, it is appro-
priate to use reconstructed images in the calculations of cell coverage, 
nucleus area, cell shape, etc. One can also use reconstructed images for 
further deep-learning processing such as the virtual staining or label-free 
classification of cells. 

The development of technology brings the automation level of cell 
experiments to an unprecedented stage. We believe it is necessary to 
decrease the weight of human interventions in experimental operations 
to a certain degree for the increase of efficiency, precision, and repeat-
ability. The methodology presented above is such an ideal automatic 
tool to deal with invalid image data generated in high-throughput ex-
periments, that it reduces manual operations to a maximum extent. For 
scientists possessing no deep learning experience, the workflow can be 
packaged as a user-friendly program with a graphical interface, and 
what users need to do is putting images into the program and collecting 
the sorted and reconstructed images. No settings are needing specific 
knowledge to be done. The operations of training a new model are very 
alike except that the input images need to be tagged by users in advance. 

4. Materials and methods 

4.1. Substrate preparation 

Sterile tissue culture polystyrene (TCPS, 6-well plate, Cat No. 
140675, ThermoFisher, U.S.A.) was directly used in cell culture. Glass 
slides were dipped in the Hellmanex III solution (0.5 wt%, Hellma, 
Germany) at 60 ◦C for 30 min for clearance, and then washed carefully 
with deionized water repeatedly. All glass slides were then stored in 
ethanol. Before cell culture, all samples were dried with nitrogen flow, 
put into TCPS 6-well plate, and placed under an ultraviolet lamp for 30 
min for sterilization. The curing agent and prepolymer of PDMS (SYL-
GARD 184 Silicone Elastomer Kit, Dow Corning, U.S.A.) were mixed in 
6-well TCPS plates at the mass ratio of 1:10 and put into a vacuum 
environment to discharge air bubbles. Then the samples were solidified 
under 75 ◦C for 4 h. For cell adhesion, all PDMS samples were treated 
with air plasma with a power of 100 W for 30 s in a plasma cleaner (PT- 
5S, Sanhoptt, China). For the preparation of the high-throughput chip, 
the mixture of the curing agent and prepolymer of PDMS was spin- 
coated and solidified on a standard glass slide, and a designed metal 
mask was covered on it during the air plasma treatment. All PDMS 
samples were stored in deionized water to maintain the effect of plasma 
treatment. They were applied with the same sterilization operation as 
glass slides before cell culture. At least three wells were prepared for the 
imaging of each type of sample except for the high-throughput chip (one 
sample was prepared). 

4.2. Cell culture 

Human umbilical vein endothelial cells (ECs) and human umbilical 
artery smooth muscle cells (SMCs) were purchased from ScienCell 
Research Laboratories (U.S.A.) and both cell types used for experiments 
were between 3 and 5 passages. The NIH 3T3 mouse embryonic fibro-
blast cell line was obtained from the Chinese Academy of Sciences 
(China). All three cells were cultured at a density of 30,000/cm2. Cells 
were allowed to adhere for 4 h in endothelial cell medium (ECM, Cat No. 
1001, ScienCell, U.S.A.) for ECs, smooth muscle cell medium (SMCM, 
Cat No. 1101, ScienCell, U.S.A.) for SMCs, and high-glucose DMEM 
medium (Cat No. CR-12800, Cienry Biotechnology, China) with 10% 
fetal calf serum (Cat No. 11011–8611, TIANHANG Biology, China) for 
3T3 at 37 ◦C in a humidified atmosphere containing 5% CO2. After in-
cubation, all samples were washed three times with PBS and fixed with 
4% paraformaldehyde at 4 ◦C for 15 min. Again, samples were washed 
with PBS three times and stored in PBS. All samples were used for image 
acquisition within 24 h after fixing. 

4.3. Image acquisition and preprocessing 

An inverted microscope (ECLIPSE Ti2, Nikon, Japan) controlled by 
the NIS-Elements software (Nikon, Japan) was used to acquire phase- 
contrast images of cells. Objective lenses of 10 × /0.30-NA and 20 ×
/0.45-NA were separately used to acquire images of different magnifi-
cations. For images used for sorting, all focused and defocused images 
were randomly taken from substrates. To ensure the quality and balance 
of our dataset, all focusing processes were manual operations to obtain 
precisely focused images and sufficient defocused images. The defocus 
degree of each image was controlled by turning the focusing knob 
randomly. The defocus distances ranged from a few micrometers to tens 
of micrometers. The ratio of focused and defocused images and the ratio 
of images of two different magnifications were both 1:1. The ratio of 
images collected from the three substrates was 1:1:1. The ratio of images 
of three cells was 2:1:1 (EC to SMC to 3T3). For images used for 
reconstruction, five images were taken from each point of substrates, 
which were a single focused image and four defocused images taken 
from above and below the cell plane at different distances (±10 μm and 
±20 μm under 100 × magnification). Because of operation mistake, 
defocused images of ±5 μm and ±10 μm under 200 × magnification 
were taken separately at different points, but this does not influence the 
following experiments. The defocus distances were chosen manually and 
controlled by the mechanical stage of the microscope. We chose these 
distances because empirically, the defocusing caused by the automatic 
microscope will not exceed the maximal distance used in our study. This 
can also be observed from Figs. 7 and 9, and Fig. S14 that no image 
captured from the cell microarray was more defocused than images 
collected for model training. We chose different defocus distances for 
these two magnifications because the degree of blur in the image was 
larger at higher magnification compared with lower magnification at the 
same defocus distance. For the high-throughput experiment, 120 images 
were collected using the 2-step fast autofocusing in the NIS-Elements 
software. Each of them was collected from different spots in the cell 
microarray. 8 in the 120 images were observed to be defocused and were 
annotated as negative samples manually. All images mentioned above 
were of the resolution of 1608 × 1608 px2 (595 × 595 μm2). For data 
augmentation, in sorting experiments, each image was cropped into 9 
images of 536 × 536 px2. In reconstruction experiments, each image was 
cropped into 16 images of 388 × 388 px2. All cropped images were 
divided into training sets, validation sets, and testing sets randomly 
(Specific numbers of images in different sets were presented in 
Table S1). To adapt to the reconstruction model, images collected from 
the high-throughput chip were cropped into 1604 × 1604 px2. 

4.4. Characterization and deep learning models 

All training processes were performed on an RTX 2080 Ti GPU with a 
TensorFlow 2.0 (https://tensorflow.google.cn/) environment. The 
training for the sorting model took 0.3–3 h depending on the resolution 
of images and the network architecture used (7560 images in the 
training set). Training for the reconstruction model with images of each 
magnification (5500–6000 images in the training set) took about 22 h. 
The information used to draw ROC curves and the values of AUC of 
sorting models were obtained using the roc_curve function in the sklearn 
[44] library (https://scikit-learn.org/stable/). The grayscale intensity 
profiles in Fig. 6 were measured by the Fiji [45] opensource software 
(https://fiji.sc/). For the RL deconvolution, we used the richardson_lucy 
function in the skimage [46] library (https://scikit-image.org/). A 
Gaussian filter was used as the point spread function (PSF) needed in the 
calculation of RL deconvolution. The actual PSF of the microscope was 
unknown to us, so we wrote a python script for the grid searching for the 
best parameters of the RL deconvolution. Parameters including the size 
of the Gaussian filter, the standard deviation of the Gaussian filter, and 
the number of iterations of the richardson_lucy function were searched. 
We chose different parameters for each channel of each image based on 
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the quality of generated images. All chosen parameters are listed in 
Table S2. 

SDCNN. We assumed that the sorting of focused and defocused im-
ages was a relatively simple classification task that did not require a 
complicated design of network architecture. Accordingly, we used only 
basic layers including the input layer, the 2D convolutional layer, the 
max-pooling layer, and the fully-connected layer (Fig. S2). We also used 
the global average pooling layer to replace the regular flatten operation 
to reduce the number of trainable parameters. We applied one-hot 
encoded labels on our data ([1, 0] for focused images and [0, 1] for 
defocused images), so the final output layer had two nodes and was 
activated with a softmax function. Categorical cross-entropy was set as 
the loss function accordingly and a sgd optimizer was used to minimize 
it. For both SDCNN and ResNet50V2, the initial learning rate was set as 
0.001 and set to decrease by half every five epochs. The momentum was 
set as 0.9. The batch size was set as 4 for each iteration. The model that 
achieved the lowest loss value on the validation set within 50 epochs 
was saved for the following experiments. There was no testing set in five- 
fold cross-validation, so models were trained on the training set for 50 
epochs and then tested on the validation set. For the fine-tuning in 
transfer learning experiments, the initial learning rate was set as 0.0002 
and decreased to 0.0001 after 25 epochs. For clarity, in the initial 
training of the transfer learning process, all images in one dataset (e.g., 
the EC dataset containing 7560 images) were used for training. Then the 
trained model was fine-tuned on other datasets using different ratios of 
the dataset (e.g., 1/2, 1/4, 1/8, and 1/16 of the SMC dataset containing 
3780 images) to observe the efficiency of model transfer. Resizing and 
cropping of images were performed using the image.resize and the 
image.central_crop application program interface (API) in the Tensor-
Flow library during the training process. Before input, image.per_i-
mage_standardization API was used to scale all data to the distribution of 
0 ± 1 (mean ± S.D.). 

ResUNet. The UNet architecture was originally designed for 
biomedical image segmentation but then proved useful in many other 
tasks concerning finding the connections between input images and 
output images including virtual fluorescent image generation [24,25], 
virtual histological staining [30,32], and resolution enhancement [27, 
42]. The skip connection in ResNet architecture was proved to be 
beneficial for the gradient descent process which can be observed from 
the visualized loss landscape [47]. We introduced the residual block into 
the UNet architecture to obtain an easy-to-train model for defocused 
image reconstruction. The original down-sampling process in UNet was 
realized through two continuous convolution operations and then a 
max-pooling operation as below. 

y=MaxPool[ReLU{Conv3×3(ReLU{Conv3×3(x)})}]

where x represents the output of the last layer and y represents the input 
of the next layer. we replaced the two convolution operations with a 
modified residual block containing two convolution operations and pre- 
normalization and pre-activation before convolution. Considering that 
the reconstruction process was an image-to-image task, we used instance 
normalization instead of batch normalization to maintain the style and 
distribution of every single image. Because the number of filters kept 
changing in each residual block, channels of the input of each residual 
block were adjusted to the same as the output by a 1 × 1 convolution 
operation. The whole process can be represented as below. 

y1 =Conv3×3(ReLU{InsNorm[Conv3×3(ReLU{InsNorm[x]})]})

y2 =Conv1×1(ReLU{InsNorm[Crop(x)]})

y3 =MaxPool[y1+ y2]

where x represents the output of the last layer, y1 and y2 represent the 
output of two paths of a residual block, and y3 represents the input of the 
next layer. The same replacement of original convolution operations by 

residual blocks was applied at the up-sampling process after each 
transpose convolution operation. The more detailed ResUNet structure 
is presented in Fig. S6. For comparison of the performance of the 
ResUNet and the original UNet in our task, we added the instance 
normalization layer after the convolutional layer in the original UNet 
model otherwise the loss decreased little in training. From the aspect of 
human vision, structural similarity (SSIM) describes the similarity be-
tween images better than the mean absolute error or mean squared 
error. Because the optimizer aims to minimize the value of the loss 
function, SSIM cannot be directly used. Instead, we used SSIM loss as the 
optimization target, which is defined as below. 

SSIM Loss= 1 − SSIM
(
y true,  y pred

)

where y_ture represents the focused image and y_pred represents the 
prediction of the model. The SSIM value was calculated using the ten-
sorflow.image.ssim API. We also tried L1 loss and a combinatory loss 
function containing L1 loss and SSIM loss which is defined as below. 

Combinatory Loss=L1 Loss + 100 × SSIM Loss 

SSIM loss was multiplied by 100 to increase its weight in the 
combinatory loss for balance. Nevertheless, SSIM loss achieved the 
highest SSIM value among all three loss functions on the testing set and 
even lower mean absolute error (MAE) than the combinatory loss 
(Fig. S7). Because the size of images kept decreasing due to convolution 
operations, the resolutions of input images (572 × 572 px2) and output 
images (388 × 388 px2) were not the same. To avoid the loss of image 
areas, we padded original images (388 × 388 px2) with the symmetric 
method to 572 × 572 px2 so that output images of the same size as 
original ones could be obtained. A Nesterov-accelerated adaptive 
moment estimation (Nadam) optimizer was used to minimize the target 
loss with default parameters provided in TensorFlow API. Images with 
the same magnification were mixed together for training and the model 
with the highest SSIM on the validation set within 60 epochs was saved 
for further tests. The batch size for each iteration was set as 2 consid-
ering memory restriction. When training separately on the dataset of 
each magnification and each defocus distance, the epoch number was 
adjusted to 40 considering that the overfitting emerged earlier on a 
smaller dataset. 

For the demonstration of the workflow on the high-throughput cell 
microarray, the sorting model trained in fold-3 (Section 2.5, Fig. 5) was 
used because it achieved the highest accuracy on the validation set, and 
the model of “training together, 200 × magnification” (Section 2.6, 
Fig. 7) was used for reconstruction. The sorting model was trained on 
images of 536 × 536 px2. To adapt to the sorting model, for the 120 
images of 1604 × 1604 px2, only the central part of the image (536 ×
536 px2) was used as the inputs. After sorting, the defocused images 
were directly inputted into the reconstruction model without cropping 
or resizing. 

4.5. Code and data availability 

All images used to train our models are available at https://figshare. 
com/s/8633708789dcc4510c9b. Deep learning codes used in our study 
are available at https://github.com/XueYunfan/Intelligent-Sorting-and- 
Reconstruction-of-Defocused-Cell-Images. 
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M.R. Alexander, J. de Boer, A. Carlier, P. van Rijn, Q. Zhou, High-throughput 
methods in the discovery and study of biomaterials and materiobiology, Chem. 
Rev. 121 (8) (2021) 4561–4677, https://doi.org/10.1021/acs.chemrev.0c00752. 

[10] T. Yeo, S. Ong, Jayasooriah, R. Sinniah, Autofocusing for tissue microscopy, Image 
Vis Comput. 11 (10) (1993) 629–639, https://doi.org/10.1016/0262-8856(93) 
90059-. 

[11] Y. Sun, S. Duthaler, B.J. Nelson, Autofocusing in computer microscopy: selecting 
the optimal focus algorithm, Microsc. Res. Tech. 65 (3) (2004) 139–149, https:// 
doi.org/10.1002/jemt.20118. 

[12] S. Yazdanfar, K.B. Kenny, K. Tasimi, A.D. Corwin, E.L. Dixon, R.J. Filkins, Simple 
and robust image-based autofocusing for digital microscopy, Opt Express 16 (12) 
(2008) 8670, https://doi.org/10.1364/OE.16.008670. 

[13] Y. Hayashi, J. Matsumoto, S. Kumagai, K. Morishita, L. Xiang, Y. Kobori, S. Hori, 
M. Suzuki, T. Kanamori, K. Hotta, K. Sumaru, Automated adherent cell elimination 
by a high-speed laser mediated by a light-responsive polymer, Commun Biol 1 (1) 
(2018) 218, https://doi.org/10.1038/s42003-018-0222-4. 

[14] D. Kusumoto, M. Lachmann, T. Kunihiro, S. Yuasa, Y. Kishino, M. Kimura, 
T. Katsuki, S. Itoh, T. Seki, K. Fukuda, Automated deep learning-based system to 
identify endothelial cells derived from induced pluripotent stem cells, Stem Cell 
Reports 10 (6) (2018) 1687–1695, https://doi.org/10.1016/j.stemcr.2018.04.007. 

[15] V. Anagnostidis, B. Sherlock, J. Metz, P. Mair, F. Hollfelder, F. Gielen, Deep 
learning guided image-based droplet sorting for on-demand selection and analysis 
of single cells and 3D cell cultures, Lab Chip 20 (5) (2020) 889–900, https://doi. 
org/10.1039/D0LC00055H. 
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