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Chondroitin sulfate (CS), dermatan sulfate (DS) and heparan sulfate (HS) are covalently
attached to specific core proteins to form proteoglycans in their biosynthetic pathways.
They are constructed through the stepwise addition of respective monosaccharides by
various glycosyltransferases and maturated by epimerases as well as sulfotransferases.
Structural diversities of CS/DS and HS are essential for their various biological activities
including cell signaling, cell proliferation, tissue morphogenesis, and interactions with a
variety of growth factors as well as cytokines. Studies using mice deficient in enzymes
responsible for the biosynthesis of the CS/DS and HS chains of proteoglycans have
demonstrated their essential functions. Chondroitin synthase 1-deficient mice are viable,
but exhibit chondrodysplasia, progression of the bifurcation of digits, delayed
endochondral ossification, and reduced bone density. DS-epimerase 1-deficient mice
show thicker collagen fibrils in the dermis and hypodermis, and spina bifida. These
observations suggest that CS/DS are essential for skeletal development as well as the
assembly of collagen fibrils in the skin, and that their respective knockout mice can be
utilized as models for human genetic disorders with mutations in chondroitin synthase 1
and DS-epimerase 1. This review provides a comprehensive overview of mice deficient in
CS/DS biosyntheses.
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INTRODUCTION

Chondroitin sulfate (CS) and dermatan sulfate (DS) are covalently attached to core proteins to form
proteoglycans (PGs). CS-PGs and DS-PGs are ubiquitously distributed in the extracellular matrix as
well as on the cell surface (Rodén, 1980; Kjellén and Lindahl, 1991; Iozzo, 1998). Both
glycosaminoglycans (GAGs) are linear polysaccharides. CS-PGs is abundantly distributed in
cartilage (Rodén, 1980), whereas DS-PGs is predominantly distributed in skin, aorta, and blood
vessel (Fransson et al., 1993). The backbone of CS is composed of repeating disaccharide units of
D-glucuronic acid (GlcA) and N-acetyl-D-galactosamine (GalNAc) (Figure 1). DS is a stereoisomer
of CS and consists of L-iduronic acid (IdoA) instead of GlcA and GalNAc (Figure 1). CS/DS chains
are modified by sulfation at various hydroxy groups, which gives rise to structural diversity, thereby
playing an important role in a variety of biological processes including interactions with various
growth factors, cytokines, and morphogens, cell proliferation, tissue morphogenesis, and infections
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by viruses (Trowbridge and Gallo, 2002; Sugahara et al., 2003;
Sugahara and Mikami, 2007; Malavaki et al., 2008; Yamada and
Sugahara, 2008; Malmström et al., 2012; Thelin et al., 2013;
Mizumoto et al., 2015; 2013; 2017; Mizumoto and Sugahara,
2013; Schaefer et al., 2017; Kosho et al., 2019). A variety of
functions of CS/DS are thought to be dependent on sulfation

modification (Sugahara and Mikami, 2007; Mizumoto et al.,
2015). A, C, B, D, and E disaccharide units stand for the
disaccharide (GlcA-GalNAc) units containing one or two
sulfate groups in different combinations (Figure 1). If the
GlcA residue has been epimerized to IdoA in each
disaccharide unit, “i” is added to the codes, such as iA, iC, iB,

FIGURE 1 | Typical repeating disaccharide units in CS and DS. CS consists of GlcA and GalNAc, whereas DS is a stereoisomer of CS including IdoA instead of
GlcA. These sugar moieties are esterified by sulfate at various positions, as indicated in the figures.

FIGURE 2 | Biosynthetic assembly of CS and DS backbones by various glycosyltransferases. Schematic presentation of the biosynthesis of CS and DS
backbones. All glycosyltransferases require a corresponding UDP-sugar, such as UDP-Xyl, -Gal, -GlcA, and -GalNAc, as a donor substrate. After specific core proteins
have been translated, synthesis of the common GAG-protein linkage region, GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-, is evoked by XylT, which transfers a Xyl residue from UDP-
Xyl to the specific serine residue(s) at the GAG attachment sites. The linker region tetrasaccharide is subsequently constructed by GalT-I, GalT-II, and GlcAT-I. The
first β1-4-linked GalNAc residue is then transferred to the GlcA residue in the linker region by GalNAcT-I, which initiates the assembly of the chondroitin backbone,
thereby resulting in the formation of the repeating disaccharide region, [-4GlcAβ1-3GalNAcβ1-]n, by CS-polymerase. DS-epimerase converts GlcA into IdoA by
epimerizing the C-5 carboxy group in the chondroitin precursor, thereby resulting in the formation of the repeating disaccharide region of dermatan precusor, [-4IdoAα1-
3GalNAcβ1-]n. Each enzyme and its coding gene are described under the respective sugar symbols.
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iD, and iE (Figure 1). The A, iA, D, and E units are involved in
infection of malaria, binding with heparin cofactor II, neurite
outgrowth, and infection of herpes simplex virus, respectively
(Maimone and Tollefsen 1991; Clement et al., 1998; Buffet et al.,
1999; Bergefall et al., 2005). However, the functional domain in
CS/DS does not appear to be composed of a single distinct
saccharide sequence, but rather several heterogeneous sulfation
patterns, the “wobble CS-DS motifs” (Purushothaman et al.,
2012).

Various glycosyltransferases, epimerases, sulfotransferases,
and related enzymes in the biosynthesis of CS and DS have
been identified and characterized (Figures 2, 3) (Kusche-
Gullberg and Kjellén, 2003; Mikami and Kitagawa, 2013;
Mizumoto, 2018). Moreover, functional analyses of CS and DS
using model organisms such as nematodes, fruit flies, zebrafish,
and mice have revealed that both are indispensable for normal
development (Sugahara and Schwartz, 1979; Bernhardt and
Schachner, 2000; Hwang et al., 2003; Mizuguchi et al., 2003;
Sugahara et al., 2003; Takemae et al., 2003; Olson et al., 2006;
Maccarana et al., 2009; Mizumoto et al., 2009; Li et al., 2010; Tian
et al., 2010; Watanabe et al., 2010; Wilson et al., 2012; Takemura
et al., 2020). Genetic disorders related to mutations in
biosynthetic enzymes for CS/DS-biosynthesis were described in
another review article (Mizumoto and Yamada, 2021). This
review focuses on recent advances in studies on mice deficient
in CS and DS biosynthetic enzymes.

BIOSYNTHESES OF CS AND DS

Biosyntheses of Donor Substrates for GAGs
and Transporters of Uridine 59-Diphosphate
-Sugars, Sulfate Ions, and
39-Phosphoadenosine 59-Phosphosulfate
Most glycosyltransferases utilize uridine 5′-diphosphate (UDP)-
sugars as the donor substrates, including: UDP-Glc, UDP-
GlcNAc, UDP-GlcA, UDP-Gal, UDP-GalNAc, and UDP-Xyl,
where Glc, GlcNAc, GlcA, Gal, GalNAc, and Xyl, represent

D-glucose, N-acetyl-D-glucosamine, D-glucuronic acid,
D-galactose, N-acetyl-D-galactosamine, and D-xylose,
respectively. UDP-GlcA is formed by the action of UDP-Glc
dehydrogenase on UDP-Glc in the cytosol (Table 1) (Spicer et al.,
1998). UDP-Xyl is formed by the action of UDP-GlcA
decarboxylase/UDP-xylose synthase in the endoplasmic
reticulum and Golgi apparatus (Moriarity et al., 2002). These
UDP-sugars mainly synthesized in the cytosol, except for UDP-
Xyl, are incorporated into the endoplasmic reticulum and Golgi
lumen through the corresponding nucleotide sugar transporters
(Berninsone and Hirschberg, 2000; Orellana et al., 2016; Parker
and Newstead, 2019).

Various GAG sulfotransferases catalyze the transfer of a
sulfate group from 3′-phosphoadenosine 5′-phosphosulfate
(PAPS), as a donor substrate, to respective acceptor substrates
(Kusche-Gullberg and Kjellén, 2003). PAPS synthase (PAPSS)
has two enzymatic domains, adenosine 5′-phosphosulfate kinase
and ATP sulfurylase domains, in N- and C-terminals, respectively
(Venkatachalam, 2003) (Table 1). PAPS is formed from
inorganic sulfate, which is incorporated into the cytosol
through the sulfate transporter at the plasma membrane and
ATP (Hästbacka et al., 1994).

Backbones of CS and DS
CS and DS polysaccharides are covalently attached to specific
serine residues in core proteins through the common GAG-
protein linker region tetrasaccharide GlcAβ1-3Galβ1-3Galβ1-
4xylose(Xyl)β1-O- (Figure 2) (Lindahl and Rodén, 1972;
Kjellén and Lindahl, 1991; Sugahara and Kitagawa 2000). The
transfer of a Xyl residue from UDP-Xyl to specific serine residues
in the newly synthesized core proteins of PGs in the endoplasmic
reticulum and/or cis-Golgi compartments is initiated by
β-xylosyltransferase (XylT) encoded by XYLT1 or XYLT2
(Figure 2; Table 2) (Götting et al., 2000; Pönighaus et al.,
2007). It should be noted that human genes, which were
described by all upper capital, were utilized in this section,
because enzymatic activity of glycosyltransferases, epimerase,
and sulfotransferases, which are responsible for biosynthesis of
CS/DS, had been measured using recombinant human enzymes.

FIGURE 3 |Modification of CS and DS by sulfotransferases and epimerases. Modification pathways of CS and DS. After formation of the CS/DS backbones, each
sugar residue is modified by sulfation, catalyzed by sulfotransferases, as indicated in the figure. C4ST or C6ST transfers a sulfate group from PAPS to the C-4 or C-6
position of the GalNAc residues in the chondroitin chain, respectively. D4ST transfers a sulfate group from PAPS to the C-4 position of the GalNAc residues in dermatan.
Further sulfation reactions are catalyzed by GalNAc4S-6ST or UST, which is required for formation of the disulfated disaccharide units indicated, respectively.
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β4-Galactosyltransferase-I (GalT-I) encoded by B4GALT7, then
transfers a Gal residue from UDP-Gal to Xyl-O-serine in the core
proteins (Almeida et al., 1999; Okajima et al., 1999). β3-
Galactosyltransferase-II (GalT-II) encoded by B3GALT6
transfers the second Gal residue from UDP-Gal to Gal-Xyl-
O-serine (Bai et al., 2001). Thereafter, β3-
glucuronyltransferase-I (GlcAT-I) encoded by B3GAT3,

transfers a GlcA residue from UDP-GlcA to Gal-Gal-Xyl-
O-serine (Figure 2; Table 2) (Kitagawa et al., 1998).

Several modifications occur such as 2-O-phosphorylation and
2-O-dephosphorylation of Xyl and Xyl-2-O-phosphate residues by
Xyl kinase and Xyl-2-O-phosphate phosphatase encoded by
FAM20B and PXYLP1, respectively (Koike et al., 2009; 2014).
Furthermore, sulfation at the C6 position of the first Gal and at

TABLE 1 | Transporters for UDP-sugars and sulfate, biosynthetic enzymes for PAPS and UDP-GlcA, and related proteins. Among the several transporters and biosynthetic
enzymes involved in PAPS and UDP-sugars, GAG biosynthesis-related genes are listed here.

Transporters and
enzymes

Coding
genes

mRNA
accession no

Phenotypes of
KO or

mutant mouse

Human genetic
disorders

MIM
number

Refs. For
knockout mouse

UDP-glucose
dehydrogenase

Ugdh NM_009466 Defects in migration of
mesoderm and endoderm,
and disturbance of FGF
signaling

Developmental and epileptic
encephalopathy 84

603370 García-García and
Anderson, (2003)618792

PAPS synthase 2 Papss2 NM_001201470 A dome-shaped skull,
reductions in limb size and
axial skeletons, and
disturbance of Indian
hedgehog signaling

Brachyolmia 4 with mild epiphyseal
and metaphyseal changes;
Spondyloepimetaphyseal dysplasia
Pakistani type (PAPSS2 type);
Hyperandrogenism

612847 Orkin et al. (1976),
Schwartz et al. (1978),
Sugahara and Schwartz
(1979), Sugahara and
Schwartz (1982a),
Sugahara and Schwartz
(1982b), Pennypacker
et al. (1981), Cortes et al.
(2009)

NM_001360403
NM_011864 603005

Diastrophic dysplasia
sulfate transporter (Solute
carrier family 26
member A2)

Slc26a2 NM_007885 Growth retardation, joint
contractures, and skeletal
dysplasia including
irregular size of
chondrocytes, delay in the
formation of the secondary
osscification center,
osteoporosis of long bone,
severe thoracic kyphosis,
bite overclosure, and hip
dysplasia with pelvic
deformity

Achondrogenesis type IB;
Atelosteogenesis type II; De la
Chapelle dysplasia; Diastrophic
dysplasia; Diastrophic dysplasia,
broad bone-platyspondylic variant;
Epiphyseal dysplasia multiple 4

600972 Forlino et al. (2005)
256050
222600
226900
606718

UDP-GlcA/UDP-GalNAc
dual transporter (Solute
carrier family 35
member D1)

Slc35d1 NM_001356276 A lethal form of skeletal
dysplasia including severe
shortening of limbs, a
decreased proliferating
zone with round
chondrocytes in the face,
and scarce matrices

Schneckenbecken dysplasia 610804 Hiraoka et al. (2007)
NM_177732 269250

UDP 5′-diphosphatase Cant1 NM_001025617 A moderate kyphosis,
decrease in both length
and width of tibiae, femurs,
and ilium, delta phalanx,
and a defect in
endochondral ossification

Desbuquois dysplasia 1 617719 Paganini et al. (2019),
Kodama et al. (2020)NM_001025618 Epiphyseal dysplasia multiple 7 251450

NM_001267591 Pseudodiastrophic dysplasia 613165
NM_001267592 264180
NM_029502

3′-phosphoadenosine 5′-
phosphate 3′-
phosphatase

Bpnt2/
Impad1

NM_177730 Either neonatal or
embryonic lethality,
reductions of limb length,
shortening of the snout and
lower limbs, and reduced
sternal length

Chondrodysplasia with joint
dislocations GRAPP type

614078 Frederick et al. (2008)
614010

Golgin, Rab6-interacting
protein

Gorab NM_001313738 Neonatal lethal. Abnormal
collagen fibrils, thinned and
porous cortical bone, and
spontaneous fractures

Geroderma osteodysplasticum 607983 Chan et al. (2018)
NM_178883 231070

Cant1, calcium activated nucleotidase 1; Bpnt2, 3′(2′), 5′-bisphosphate nucleotidase 2; Impad1, inositol monophosphatase domain-containing protein 1; GRAPP, Golgi-resident
phosphoadenosine phosphate phosphatase; MIM, mendelian inheritance in man.
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TABLE 2 | Biosynthetic enzymes of the GAG-linkage region tetrasaccharide.

Enzymes Coding
genes

mRNA
accession no

Phenotypes of
KO or

mutant mouse

Human genetic
disorders

MIM
numbers

Refs. For
knockout mouse

Xylosytransferase Xylt1 NM_175645 Reduced lengths of limb,
humerus, femur, radius, ulna,
tibia, and fibula, promotion of
premature chondrocytes, and
defect in endochondral
ossification

Desbuquios dysplasia type 2; Short
stature syndrome; Baratela-Scott
syndrome

615777 Mis et al. (2014)
608124
300881

Xylt2 NM_145828 Liver abnormalities including
biliary tract hyperplasia, liver
fibrosis, and biliary cysts, as well
as renal abnormalities including
dilated tubules, intestinal fibrosis,
increase of renal weight, and
hydronephrosis. Reductions in
size and number of adipocytes,
glucose intolerance, insulin
resistance, and an increase in
serum triglycerides

Spondyloocular syndrome 605822 Condac et al.
(2007), Sivasami
et al. (2019)

608125

β4Galactosyltransferase-I B4galt7 NM_001311137 — Ehlers-Danlos syndrome
spondylodysplastic type 1; Ehlers-
Danlos syndrome progeroid type 1;
Ehlers-Danlos syndrome with a short
stature and limb anomalies; Larsen of
Reunion Island syndrome

130070 —

NM_146045 604327

β3Galactosyltransferase-II B3galt6 NM_080445 — Ehlers-Danlos syndrome
spondylodysplastic type 2; Ehlers-
Danlos syndrome progeroid type 2;
Spondyloepimetaphyseal dysplasia
with joint laxity type 1

615349 —

615291
271640

β3Glucuronyltransferase-I B3gat3 NM_024256 An embryonic lethality before 8-
cell stage

Multiple joint dislocations, a short
stature, craniofacial dysmorphism
with or without congenital heart
defects

245600 Izumikawa et al.
(2010), (2014)

Larsen-like syndrome B3GAT3 type 606374
B3GAT3-related disorder with
dislocation and congenital heart
defects; B3GAT3-related disorder
with cutis laxa and bone fragility;
B3GAT3-related disorder with
craniosynostosis and bone fragility;
Pseudodiastrophic dysplasia

264180

Glycosaminoglycan
xylosylkinase

Fam20b NM_145413 Underdifferentiation and
overproliferation of
chondrocytes, failure to initiate
ossification on the popliteal side
of the secondary ossification
center, tongue elevation,
micrognathia, microcephaly,
suture widening, reduced
mineralization in the calvaria,
facial bones, and
temporomandibular joint, death
immediately after birth, marked
intervertebral disc defects, and
abnormal tooth development

Severe (lethal) neonatal short limb
dysplasia with multiple dislocations

611063 Ma et al. (2016),
Liu et al. (2018),
Saiyin et al. (2019),
Wu et al. (2020)

2-Phosphoxylose
phosphatase 1

Pxylp1 NM_001289645 — — — —

NM_001289646
NM_001289647
NM_153420

—, not reported; B4galt7, beta 1,4-galactosyltransferase 7; B3galt6, beta 1,3-galactosyltransferase 6; B3gat3, beta 1,3-glucuronyltransferase 3; Fam20b, Family with sequence similarity
20 member B.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7647815

Mizumoto and Yamada Knockout-Mice of Chondroitin/Dermatan Sulfate

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


TABLE 3 | Biosynthetic enzymes of CS and DS chains.

Enzymes (transferase
activity)

Coding
genes

mRNA
accession no

Phenotypes of
KO or

mutant mouse

Human genetic
disorders

MIM
number

Refs. For
knockout or

transgenic mouse

Chondroitin sulfate synthase
(GalNAcT-II, CS-GlcAT-II)

Chsy1 NM_001081163 Chondrodysplasia,
progression of the
bifurcation of digits,
delayed endochondral
ossification, reduced
bone density, retinal
stress, and decreased
neutrophils in the bone
marrow and spleen

Temtamy preaxial
brachydactyly syndrome

605282 Wilson et al., 2012),
Macke et al. (2020)608183

Chsy3 NM_001081328 A short body length and
intervertebral disc
degeneration

— 609963 Wei et al. (2020)

Chondroitin polymerizing factor Chpf NM_001001565 No obvious
abnormalities, and
slightly reduced length of
femur and tibia

— 610405 Ogawa et al. (2012)
NM_001001566

Chpf2 NM_133913 Anomalies of the bone
and heart

— 608037 Tang et al. (2010)

Chondroitin sulfate
N-acetylgalactosaminyltransferase
(GalNAcT-I, GalNAcT-II)

Csgalnact1 NM_001252623 A short body length and
small body weight
caused by shorter limbs
and axial skeleton, and a
thinner growth plate in
cartilage, impaired
intramembranous
ossification,
malocclusion, abnormal
eyes, skin
hyperextension, severe
scoliosis, joint laxity, and
promotion of axonal
regeneration after the
spinal cord injury

Skeletal dysplasia, mild, with
joint laxity and advanced
bone age

616615 Watanabe et al. (2010),
Sato et al. (2011),
Takeuchi et al. (2013),
Yoshioka et al. (2017),
Hou et al. (2017),
Ida-Yonemochi et al.
(2018), Inada et al. (2021)

NM_001364256
NM_172753

Csgalnact2 NM_172753 Normal development,
fertility, growth rates, and
skeletal formation

— 616616 Shimbo et al. (2017)
NM_030165

Dermatan sulfate epimerase Dse NM_172508 A smaller body weight,
thicker collagen fibrils in
the dermis and
hypodermis, kinked tail,
impairment of directional
migration of aortic
smooth muscle cells,
defects in fetal
abdominal wall,
exencephaly, and spina
bifida

Ehlers-Danlos syndrome
musculocontractural type 2

615539 Maccarana et al. (2009),
Gustafsson et al. (2014),
Bartolini et al. (2013),
Stachtea et al. (2015)

605942

Dsel NM_001081316 Normal extracellular
matrix features

Bipolar disorder; Depressive
disorder; Diaphragmatic
hernia; Microphthalmia

611125 Bartolini et al. (2012),
Stachtea et al. (2015)

Chondroitin 6-O-sulfotransferase Chst3 NM_016803 Decreased number of
naive T-lymphocytes,
hyperthickened
epidermis, enhanced
proliferation and altered
differentiation of basal
keratinocytes, few
regenerating axons, and
more axonal retraction
after axotomy of
nigrostriatal axons

Spondyloepiphyseal dysplasia
with congenital joint
dislocations;
Spondyloepiphyseal dysplasia
Omani type;
Chondrodysplasia with
multiple dislocations
Megarbane type;
Humerospinal dysostosis;
Larsen syndrome autosomal
recessive type; Desbuquois
syndrome

143095 Uchimura et al. (2002),
Lin et al. (2011), Properzi
et al. (2005), Miyata et al.
(2012), Kitazawa et al.
(2021)

603799

(Continued on following page)

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7647816

Mizumoto and Yamada Knockout-Mice of Chondroitin/Dermatan Sulfate

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


C4 or C6 of the second Gal residues has been identified (Sugahara
and Kitagawa, 2000). Chondroitin 6-O-sulfotransferase 1 (C6ST1)
encoded by CHST3 transfers a sulfate group from PAPS to Gal
residues on the linker region tetrasaccharide GlcA-Gal-Gal-Xyl
in vitro (Kitagawa et al., 2008). These modifications affect the

glycosyltransferase reactions of GalT-I, GlcAT-I, CSGALNACT1,
and may regulate the formation of CS/DS chains (Gulberti et al.,
2005; Tone et al., 2008; Izumikawa et al., 2015).

Initiation of the repeating disaccharide region in the CS
chain, [–4GlcAβ1–3GalNAcβ1–]n, is evoked by the transfer of

TABLE 3 | (Continued) Biosynthetic enzymes of CS and DS chains.

Enzymes (transferase
activity)

Coding
genes

mRNA
accession no

Phenotypes of
KO or

mutant mouse

Human genetic
disorders

MIM
number

Refs. For
knockout or

transgenic mouse

Chondroitin 4-O-sulfotransferase Chst11 NM_021439 Severe dwarfism,
multiple skeletal
abnormalities including a
small rib cage, a kinked
vertebral column,
severely shortened
limbs, and a dome-
shaped skull, reduction
in Alcian blue staining in
cartilage, and died within
6 h of birth with severe
respiratory distress

Osteochondrodysplasia,
brachydactyly, and
overlapping malformed digits

610128 Klüppel et al., 2005, Bian
et al. (2011)618167

Dermatan 4-O-sulfotransferase Chst14 NM_028117 A smaller body mass,
reduced fertility, kinked
tail, increased skin
fragility, disorganized
collagen fibers, thoracic
kyphosis, myopathy-
related phenotypes
including variation in fiber
size and spread of the
muscle interstitium,
alterations in the vascular
structure of the placenta,
an abnormal structure of
the basement membrane
of capillaries in the
placental villus, an
increase of proliferation
of Schwann cells, better
recovery after femoral
nerve injury, and a small
number and large
diameter of
neurospheres

Ehlers-Danlos syndrome
musculocontractural type 1;
Ehlers-Danlos syndrome, type
VIB; Adducted thumb-
clubfoot syndrome

601776 Bian et al. (2011), Akyüz
et al. (2013), Yoshizawa
et al. (2018), Hirose et al.
(2021),
Nitahara-Kasahara et al.
(2021a)

608429

N-Acetylgalactosamine-4-sulfate-
6-O-sulfotransferase

Chst15 NM_001360768 Weak staining of bone
marrow-derived mast
cells with May Grünwald-
Giemsa, increase in
empty granules in bone
marrow-derived mast
cells, lower activities of
carboxypeptidase A and
tryptase from bone
marrow-derived mast
cells, low bone mass,
impairment of osteoblast
differentiation, and
enhanced liver fibrosis
induced by CCl4

— 608277 Ohtake-Niimi et al.
(2010), Koike et al.,
(2015), Habuchi et al.
(2016), Nadanaka et al.
(2020)

NM_029935

Uronyl 2-O-sulfotransferase Ust NM_177387 — Multiple congenital anomalies
of the heart and central
nervous system

610752 —

—, not reported; CHST, carbohydrate sulfotransferase.
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the first GalNAc residue from UDP-GalNAc to the GlcA
residue in the linker region tetrasaccharide, GlcA-Gal-Gal-
Xyl-O-, by β4-N-acetylgalactosaminyltransferase-I (GalNAcT-
I) encoded by CSGALNACT1 or CSGALNACT2 (Figure 2;
Table 3) (Uyama et al., 2002; 2003). Chain elongation of CS
occurs by the alternative addition of GlcA and GalNAc
residues by CS-β3-glucuronyltransferase-II (CS-GlcAT-II)
and GalNAcT-II, respectively (Figure 2; Table 3) (Mikami
and Kitagawa, 2013). Chondroitin synthase (CHSY) encoded
by CHSY1 or CHSY3 has a dual enzymatic activity of both CS-
GlcAT-II and GalNAcT-II, which may be exerted in N- and
C-terminal domains, respectively (Kitagawa et al., 2001b;
Izumikawa et al., 2007). Chondroitin-polymerizing factor
(CHPF) encoded by CHPF or CHPF2 is able to construct
the repeating disaccharide region of CS by forming an
enzyme complex with CHSY (Kitagawa et al., 2003;
Izumikawa et al., 2008). CHPF2 has both CS-GlcAT-II and
GalNAcT-II activities; thereby, CHPF2 was designated as
CHSY (Izumikawa et al., 2008). After or during
construction of the non-sulfated disaccharide region of CS,
the chondroitin backbone, it is modified by sulfation by the
respective sulfotransferase including uronyl 2-O-
sulfotransferase (UST) encoded by UST (Kobayashi et al.,
1999), chondroitin 4-O-sulfotransferase (C4ST) encoded by
CHST11, CHST12, or CHST13 (Hiraoka et al., 2000; Yamauchi
et al., 2000; Kang et al., 2002), C6ST encoded by CHST3
(Fukuta et al., 1995; 1998), and GalNAc 4-O-sulfate 6-O-
sulfotransferase (GalNAc4S-6ST) encoded by CHST15
(Ohtake et al., 2001) (Figure 3; Table 3).

Formation of the repeating disaccharide region,
[–4IdoAβ1–3GalNAcβ1–]n, of DS chains occurs by
epimerization of the C5 position of GlcA residues in a
chondroitin precursor backbone, which is catalyzed by DS-
epimerase encoded by DSE or DSEL (Figure 2) (Maccarana
et al., 2006; Pacheco et al., 2009). The dermatan chains are
modified by sulfation catalyzed by UST and dermatan 4-O-
sulfotransferase (D4ST) encoded by UST and CHST14, which
transfer the sulfate from PAPS to the C2 position of IdoA and C4
position of GalNAc residues, respectively (Kobayashi et al., 1999;
Evers et al., 2001; Mikami et al., 2003) (Figure 3; Table 3).

Catabolism of Donor Substrates for CS/DS
Biosynthesis
After glycosyltransferase reaction, the reaction product, UDP,
derived from UDP-sugar is hydrolyzed into uridine 5′-
monophosphate (UMP) by nucleoside 5′-diphosphatase, which
is encoded by calcium-activated nucleotidase 1 (CANT1), in the
endoplasmic reticulum and Golgi apparatus (Table 1) (Failer
et al., 2002; Smith et al., 2002). UMP is exported to the cytosol by
nucleotide sugar transporters, which are antiporters for UDP-
sugars and UMP, from the Golgi apparatus and/or endoplasmic
reticulum (Parker and Newstead, 2019).

After the sulfotransferase reaction, the reaction product,
adenosine-3′, 5′-bisphosphate (PAP), derived from PAPS is
hydrolyzed into adenosine 5′-phosphate (5′-AMP) by the
Golgi-resident PAP 3′-phosphatase, which is encoded by

3′(2′), 5′-bisphosphate nucleotidase 2 (BPNT2)/inositol
monophosphatase domain containing 1 (IMPAD1) (Table 1)
(Frederick et al., 2008). The 5′-AMP may be exported to the
cytosol by unidentified transporters from the Golgi apparatus
and/or endoplasmic reticulum.

KNOCKOUT AND MUTANT MICE OF
BIOSYNTHETIC ENZYMES OF CS/DS AND
ITS DONOR SUBSTRATES AS WELL AS
NUCLEOTIDE SUGAR TRANSPORTERS

Ugdh
UDP-Glc dehydrogenase (UGDH) is an oxidoreductase that
converts UDP-Glc to UDP-GlcA in the cytosol (Spicer et al.,
1998). The mutant mice lazy mesoderm have a mutation in
Ugdh, which was introduced by ethyl-nitrosourea, and show a
phenotype of embryogenesis arrest during gastrulation with
defects in migration of the mesoderm and endoderm
(García-García and Anderson, 2003). Furthermore, no CS or
heparan sulfate (HS) were detected in the mutant using
respective antibodies against them (García-García and
Anderson, 2003). HS is also linear polysaccharide of GAG
family, and composed of repeating disaccharide unit,
[-4GlcAβ1–4GlcNAcα1-]n, which is covalently attached to the
specific core proteins, forming PGs (Supplemental Figure S1)
(Kjellén and Lindahl, 1991). HS and HS-PGs play essential roles
in signal transduction, tissue morphogenesis, early
development, and tumor progression (Bishop et al., 2007).
The disturbance of FGF signaling has been demonstrated in
the Ugdh mutant, resulting in a similar phenotype to those of
Fgf8 and Fgfr1mutants (Yamaguchi et al., 1994; Sun et al., 1999).
The interaction of not only HS but also CS with FGFs and their
receptors has been shown to be required for signal transduction
(Esko and Selleck, 2002; Bishop et al., 2007; Mizumoto et al.,
2015). Thus, the phenotype of theUgdhmutant might be caused
by defects in HS and/or CS.

Papss2
PAPS synthase (PAPSS) is a dual enzyme with both adenosine 5′-
phosphosulfate kinase and ATP sulfurylase activities, catalyzed by
its N- and C-terminal domains, respectively (Fuda et al., 2002;
Venkatachalam, 2003). The Papss2 mutant, brachymorphic
mouse, which is generated by N-ethyl-N-nitrosourea, and has
the substitution Gly79Arg, shows a normal life span, a dome-
shaped skull, and reductions in limb as well as axial skeletons,
thereby leading to brachymorphism (Schwartz et al., 1978;
Sugahara and Schwartz, 1979, 1982a, 1982b; Pennypacker
et al., 1981). Moreover, the mutant mice produce lower
sulfated CS but not HS in the growth plate cartilage, and show
disturbed Indian hedgehog signaling due to abnormal
distribution in the extracellular matrix, which results in a
reduction in chondrocyte proliferation (Orkin et al., 1976;
Cortes et al., 2009). These findings suggest that the sulfation
in CS side chains of PG(s), such as aggrecan, modulates Indian
hedgehog signaling.
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Slc26a2
The sulfate transporter is encoded by SLC26A2, which
incorporates a sulfate anion into the cytosol at the plasma
membrane (Hästbacka et al., 1994; Satoh et al., 1998; Seidler
and Nikolovska, 2019). The incorporated sulfate is activated to
adenosine-phosphosulfate and then to PAPS by PAPS synthase
(Venkatachalam, 2003). An Slc26a2 knock-in mouse with an
Ala386Val substitution in the eighth transmembrane domain of
Slc26a2, whose mutation was detected in a patient with
diastrophic dysplasia characterized by a short stature, cleft
plate, and deformity of the external ear and thumb (Rossi and
Superti-Furga, 2001), was characterized by growth retardation,
joint contracture, and skeletal dysplasia including an irregular
size of chondrocytes, delay in the formation of the secondary
osscification center and osteoporosis of long bones, severe
thoracic kyphosis, bite overclosure, and hip dysplasia with
pelvic deformity (Forlino et al., 2005). Furthermore, the
proportion of a non-sulfated disaccharide unit, GlcA-GalNAc,
was higher than that of the wild-type in cartilage and bone, but
not skin (Forlino et al., 2005). These findings suggest that
abnormalities of proliferation and differentiation of
chondrocytes contribute to reduced bone growth, and lead to
similar phenotypes to probands of human diastrophic dysplasia.
Thus, this mutant mouse is a useful model to explore the
pathogenic and therapeutic approaches for human diastrophic
dysplasia.

Slc35d1
UDP-GlcA/UDP-GalNAc dual transporter encoded by solute
carrier family 35 member D1 (SLC35D1) incorporates both
UDP-GlcA and UDP-GalNAc from the cytosol into
endoplasmic reticulum (Muraoka et al., 2001). The Slc35d1-
deficient mouse showed a lethal form of skeletal dysplasia
associated with severe shortening of limbs, abnormal facial
structures, a decreased proliferating zone with round
chondrocytes, scarce matrices, and reduced CS but not HS in
long bones (Hiraoka et al., 2007). Furthermore, schneckenbecken
dysplasia characterized by perinatally lethal skeletal dysplasia is
caused by mutations in SLC35D1 (Hiraoka et al., 2007). These
findings indicate that CS chains and/or CS-PGs are indispensable
for early embryonic as well as skeletal development, and that the
mutant mouse can be utilized to explore the pathogenic and
therapeutic approaches for human schneckenbecken dysplasia.

KNOCKOUT AND MUTANT MICE OF
BIOSYNTHETIC ENZYMES FOR CS/DS
BACKBONES
Xylt1 and Xylt2
XYLT1 encoded by XYLT1 transfers Xyl to specific serine
residues in core proteins of PGs from UDP-Xyl as a donor
substrate in the Golgi apparatus (Figure 2) (Götting et al.,
2000; Schön et al., 2006; Pönighaus et al., 2007). The Xylt1
mutant pug, which is generated by N-ethyl-N-nitrosourea, and
has the substitution Trp932Arg, showed lower XYLT activity
in chondrocytes from the mutant than the wild-types, thereby

decreasing the production of GAGs in cartilage (Mis et al.,
2014). It should be noted that a defect in XYLT1 may affect the
biosyntheses of not only CS/DS but also HS, because the linker
region tetrasaccharide GlcA-Gal-Gal-Xyl- is common to CS,
DS, and HS (Supplemental Figure S1). Moreover, pug
mutants showed phenotypes including reduced limb,
humerus, femur, radius, ulna, tibia, and fibula lengths, and
the normal proliferation as well as promotion of premature
maturation of chondrocytes, which suggests a general defect in
endochondral ossification, resulting in dwarfism. These
skeletal abnormalities may be caused by an up-regulation of
Indian hedgehog signaling but not FGF signaling (Mis et al.,
2014). In fact, mutations in human XYLT1 cause Desbuquois
dysplasia type 2 characterized by severe pre- and postnatal
growth retardation, a short stature, joint laxity, and the
dislocation of large joints (Bui et al., 2014). Thus, the pug
mutant mouse is available to help understand the pathogenic
mechanism and development of treatment for human
Desbuquois dysplasia type 2.

XYLT2 encoded by XYLT2 also transfers Xyl to specific serine
residues in core proteins of PGs from UDP-Xyl as a donor
substrate in the Golgi apparatus (Götting et al., 2000; Schön
et al., 2006; Pönighaus et al., 2007). The Xylt2-deficient mouse
exhibited liver abnormalities including biliary tract hyperplasia,
liver fibrosis, and biliary cysts, as well as renal abnormalities
including dilated tubules, intestinal fibrosis, increase of the renal
weight, and hydronephrosis (Condac et al., 2007). Furthermore, it
was demonstrated that there is an 86% reduction in HS
disaccharides from the liver of Xylt2-deficient mice compared
with wild-type mice, and a lack of the GAG side chain of decorin,
which is a DSPG, in both the liver and kidney of Xylt2-deficient
mice. The defect in XYLT2 may affect the biosyntheses of not
only CS/DS but also HS, because the linker region tetrasaccharide,
GlcA-Gal-Gal-Xyl-, is common to CS, DS, and HS
(Supplemental Figure S1). However, normal levels of renal
CS as well as HS in Xylt2-deficient mice were detedcted
(Condac et al., 2007). These findings suggest that the residual
HS observed in liver from Xylt2-deficient mice may be sufficient
for hepatocellular differentiation as well as proliferation, but not
maturation, and that renal development requires decorin, the DS
side chain, or other DSPGs. Homozygous mutations in XYLT2
cause spondyloocular syndrome that is characterized by retinal
detachment, amblyopia, nystagmus, hearing loss, heart septal
defects, bone fragility, and mild learning difficulties (Munns
et al., 2015). However, patients with predicted null mutations
in XYLT2 did not show polycystic disease. Hence, XYLT1 may
compensate for the loss-of-function mutation of XYLT2 in the
human liver as well as kidney.

The Xylt2-deficient mouse also showed reductions in the size
and number of adipocytes, glucose intolerance, and insulin
resistance, as well as an increase in serum triglycerides as
compared with wild-type mice (Sivasami et al., 2019).
Moreover, elevations of interleukin-6 and interleukin-1β,
which are proinflammatory M1 cytokines, and the
upregulation of TGFβ signaling that inhibits adipogenesis in
preadipocyte cells, result in the inflammation of adipose
tissues. It was demonstrated that adipose-derived stem cells
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showed impaired adipogenic differentiation in Xylt2-deficient
mice, and that maturation of endothelium from gonadal fat
tissue was reduced, thereby increasing adipogenic precursors.
These findings suggest that the GAG decrease caused by a defect
in XYLT2 leads to reduced steady state adipose tissue stores,
which is a unique lipodystrophic model.

Fam20b
Xyl 2-O-kinase encoded by FAM20B transfers a phosphate group
to the Xyl residue in the linkage region from ATP as a donor
substrate in the Golgi apparatus (Koike et al., 2009). Conditional
knockout (cKO) of Fam20b (Osr2-Cre;Fam20Bflox/flox) in the joint
cartilage, palate mesenchyme, and metanephric mesenchyme-
derived glomeruli tissues, showed that chondrocytes
overproliferated but underdifferentiated, and failed to initiate
ossification on the popliteal side of the secondary ossification
center (Ma et al., 2016). Furthermore, the gain-of-functions of
bone morphogenetic protein (BMP) as well as WNT, and the
down-regulation of Indian hedgehog, which coordinates
chondrocyte proliferation and maturation, were detected in the
cartilage of Fam20b cKO (Ma et al., 2016). These phenotypes lead
to chondrosarcoma in the knee joint and marked defects of
postnatal ossification in long bones. However, no significant
changes in FGF and TGF-β signaling in Fam20b cKO mice
were detected. Taken together, the FAM20B-catalyzed PGs are
essential for chondrocyte differentiation and maturation, as well
as subsequent ossification.

Wnt1-Cre;Fam20bflox/flox cKO mice, which were deficient in
Fam20b in the neural crest and midbrain, died immediately after
birth due to complete cleft palates (Liu et al., 2018). Moreover, the
Fam20b cKO mice showed tongue elevation, micrognathia,
microcephaly, suture widening, and reduced mineralization in
the calvaria, facial bones, and temporomandibular joint (Liu et al.,
2018). These findings suggest that GAG side chains of PGs
formed by catalysis of FAM20B are necessary for the
morphogenesis and mineralization of the craniofacial complex.

Col1a1-Cre;Fam20Bflox/flox cKO mice, which were deficient in
Fam20b in osteoblasts, showed apparent postnatal growth
retardation, a shorter tail and spine, and the spinal curvature,
resulting in severe kyphosis (Saiyin et al., 2019). Furthermore,
Fam20B cKO mice showed marked intervertebral disc defects
associated with malformation of the peripheral annulus fibrosus,
which resulted from the fibrosus tissue transforming to cartilage-
like tissue. Not only CS but also HS were reduced in the annulus
fibrosus from Fam20B cKO mice. TGF-β signaling required for
the development and maintenance of the annulus fibrosus and
intervertebral disc, was not activated in Fam20B cKO mice.
MAPK signaling was also modified in cKO mice, i.e., increases
in phospho-P38 and phospho-ERK but decreases in phospho-
JNK (Saiyin et al., 2019). These findings indicate that FAM20B-
mediated PGs may play an essential role in annulus fibrosus
development through regulating TGF-β and MAPK signaling
pathways.

K14-Cre;Fam20Bflox/flox cKO mice, which were deficient in
Fam20b in the dental epithelium, showed supernumerary tooth
formation. Reductions in CS and HS in the dental epithelium
attenuated FGFR2b as well as WNT signalings in the initial stage

and later cap stage, respectively, of tooth development (Wu et al.,
2020). These findings suggest that FAM20B-catalyzed GAG
biosynthesis on PGs regulates the number of murine teeth
through FGFR2b signaling in the initial stage of tooth
development.

B3gat3
GlcAT-I encoded by B3GAT3 transfers the 4th sugar residue in
the linker region tetrasaccharide GlcA-Gal-Gal-Xyl from UDP-
GlcA to Gal-Gal-Xyl-O-serine (Figure 2) (Kitagawa et al., 1998).
The B3gat3-deficient mice showed embryonic lethality before the
8-cell stage due to the failure of cytokinesis (Izumikawa et al.,
2010). Moreover, neither CS nor HS was detected in blastocysts
from B3gat3-deficient mice (Izumikawa et al., 2010). The defect
in B3GAT3may affect the biosynthesis of not only CS/DS but also
HS, because the linker region tetrasaccharide GlcA-Gal-Gal-Xyl-
is common to CS, DS, and HS (Supplemental Figure S1).
Interestingly, treatment of 2-cell embryos with chondroitinase,
which is a bacterial eliminase acting specifically on CS, resulted in
embryonic lethality between 2- and 8-cell stages, but treatment
with heparitinase, a bacterial eliminase acting specifically on HS,
showed no lethality (Izumikawa et al., 2010). Ext1- or Ext2-
deficient mice that lack HS developed normally until embryonic
day 6.5 (Lin et al., 2000; Stickens et al., 2005). EXT1 and EXT2
have both HS-GlcAT-II and
α-1,4N-acetylglucosaminyltransferase-II activities, which are
required for biosynthesis of HS chains (Lind et al., 1998;
McCormick et al., 1998) (Supplemental Figure S1).
Caenorhabditis elegans synthesizes chondroitin, non-sulfated
CS, which is required for normal cell division and cytokinesis
in an early developmental stage (Mizuguchi et al., 2003;
Izumikawa et al., 2004). These findings suggest that abnormal
cytokinesis in B3gat3-deficient mice may be attributed to
deficiency in CS, but not HS.

Embryonic stem cells derived from B3gat3-deficient mice
completely lost both CS and HS, and failed to differentiate
into multiple lineages (Izumikawa et al., 2014). Degradation of
CS on wild-type embryonic stem cells by treatment with
chondroitinase had effects on the formation of embryonic
bodies, which is in vitro differentiation by free-floating
aggregates of the embryonic stem cells, whereas treatment
with heparitinase showed no effects on the development of
embryonic bodies. Furthermore, the exogeneous addition of
CS-A or CS-E polysaccharides to embryonic bodies derived
from B3gat3-deficient mice rescued the differentiation of these
cells into primitive endodermal cells in a culture assay
(Izumikawa et al., 2014). The interaction of CS with
E-cadherin regulates the Rho signaling pathway, which leads
to the control of differentiation of embryonic stem cells
(Izumikawa et al., 2014). These findings suggest that CS
contributes to the integrity of embryonic stem cells via
interaction with E-cadherin.

Csgalnact1 and Csgalnact2
N-Acetylgalactosaminyltransferase (GalNAcT) encoded by
CSGALNACT1 or CSGALNACT2 transfers a GalNAc residue
from UDP-GalNAc to GlcA-Gal-Gal-Xyl-O-serine and [GlcA-
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GalNAc]n (Figure 2) (Uyama et al., 2002; 2003). Csgalnact1-
deficient mice showed a short body length and small body weight,
caused by shortening of the limbs and axial skeleton, and a
thinner growth plate in cartilage than wild-type mice (Watanabe
et al., 2010; Sato et al., 2011). The level of CS disaccharides in the
cartilage from the Csgalnact1-deficient mice was reduced to half
of that in the wild-type (Watanabe et al., 2010; Sato et al., 2011).
These findings indicate that CSGALNACT1 and/or CS-PG is
necessary for the differentiation and maturation of cartilage.

Csgalnact1-deficient mice also showed impaired
intramembranous ossification, resulting in a shorter face, and
higher and broader calvaria (Ida-Yonemochi et al., 2018). Protein
levels of Wnt3a and β-catenin were decreased in the
mesenchymal tissues of calvaria, and collagen fibers were
irregular, thick, and aggregated in the calvaria and scalp from
Csgalnact1-deficient mice, which causes skull abnormalities (Ida-
Yonemochi et al., 2018). Furthermore, Csgalnact1-deficient mice
were characterized by malocclusion, abnormal eyes, skin
hyperextension, severe scoliosis, joint laxity, and reduction of
CS in skin, muscle, tendon, and bone, which are similar to the
hallmarks of Ehlers-Danlos syndrome in humans. Loss of
CSGALNACT1 may cause disturbance of DS biosynthesis,
because chondroitin is a precursor for DS.
Musculocontractural Ehlers-Danlos syndrome is caused by a
defect in DS (Malfait et al., 2017; 2020).

Csgalnact1-deficient mice showed better recovery after
spinal cord injury than wild-type mice, based on a footfall
test, footprint test, and electromyography, because of the
promotion of axonal regeneration (Takeuchi et al., 2013).
On the other hand, Csgalnact2-deficient mice have not been
demonstrated to show such promotional activity. After spinal
cord injury, the biosynthesis of CS is promoted and resultant
CS inhibits axonal regeneration as a barrier-forming molecule
(Carulli et al., 2005). However, the promotion of CS
biosynthesis is lower in Csgalnact1-deficient mice than in
wild-type mice (Takeuchi et al., 2013). Interestingly, an
increase of HS was detected in association with up-
regulations of Ext1, Ext2, and Extl3 mRNAs that encode
glycosyltransferases responsible for HS biosynthesis
(Takeuchi et al., 2013). HS has been reported to promote
axonal growth and regulate axon guidance (Yamaguchi,
2001). Thus, the decrease and increase of CS and HS,
respectively, in Csgalnact1-deficient mice resulted in better
recovery from spinal cord injury than in wild-type mice.

CS-PG is a major component in perineuronal nets, which are
unique extracellular matrix structures that wrap around neurons
during development and control plasticity in the central nervous
system (Sorg et al., 2016). Csgalnact1-deficient mice showed a
significant decrease in CS in the cerebrum, diencephalon, spinal
cord, and visual cortex (Yoshioka et al., 2017). Furthermore,
Csgalnact1-deficient mice showed a significantly greater total
distance traveled than wild-type mice in the open field test,
which measures voluntary activity in a novel environment.
Csgalnact1-deficient mice manifested much larger responses
than wild-type mice in an acoustic startle test, which can
measure reflex movement in response to a sudden loud sound
stimulus (Yoshioka et al., 2017). These findings suggest that CS

generated by CSGALNACT1 may affect the formation of
perineuronal nets as well as behaviors of mice.

Csgalnact1-deficient mice were characterized by a reduction in
CS in the visual cortical area and impaired ocular plasticity, which
is caused by a decrease of Otx2 accumulation (Hou et al., 2017).
CS binds to Otx2 in perineuronal nets, and promotes uptake of
Otx2 into parvalbumin-expressing basket cells, thereby
terminating the critical period for plasticity (Miyata and
Kitagawa, 2015). These findings indicate that CS and CS-PGs
are required for the critical period for plasticity in the visual
cortex.

Csgalnact1-deficient mice with experimentally induced
autoimmune encephalomyelitis showed milder symptoms
including lower cell infiltration, proliferation, and
productions of interleukin-6 and interferon-γ than those in
the wild-type (Inada et al., 2021). These findings suggest that
CS side chains of PGs may be associated with autoimmune
encephalomyelitis and potential therapeutic targets for
neuroimmunological diseases.

Csgalnact2-deficient mice exhibited normal development,
fertility, growth rates, and skeletal formation (Shimbo et al.,
2017). These findings suggest that loss of functions of
CSGALNACT2 might be compensated for by CSGALNACT1.

Mice with double KO of Csgalnact1 and Csgalnact2 died
during the postnatal stage due to respiratory failure (Shimbo
et al., 2017). Furthermore, the double KO mice exhibited severer
phenotypes including short humeral and tibial lengths compared
with Csgalnact1-or Csgalnact2-deficient mice. The total CS
disaccharides in rib cartilage from Csgalnact1-KO, Csgalnact2-
KO, and double KO mice were reduced to ∼74, ∼99, and ∼40%,
compared with that of the wild-type, respectively (Shimbo et al.,
2017).

Approximately 80% of Col2a1-Cre; Csgalnact1flox/—;
Csgalnact2flox/— double cKO mice, which were deficient in
both Csgalnact1 and Csgalnact2 in chondrocytes, immediately
died after birth because of respiratory failure, and the remaining
∼20% of the double KO mice could start spontaneous respiration
(Shimbo et al., 2017). They were characterized by a lower body
weight, severer dwarfism, and lower proliferation of chondrocytes
than control mice.

These data indicate that CS synthesized by CSGALNACT1
and CSGALNACT2, may be required for pulmonary and skeletal
development during embryogenesis.

Chsy1
GalNAcT-II and glucuronyltransferase-II (GlcAT-II) encoded
by CHSY1 transfer GalNAc and GlcA residues from UDP-
GalNAc and UDP-GlcA to [GlcA-GalNAc]n or [GalNAc-
GlcA]n, respectively (Figure 2) (Kitagawa et al., 2001b).
Chsy1-deficient mice were characterized by
chondrodysplasia, progression of the bifurcation of digits,
delayed endochondral ossification, and reduced bone
density (Wilson et al., 2012). Furthermore, a decrease in 4-
O-sulfation and increases in 6-O-sulfation as well as non-
sulfated GalNAc residues were detected in the cartilage of
Chsy1-deficient mice. The up-regulation of transcriptional
target of Hedgehog, Gli1, was detected in embryonic
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fibroblast cultures from Chsy1-deficient mice (Wilson et al.,
2012). Moreover, a brachymorphic mouse with mutation in
Papss2 also showed low sulfated CS in the cartilage, and its
Hedgehog signaling was attenuated (Orkin et al., 1976; Cortes
et al., 2009). These findings indicate that CS and Hedgehog
protein may coordinately modulate bone development.

Small with kinky tail (skt) mutant mice spontaneously arose at
the Jackcon Laboratory with recessive mutation (Lane, 1988). The
skt mutant was caused by a 27-kb deletion containing Chsy1
(Macke et al., 2020). The skt mutant mice showed reduced CS in
the retina as well as hippocampus compared with heterozygous
deficient mice, an increase in a number of empty spaces
surrounding cells in the cornu ammonis 1, 2, and 3
hippocampal subfields compared with control mice, decreased
neutrophils in bone marrow as well as macrophages in both the
bone marrow and spleen, and age-dependent retinal changes
including progressive photoreceptor cell degeneration with an
increase of glial fibrillary acidic protein, considered to be a sign of
retinal stress (Macke et al., 2020). In contrast, frequencies of
monocytic cells and lymphocytic cells such as T-cells, B-cells, and
natural killer cells, did not appear to be consistently altered in the
skt mutant mice compared with heterozygous controls. These
findings suggest that CS constructed by CHSY1 regulates the
development of the hippocampus, retina, neutrophils, and
macrophages.

Chsy3
CHSY3 also has a dual enzymatic activity with β1,3-GlcA
transferase and β1,4-GalNAc transferase on its amino- and
carboxy-terminal sides, respectively (Yada et al., 2003a;
Izumikawa et al., 2007). Chsy3-deficient mice showed a shorter
body length than the wild-type after 4 weeks old, a reduction of
CS in disc tissues, and intervertebral disc degeneration such as a
narrowed disc height, loss of the nucleus pulposus, and unclear
demarcation between the nucleus pulposus and annulus fibrosus
(Wei et al., 2020). Furthermore, the Hippo signaling pathway,
which is regulated by a kinase of the Sterile-20 family and
activates the suppressor Warts (Zheng and Pan, 2019), was
significantly downregulated. The activation of Yap1, which is a
transcriptional coactivator as well as a negative regulator of the
Hippo pathway, and is involved in intervertebral disc
degeneration (Chen et al., 2019), was mainly affected in
nucleus pulposus cells from Chsy3-deficient mice (Wei et al.,
2020). These findings suggest that CS activates Yap signaling and
spontaneous intervertebral disc degeneration.

Chpf
Chondroitin polymerizing factor encoded by CHPF exhibits an
enzymatic activity to polymerize the disaccharide region of CS
in concert with CHSY1 in vitro (Kitagawa et al., 2003). Since
CHPF has a dual enzymatic activity of β1,3-GlcA transferase
and β1,4-GalNAc transferase, it was also designated as CHSY2
(Yada et al., 2003b). Although Chpf-deficient mice showed no
obvious abnormalities, the femur and tibia lengths were
slightly reduced, and the chain length of CS was shorter in
cartilage than in wild-type mice (Ogawa et al., 2012). These
findings indicate that other CHSY family proteins, CHPF2,

CHSY1, and/or CHSY3, might compensate for the activity
of CHPF.

Chpf2
CHPF2 also has a dual enzymatic activity of β1,3-GlcA
transferase and β1,4-GalNAc transferase, and has been
designated as CHSY3 or CSGlcA-T (Gotoh et al., 2002;
Izumikawa et al., 2008). Chpf2-deficient mice have been
registered in the knockout mouse library, and their anomalies
in the bone and heart were reported without detailed analyses
(Tang et al., 2010). Further investigation is required for
elucidation of the in vivo function of CHPF2.

Chst3
C6ST1 encoded by carbohydrate sulfotransferase 3 (CHST3)
transfers a sulfate group from PAPS to the C-6 hydroxy group
of GalNAc residues in the CS repeating disaccharide region,
[GlcA-GalNAc]n (Figure 3) (Fukuta et al., 1995, 1998;
Uchimura et al., 1998). Chst3-deficient mice showed a loss of
6-O-sulfated disaccharide units such as the C-unit,
GlcA–GalNAc(6-O-sulfate), and D-unit, GlcA(2-
O-sulfate)–GalNAc(6-O-sulfate), in the spleen, cartilage, and
brain (Uchimura et al., 2002), although brain development
seems to be normal in Chst3-deficient mice. Chst3 was not
expressed in the thymus (Uchimura et al., 1998), where naive
T-cells differentiate, and the proportion of CD4+/CD8– and
CD4–/CD8+ cells in the thymus from Chst3-deficient mice did
not change (Uchimura et al., 2002). However, the number of
naive T-lymphocytes decreased (Uchimura et al., 2002). These
findings indicate that survival, retention, and/or emigration of
naive T lymphocytes was affected in the spleen of the Chst3-
deficient mice, rather than that of thymocytes.

After axotomy of nigrostriatal axons, Chst3-deficient mice
exhibited fewer regenerating axons and more axonal retraction
than wild-type mice (Lin et al., 2011), although repair of the
median and ulnar nerves was similar between wild-type and
Chst3-deficient mice after peripheral nerve injury. Increases in
the expression of Chst3 and proportion of the 6-O-sulfated
structure have been demonstrated in glial scars after cortical
injury (Properzi et al., 2005). These findings suggest that the
suppression of 6-O-sulfation in CS after injury of the central
nervous system prevents axons to regenerate.

Chst3-transgenic mice with an increase in 6-O-sulfation of the
brain CS showed loss of perineuronal nets in the brain, leading to
the continuance of the critical period for cortical plasticity
(Miyata et al., 2012). Furthermore, Otx2, which is a
homeoprotein and regulates ocular dominance plasticity via its
effects on maturation of parvalbumin-expressing interneurons
(Sugiyama et al., 2008), diffused and reduced at the surrounding
parvalbumin-expressing interneurons in Chst3-transgenic mice
(Miyata et al., 2012). These findings indicate that 6-O-sulfation of
CS at perineuronal nets in the brain regulates the critical period
for cortical plasticity by maturation of parvalbumin-expressing
interneurons.

Chst3-deficient mice presented with a hyperthickened
epidermis, enhanced proliferation, and altered differentiation
of basal keratinocytes, thereby impairing the epidermal
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permeability barrier function (Kitazawa et al., 2021).
Furthermore, the 6-O-sulfated CS directly binds to epidermal
growth factor receptor (EGFR), leading to the blockade of EGFR
signaling (Kitazawa et al., 2021). The Chst3-deficient mice had a
thicker epidermis and increased levels of acute inflammation
including erythema, scaling, and skin induration, compared with
wild-type mice when psoriasis was induced by imiquimod
(Kitazawa et al., 2021). These findings indicate that the 6-O-
sulfated CS repress proliferation of keratinocytes and progression
of psoriasis in the skin.

Chst11
C4ST1 encoded by carbohydrate sulfotransferase 11 (CHST11)
transfers a sulfate group from PAPS to the C-4 hydroxy group of
GalNAc residues in the CS repeating disaccharide region, [GlcA-
GalNAc]n (Figure 3) (Hiraoka et al., 2000; Yamauchi et al., 2000).
Chst11-deficient mice showed a more than 90% reduction of the
4-O-sulfated disaccharide unit in the growth plate compared with
the wild-type (Klüppel et al., 2005). Furthermore, they exhibited
severe dwarfism, multiple skeletal abnormalities including a small
rib cage, a kinked vertebral column, severely shortened limbs, a
dome-shaped skull, reduction in Alcian blue staining in cartilage,
and fatality within 6 h of birth with severe respiratory distress
(Klüppel et al., 2005). In the Chst11-deficient embryos,
chondrocyte differentiation was affected during morphogenesis
of the cartilage growth plate because of upregulation of TGFβ
signaling with concomitant downregulation of BMP signaling,
but not Indian hedgehog signaling (Klüppel et al., 2005), although
mesenchymal aggregation and cartilage primordium formation
were normal. These findings suggest that CS 4-O-sulfation and
C4ST1 are required for embryonic development and
morphogenesis of the cartilage growth plate by modulation of
signaling pathways.

Chst15
GalNAc4S-6ST encoded by carbohydrate sulfotransferase 15
(CHST15) transfers a sulfate group from PAPS to the C-6
hydroxy group of GalNAc4-O-sulfate residues in the CS
repeating disaccharide region, [GlcA-GalNAc(4-O-sulfate)]n
(Figure 3) (Ohtake et al., 2001). Chst15-deficient mice showed
complete loss of GalNAc 4- and 6-O-disulfated structure (E-unit)
in CS/DS from the tissues examined, including the cerebrum,
cerebellum, heart, lung, liver, spleen, kidney, thymus, stomach,
small intestine, large intestine, mesentery, testis, whole embryo,
and bone marrow-derived mast cells, suggesting that GalNAc4S-
6ST encoded by Chst15 is the sole enzyme responsible for the
biosynthesis of GalNAc 4- and 6-O-disulfated structure (Ohtake-
Niimi et al., 2010). Furthermore, Chst15-deficient mice were
fertile, showed normal development, exhibited weak staining
of bone marrow-derived mast cells with May Grünwald-
Giemsa, showed an increase of empty granules in bone
marrow-derived mast cells, and presented lower activities of
carboxypeptidase A as well as tryptase from bone marrow-
derived mast cells (Ohtake-Niimi et al., 2010). These findings
suggest that GalNAc 4- and 6-O-disulfated structure in CS/DS-
PGs may be involved in the storage of these proteases in the
granules of mast cells.

Chst15-deficient mice also exhibited impairment of osteoblast
differentiation leading to be low bone mass (Koike et al., 2015).
Liver fibrosis induced by CCl4 was enhanced in these mice
(Habuchi et al., 2016). These findings indicate that GalNAc4S-
6ST and/or E-disaccharide unit-containing CS, [GlcA-
GalNAc(4-, 6-O-disulfates)], may be a therapeutic target for
osteopenia, osteoporosis, and fibrosis. However, GalNAc 4-
and 6-O-disulfated structure was not necessary for binding
with semaphoring 3A in the perineuronal nets of brain
(Nadanaka et al., 2020).

Dse and Dsel
DS-epimerase encoded by DSE or DSEL converts GlcA into IdoA
by C5-epimerization of GlcA residues in the CS repeating
disaccharide region, [GlcA-GalNAc]n (Figure 2) (Maccarana
et al., 2006; Pacheco et al., 2009). Dse-deficient mice exhibited
a smaller body weight, reductions in IdoA-containing structures
in the skin, thicker collagen fibrils in the dermis and hypodermis,
kinked tails, impairment of directional migration of aortic
smooth muscle cells, and defects in the fetal abdominal wall,
exencephaly, and spina bifida (Maccarana et al., 2009; Bartolini
et al., 2013; Gustafsson et al., 2014). Dse and/or DS may be
indispensable for normal development and formation of collagen
fibrils.

Dsel-deficient mice had no anatomical, histological, or
morphological abnormalities (Bartolini et al., 2012).
Furthermore, Dsel-deficient mice exhibited reduced epimerase
activity in the skin (24% reduction), lung (34%), liver (38%),
spleen (44%), kidney (55%), and brain (89%) compared with
those in the wild-type mouse tissues (Bartolini et al., 2012).
Consistent with this result, IdoA contents of CS/DS chains
from the neonatal brain and kidney were reduced to 87 and
62% of wild-type mice, respectively (Bartolini et al., 2012). Brain
from Dsel-deficient mice showed normal extracellular matrix
features by immunohistological staining. DSE may compensate
for the function of DSEL.

Double knockout mice of Dse and Dsel exhibited perinatal
lethality with an umbilical hernia, exencephaly, a kinked tail, and
complete loss of DS, suggesting that DS plays an important role in
embryonic development as well as perinatal survival (Stachtea
et al., 2015).

Chst14
D4ST1 encoded by carbohydrate sulfotransferase 14 (CHST14)
transfers a sulfate group from PAPS to the C-4 hydroxy group of
GalNAc residues in the repeating disaccharide region of DS,
[IdoA-GalNAc]n (Figure 3) (Evers et al., 2001; Mikami et al.,
2003). Chst14-deficient mice showed a smaller body mass,
reduced fertility, kinked tail, and increased skin fragility
compared with wild-type littermates (Akyüz et al., 2013).
Moreover, in Chst14-deficient mouse skin, the amount of DS
was markedly decreased with elevation of the level of CS, which is
a precursor chain of DS. These phenotypes of Chst14-deficient
mice were considerably similar to those of Dse-deficient mice
(Maccarana et al., 2006). In addition to both enzymes involving
the biosynthesis of DS, it has been reported that 4-O-sulfated
GalNAc residues in DS chains prevent back-epimerization by
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DSE in vitro (Malmström, 1984). Furthermore, DSE and CHST14
forms heterocomplex, but not DSEL, which is necessary to build
longer IdoA-containing chains (Tykesson et al., 2018). Therefore,
the cooperation of both enzymes by heterocomplex is required for
the formation of repeating disaccharide, [GalNAc(4S)–IdoA],
in DS.

Its skin tensile strength was significantly decreased compared
with that in wild-type mice, and the collagen fibrils were oriented
in various directions to form disorganized collagen fibers in the
reticular layer (Hirose et al., 2021). Rod-shaped linear GAG
chains were found to be attached at one end to collagen fibrils
and protruded outside of the fibrils in the Chst14-deficient mice,
in contrast to those being round and wrapping the collagen fibrils
in wild-type mice (Hirose et al., 2021). These findings suggest that
the DS side chain of decorin is necessary for assembly of decorin-
PG with collagen, and maintenance of the skin strength.

CRISPR/Cas9-genome engineered Chst14-deficient mice
exhibited common growth impairment and skin fragility
similar to the conventional knockout mice of Chst14
(Nitahara-Kasahara et al., 2021a). In addition, CRISPR/Cas9-
genome engineered Chst14-deficient mice showed decreased DS
in muscle, thoracic kyphosis, and myopathy-related phenotypes
including variation in fiber size and spread of the muscle
interstitium, as well as diffuse localization of decorin in the
spread endomysium of skeletal muscle, which caused the
lower grip strength and decreased exercise capacity, compared
with wild-type and heterozygous mutant mice (Nitahara-
Kasahara et al., 2021a; 2021b). The CRISPR/Cas9-engineered
Chst14-mutant mouse is a useful model for
musculocontractural Ehlers-Danlos syndrome caused by
mutations in CHST14 (Dündar et al., 2009; Malfait et al.,
2010; Miyake et al., 2010; Voermans et al., 2012; Kosho et al.,
2019; Malfait et al., 2020).

Chst14-deficient mice are sometimes perinatally lethal
(Yoshizawa et al., 2018). Their placenta showed immaturity
such as a reduced weight of the placenta, alteration in the
vascular structure with ischemic and/or necrotic-like change,
an abnormal structure of the basement membrane of
capillaries in the placental villus, and significantly decreased
DS (Yoshizawa et al., 2018). These findings suggest that DS
may be essential for placental vascular development.

Cultured Schwann cells from dorsal roots and nerves,
cerebellar neurons, and motoneurons of Chst14-deficient mice
exhibited longer cell processes compared with those from wild-
type cells (Akyüz et al., 2013). Schwann cells from Chst14-
deficient mice had a higher proliferation rate. Moreover, the
values for the foot-base and heel-tail angles in Chst14-deficient
mice showed better recovery than those in wild-type mice at each
time-point between 1 and 12 weeks after femoral nerve injury
(Akyüz et al., 2013). These findings indicate that Chst14 partially
controls inhibitory functions during neural development and
recovery from nerve injury.

Neurospheres from Chst14-deficient, but not Chst11-deficient
mice exhibited fewer numbers and larger diameters than those
from wild-types (Bian et al., 2011). This was caused by
impairments of self-renewal and proliferation, but neither
apotosis nor migration, of neural stem cells in vitro as well as

in vivo (Bian et al., 2011). The expression level of GLAST but not
Nestin, which are markers of radial glial cells and neurons,
respectively, was increased in neurospheres from Chst14-
deficient mice. These findings suggest that DS-PGs play
important roles in the proliferation and differentiation of
neural stem cells.

KNOCKOUT AND MUTANT MICE OF
CATABOLISM OF THE REACTION
PRODUCTS OF DONOR SUBSTRATES,
UDP AND PAP

Cant1
Most glycosyltransferases utilize UDP-sugar as a donor substrate,
which is converted to UDP after the reaction in the endoplasmic
reticulum or Golgi apparatus. The UDP is hydrolyzed to UMP by
5′-diphosphatase encoded by CANT1 (Failer et al., 2002; Smith
et al., 2002). Cant1-deficient mice exhibited moderate kyphosis, a
decrease in both the length and width of tibiae, femurs, and ilium,
delta phalanx, a defect in endochondral ossification, and
reduction in GAGs in chondrocytes (Paganini et al., 2019).
Furthermore, the phenotypes of the Cant1-knockout mouse
were similar to those of a Cant1 knock-in mouse with an
Arg302His substitution in the catalytic domain (Huber et al.,
2009), which corresponds to the humanmutation in patients with
Desbuquois dysplasia characterized by a short stature, round face,
progressive scoliosis, and joint laxity (Paganini et al., 2019).
Cant1-deficient mice generated by the CRISPR/Cas9 system
also exhibited a lower body weight, short stature, thoracic
kyphosis, delta phalanx, reduction in GAG content in growth
plate cartilage, and impairment of differentiation of chondrocytes
(Kodama et al., 2020).

These findings suggest that CANT1 and/or hydrolysis of UDP
to UMPmay be necessary for the metabolism of GAGs and that it
affects the maturation of chondrocytes in the cartilage growth
plate. Accumulation of UDP may inhibit the activity of
glycosyltransferases involved in the biosynthesis of GAGs. The
lack of UMP may inhibit the incorporation of UDP-sugars from
the cytosol into the endoplasmic reticulum and Golgi apparatus
through antiporters, nucleotide sugar transporters. Further
biochemical analyses of the cellular pathways will be crucial in
order to elucidate the molecular basis of CANT1 deficiency as
well as Desbuquois dysplasia.

Bpnt2
Most sulfotransferases utilize PAPS as a donor substrate, which is
converted to PAP after the reaction in the cytosol as well as Golgi
apparatus. PAP is hydrolyzed to 5′-AMP by PAP 3′-phosphatase
encoded by BPNT1 and BPNT2/IMPAD1 in the cytosol and Golgi
apparatus, respectively (Frederick et al., 2008; Hudson et al.,
2013). The gene trap Bpnt2-deficient mice are neonatally or
embryonically lethal, and showed reduction of the limb length,
shortening of the snout and lower limbs, reduced sternal length,
and diminished rib spacing (Frederick et al., 2008). Furthermore,
a marked decrease in chondroitin 4-O-sulfate and an increase in
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non-sulfated chondroitin were detected in the cartilage, lung, and
embryos of Bpnt2-deficient mice. Although significant changes in
the amount and sulfation modification of HS were not observed
in the embryos from mutant mice, the degree of sulfation of HS
was slightly decreased in the lung (Frederick et al., 2008). These
findings indicate that BPNT2 and/or hydrolysis of PAP to 5′-
AMP may be necessary for the metabolism of sulfation of GAGs
and that it affects skeletal development. The accumulation of PAP
may inhibit sulfotransferases involved in the biosynthesis of
GAGs. The lack of 5′-AMP may inhibit the incorporation of
PAPS from the cytosol into Golgi apparatus through an
unidentified antiporter(s).

KNOCKOUT MICE OF GOLGINS

Gorab
Golgins comprise a family of vesicle-tethering proteins at the
Golgi apparatus (Witkos and Lowe, 2017; Lowe, 2019). The
vesicle-bound cargo tethers to the Golgi apparatus, which
triggers membrane fusion. Various golgins are localized to
distinct regions of the Golgi apparatus, and their ability to
tether transported vesicles selectively is necessary for the
specificity of vesicle traffic in the secretory pathway. Because
the biosynthesis of GAG side chains on PGs is achieved in the
endoplasmic reticulum and Golgi apparatus, some golgins are
most likely involved in the transport of PGs.

GORAB encodes a Rab6-interacting Golgi protein, and its
mutations cause human genetic disorder, gerodermia
osteodysplastica, which is characterized by skin laxity and
early-onset osteoporosis (Hennies et al., 2008). Mutant mice of
Gorab have been generated, with fully and conditionally
inactivated mesenchymal progenitor cells (Prx1-cre), pre-
osteoblasts (Runx2-cre), and late osteoblasts/osteocytes (Dmp1-
cre), respectively (Chan et al., 2018). The Gorab full-knockout
mice (GorabNull) were neonatal lethal, and showed disorganized
collagen fibrils (Chan et al., 2018). The Gorab conditional-
knockout mice, GorabPrx1 and GorabRunx2, exhibited thinned,

porous cortical bone and spontaneous fractures (Chan et al.,
2018), which were also observed in a patient with gerodermia
osteodysplastica (Hennies et al., 2008). Furthermore, the level of
DS, but not CS or HS, was decreased in skin and cartilage from
GorabNull mutants. The glycanation of DS-proteoglycans,
biglycan and decorin, in skin and bone may be reduced (Chan
et al., 2018). The Golgi apparatus compartment of cultured
fibroblasts from GorabNull mutants showed the accumulation
of decorin core protein, but a reduced level of DS, indicating
that the newly synthesized decorin core protein accumulates
within the Golgi apparatus due to the impairment of DS
biosynthesis. However, it remains unclear whether there are
anomalies in the transport of decorin core protein or DS-
biosynthetic enzymes including DSE as well as D4ST1 to the
Golgi apparatus. Taken together, these findings suggest that
mutation and/or deficiency of Gorab primarily perturbs pre-
osteoblasts, and that gerodermia osteodysplastica might be
affected by biosynthesis of the DS side chain in proteoglycans
and/or transport of decorin core protein in the Golgi
compartment.

CONCLUSIONS AND PERSPECTIVES

Mice deficient in glycosyltransferases or sulfotransferases involved
in the biosynthesis of CS/DS demonstrated abnormalities of bone,
skin, and nervous systems. These knockout mice with deficiency of
Chst11, Chst3, and Chst15 have revealed that A, C, and E units in
CS chains play essential roles in chondrocyte differentiation, T-cell
differentiation, and storage of proteases in mast cells, respectively.
Furthermore, Chst14-knockout mice revealed that DS-containing
iA unit, but not CS-containing A unit, bundles collagen fibrils in
skin, which might be dependent on the structural and
conformational alteration of CS and DS chains (Casu et al.,
1988; Hirose et al., 2021). These findings indicate that specific
sulfation modifications as well as conformation of uronic acid in
CS/DS are essential for connective tissue and neuronal
development.

TABLE 4 | Outstanding questions and perspectives for functions of glycosyltransferases, sulfotransferases, and epimerase involving CS/DS-biosynthesis.

Questions Related enzymes Related references

How XYLTs recognize serine residues on core
proteins?

XYLT1, XYLT2 Götting et al. (2000), Pönighaus et al. (2007)

What sorting mechanism of CS/DS and HS? CSGALNACT1, CSGALNACT2,
EXTL2, EXTL3

Izumikawa and Kitagawa (2015), Izumikawa et al. (2015), Koike et al.
(2009), Koike et al. (2014), Sugahara and Kitagawa, (2000)

Which GalTs compensate GalT-I and GalT-II-
deficiencies?

B4GALTs, B3GALTs Almeida et al. (1999), Okajima et al. (1999), Bai et al. (2001), Mizumoto and
Yamada (2021)

How three dimensional structures of
glycosyltransferases and sulfotransferases?

CHSY1, CHPF, DSE, CHST14 Kitagawa et al. (2001a), Kitagawa et al. (2003), Maccarana et al. (2006),
Evers et al. (2001), Mikami et al. (2003)

What is the differential roles of the respective isoforms? XYLTs, CHSYs, CHPFs,
CSGALNACTs, C4STs, DSEs

Götting et al. (2000), Kitagawa et al. (2001b), Kitagawa et al., 2003,
Uyama et al. (2002), Hiraoka et al. (2000), Maccarana et al. (2006)

What is the roles of 2-O-sulfation in CS/DS? UST Kobayashi et al. (1999)
What is the roles of CS/DS in tumor metastasis and
development?

All CS/DS-biosynthetic enzymes ten Dam et al. (2007), Bi et al., (2008), Li et al. (2008), Sugahara et al.
(2008), Mizumoto et al. (2012)

Which golgin(s) regurate GAG biosynthesis? All CS/DS-biosynthetic enzymes Chan et al. (2018), Ferreira et al. (2018)
Regulation of gene expression and related
transcriptional factors

All genes encoding CS/DS-
biosynthetic enzymes

Kitagawa et al. (2001a)
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Recent advances in studies on human genetic disorders in
connective tissues have also clarified the biological significance
of CS/DS side chains of PGs (Mizumoto et al., 2013, 2017;
Mizumoto, 2018; Kosho et al., 2019; Malfait et al., 2020). The
clinical halmarks in human diseases caused by deficiency in the
biosynthetic enzymes of CS/DS are not always consistent with the
phenotypes of knockout mice with deficiency of the corresponding
enzymes. This contradiction may be due to residual enzymatic
activity in human patients. However, the phenotypes of some null-
mutant mice are consistent with human clinical symptoms in
patients with mutations in the corresponding gene. Further studies
on molecular pathogeneses involving CS and DS chains of PGs are
necessary to develop therapeutics and new drugs against these
diseases (Table 4).

The biosynthesis of CS/DS-PGs is up-regulated in both
tumor stroma and neoplastic cells, resulting in the
abundant accumulation of these components in the tumor
stroma adjacent to neoplastic cells (Fukatsu et al., 1988; Iozzo
et al., 1989; ten Dam et al., 2009; Thelin et al., 2012). Consistent
with these observations, up-regulations of gene expressions
including glycosyltransferases, epimerases, and
sulfotransferases responsible for the biosynthesis of CS/DS
(Huang et al., 2021). These findings indicate that CS/DS-PGs
contribute to the functions and phenotypes of tumor cells as
effectors or modulator macromolecules (ten Dam et al., 2007;
Bi et al., 2008; Li et al., 2008; Sugahara et al., 2008; Mizumoto
et al., 2012). However, there is little or no report regarding
tumor biology of CS/DS using the knockout mice. Further
studies on the molecular mechanisms underlying pathological
conditions involving CS/DS-PGs using the knockout mice will

provide insights into new therapeutic approaches for tumor
development (Table 4).
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