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Abstract

Purpose: To investigate the impact of clinical target volume (CTV) shape and size on CTV to planning target volume (PTV)
margin expansion.

Methods and Materials: Using numerical integration methods, margins accounting for random errors and systematic errors
were calculated for CTVs of different shapes and sizes. We use kr{95 and ks{95 to represent the coefficients, for random
errors and systematic errors, respectively, that ensure that every point of the CTV receives $95% of the prescribed dose.

Results: The part of the margin accounting for random errors depends on CTV shape and size; generally, a convex part of a
CTV would have a larger margin than a concave part. However, the part of the margin accounting for systematic errors is
independent of CTV shape and size.

Conclusions: CTV shape and size should be considered when generating a PTV. For a complex CTV, the margins of the
various parts of the CTV are different and related to local forms.
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Introduction

In recent decades, new irradiation techniques, such as 3-

dimensional conformal radiation therapy and intensity-modulated

radiation therapy, have allowed the delivery of a higher dose of

radiation to the target site while sparing adjacent normal tissues.

However, these techniques have also aroused some concern, as

they are more sensitive to geometric uncertainties due to sharper

dose gradients around the target volume. Margin recipes have

been proposed by several groups [1–6], but discrepancies persist.

Although the effects of the shape and size of the clinical target

volume (CTV) have been mentioned by some authors as being

relevant [3,7], the influence of the CTV has never been widely

considered and fully interpreted.

According to the International Commission on Radiation Units

and Measurements (ICRU) reports [8], a margin should be added

to the CTV to generate the planning target volume (PTV), in

order to account for all geometric uncertainties and ensure that the

CTV receives a sufficient dose. The total errors are the deviations

between the intended position and actual position of the CTV,

and these are primarily caused by patient localization (setup) errors

and organ motion [2,9–11]. For each patient, the systematic error

persists throughout the treatment, while the random errors occur

stochastically in each fraction. Two parameters may be obtained

from both the systematic errors and the random errors: the mean

and the standard deviation (SD). The mean of the systematic

errors (ms) is probably not zero, but almost all authors assume it to

be zero when deducing the margin recipe [1–4]. Assuming that the

systematic errors and random errors are normally distributed with

ms = 0 and mr = 0, the margin recipe are approximately written as:

M~kssszkrsr ð1Þ

where M represents the margin; ss represents the SD of the

systematic errors; sr represents the SD of the random errors; and

ks and kr represent the coefficients of ss and sr, respectively.

In this paper, we will first assume that the systematic errors are

zero, and derive the PTV margins for the random errors. Then,

we will assume that the random errors are zero, and derive the

PTV margins for the systematic errors.

Methods and Materials

1.1. Presumptions and formulae
Before deriving the PTV margin, we first made a number of

assumptions:

1. The distributions of the systematic errors and the random

errors are independent, three-dimensional normal distribu-

tions.
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2. The CTVs are rigid bodies, and only translational errors are

considered (rotations or deformations are not considered).

3. The displacements of the bodies and CTVs do not affect the

dose distributions. In other words, the displacements of the

bodies and CTVs only move the dose distributions transla-

tionally inside the bodies, but do not distort them. This

assumption can be approximately satisfied when a multiple

beam irradiation technique is used and the CTVs are not

adjacent to the body surfaces.

4. Patients are treated with numerous fractions.

Based on the above assumptions, the dose for a certain point of

a CTV may be calculated by:
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where D x,y,zð Þ is the dose received by a point at position x,y,zð Þ;
sx, sy and sz are the SDs of the errors (systematic or random

errors) in the x, y and z directions, respectively; and d x,y,zð Þ is the

dose distribution function. For simplicity, we will assume that the

isodose surface obtained after planning will be ideally identical to

the PTV surface; in other words, the dose inside the PTV is 100%,

and the dose outside the PTV is 0%. Thus, d x,y,zð Þ becomes a

step function:

d x,y,zð Þ~
1 if x,y,zð Þ inside PTV

0 if x,y,zð Þ outside PTV

�
ð3Þ

Since it is sometimes difficult or even impossible to find the

antiderivative of an integrand, we approximate the integral by

numerical integration methods. Since the probability of a point

being outside the ellipsoid with semi-axes 5sx, 5sy and 5sz is less

than 0.002%, we did not calculate the dose beyond this region.

Therefore, the numerical integration form for equation (2) would

be:
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where Dx, Dy and Dz are subinterval widths in the x, y and z

directions, respectively. In order to obtain sufficient accuracy for

clinical use, we generally set Dx, Dy and Dz to 0:01sx, 0:01sy and

0:01sz, respectively.

Figure 1. The expansion of a single point CTV.
doi:10.1371/journal.pone.0109244.g001

Figure 2. The expansion of a spherical CTV.
doi:10.1371/journal.pone.0109244.g002

Figure 3. The method for calculating the margins for random
errors adds up the probability that point O is at any position of
the PTV to obtain the probability that point O is inside the
PTV. When point O is at position B, C, or D, part (position B and D) or
even all (position C) of the CTV is outside the PTV.
doi:10.1371/journal.pone.0109244.g003
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1.2. Margins accounting for random errors
We first derive the PTV margins to account for random errors,

assuming that the systematic errors are zero. In this paper, we use

the notation kr{95 to represent the coefficient that can ensure that

every point in the CTV receives at least 95% of the prescribed

dose. The sr parameters in the x, y and z directions are

represented by srx, sry and srz, respectively.

1.2.1. Point CTV. When the CTV is just a single point, we

can simply expand this point with an ellipsoid (Figure 1) of semi-

axes kr{95srx, kr{95sry and kr{95srz to ensure that this point has

a 95% probability of being inside the ellipsoid (for an ideal dose

distribution). The kr{95 for a single point CTV is 2.79, which may

be easily calculated by equation (4).

1.2.2. The method for expanding CTVs of other shapes

and sizes. It is straightforward to generate the PTV for a point

CTV. However, the CTVs that are handled in clinical practice are

usually lumps of differing shapes and sizes. Taking the entire lump

into consideration would be a complicated approach. We think it

is feasible to start from a point on the surface of the CTV. We can

expand a surface point with an ellipsoid to ensure that this point

receives 95% of the prescribed dose. After expanding every point

on the surface with an ellipsoid, we can add up all these ellipsoids

and the CTV to generate a PTV. For any CTV that is closed and

does not contain a hole (most CTVs in clinical practice meet this

criterion), if the surface points can receive 95% of the prescribed

dose, then the dose received by the interior points should be $

95% of the prescribed dose. Thus, for any CTV, we only need to

consider the points on the surface. However, the size of the

ellipsoidal margin of a certain surface point will be influenced by

the expansions of other nearby surface points, as shown below.

1.2.3. Spherical CTV. CTVs similar to a sphere may be the

most common type encountered in clinical practice. For a spherical

CTV, due to the ‘‘supplement’’ of the CTV itself and the ellipsoidal

margins of other nearby points, it would not be necessary to expand

every surface point with such a large ellipsoid as a point CTV.

Suppose that the radius of the spherical CTV is r; since the surface

of the spherical CTV is symmetric in any direction, we can imagine

that the PTV we generate is similar to an ellipsoid (Figure 2) with

semi-axes rzkr{95srx, rzkr{95sry and rzkr{95srz.

Linear CTV. First, we consider a fictitious linear CTV 10sr

in length, and assume that sr~srx~sry~srz. Since the surface of

this line is just the line itself, we expand every point of the line with

a spherical margin. If we maintain the concept that the kr{95

values for all points are equal, the PTV we generate would look

like a capsule. However, when we calculate the kr{95 values for

the midpoint and endpoint separately, they are 2.45 and 2.66.

Therefore, the tailored PTV of a linear CTV is not a capsule, but

resembles a dumbbell in some respects. The margin of the

endpoint is a sphere of radius 2:66sr, while that of the midpoint is

a sphere of radius 2:45sr, and there are transitions between them.

1.2.4. CTVs of other shapes. Using numerical integration

methods, we can also calculate the kr{95 values for cylindrical

Figure 4. To ensure that ‘‘95% of the systematic displacements
of the CTVs for a population of patients are completely inside
the PTVs’’, we should only add up the probability that point O
is at any position inside the small sphere. When point O is at any
position (A, B, C, or D etc.) inside this small sphere, the CTV is
completely inside the PTV.
doi:10.1371/journal.pone.0109244.g004

Figure 5. The values for spherical and cylindrical CTVs of different radii.
doi:10.1371/journal.pone.0109244.g005
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CTVs. As with a linear CTV, the kr{95 values for different surface

points of a cylindrical CTV may be different. To avoid being

influenced by nearby surface points, the kr{95 values we calculate

are for points on the middle of the lateral faces of the cylindrical

CTVs that are more than 10sr high. Sometimes, we encounter

CTVs with concave regions. Assuming sr~srx~sry~srz, we can

also calculate kr{95 values for spherical and cylindrical concave

regions of CTVs with different radii. For simplicity, the kr{95

values for spherical concave regions are calculated based on

concentric sphere CTVs, and the kr{95 values for cylindrical

concave regions are calculated based on CTVs with cylindrical

holes that are more than 10sr high.

1.3. Margins accounting for systematic errors
As mentioned above, the population of systematic errors consists

of the systematic displacements of the CTV positions in all

patients. Taking into consideration the proposal of Van Herk et al.
[1], we define the 95% confidence level as: ‘‘95% of the systematic

displacements of the CTVs for a population of patients are inside

the PTVs’’. We use ks{95 to denote the coefficient multiplying to

the ss to achieve this goal. An important question is whether the

method we use for random errors is still applicable for systematic

errors. The previous method is suitable when applied to random

errors and when patients are treated with sufficient fractions,

because if we treat a patient with a large number of fractions, the

dose distribution will be blurred and every part of the CTV will

receive at least 95% of the prescribed dose. However, for

systematic errors, such ‘‘blurring’’ will not occur. The criterion

that ‘‘95% of the systematic displacements of the CTVs for a

population of patients are inside the PTVs’’ should be regarded as

‘‘95% of the systematic displacements of the CTVs for a

population of patients are completely inside the PTVs’’. This

means that we need to ensure that, simultaneously, the probability

of every point on the surface of the CTV being inside the PTV is

95%. We call this prerequisite ‘‘synchronization’’. Take a spherical

CTV, for example. As shown in Figure 3, without ‘‘synchroniza-

tion’’, point O can be at any position inside the PTV when we

calculate the ks{95 of point O. However, when point O is at

positions B, C, or D, part of the CTV (position B and D) or even

all of the CTV (position C) is outside the PTV. With the constraint

of ‘‘synchronization’’, the probability of point O being at positions

such as B, C, or D should not be counted. If we expand every

point on the surface of this CTV with a spherical margin of radius

ks{95ss (assume that ss~ssx~ssy~ssz, where ssx, ssy and ssz

are ss in the x, y and z directions, respectively), under the

constraint that the whole CTV must be inside the PTV, the

volume for calculating the probability is none other than the

spherical margin of a point CTV (Figure 4). In fact, after

‘‘synchronization’’, the volume for calculating the probability for

CTVs of any shape or size can be reduced to a single point.

Results

1. Margins accounting for random errors
1.1 Spherical and cylindrical CTVs. Assuming

sr~srx~sry~srz, we calculated the kr{95 values for spherical

and cylindrical CTVs with different radii, and plotted the relation

between the kr{95 and the radius in Figure 5. It may be seen that

the kr{95 declines from a value of 2.79 for a point CTV to

approximately 1.65 for large spherical CTVs. The curve for

cylindrical CTVs resembles that for spherical CTVs, except that

the kr{95 for a cylindrical CTV of radius 0sr (i.e., a linear CTV) is

2.45.

1.2 Concave regions of CTVs. Assuming sr~srx~

sry~srz, we also calculated the kr{95 values for spherical and

cylindrical concave regions of CTVs (Figure 4b, 4c) with different

radii. Figure 6 shows the relation between the kr{95 values and

the radii. It may be seen that for these two particular concave

regions, the kr{95 values are less than 1.65. Nevertheless, the

CTVs we encounter in clinical practice are not likely to have

spherical or cylindrical holes in them. The most common situation

is that a CTV has one or more concave part(s) accompanied by

one or more convex part(s). The kr{95 values for the surface points

of the convex part(s) are larger than 1.65, but for the concave

part(s) they may be less than 1.65 (the actual value depends on the

local shape), with transitions between them.

2. Systematic errors
In order to ensure that every part of the CTV is simultaneously

inside the PTV, the ks{95 is always 2.79, irrespective of the shape

and size of the CTV.

Figure 6. The values for spherical and cylindrical concave regions of CTVs.
doi:10.1371/journal.pone.0109244.g006
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Discussion

Margins accounting for random errors
In section 2.2.1, we assigned the same coefficient kr{95 to srx,

sry and srz to generate the margin for a point CTV. We would call

this ‘‘uniform expansion’’ because the probability densities for

points on the surface of the margin are equal. However, this is not

the only approach. Under certain circumstances, we can assign

different coefficients to srx, sry and srz to achieve the same goal.

For example, we can expand a point CTV with an ellipsoid of

semi-axes 2:29sx, 3:36sy and 3:36sz to ensure that the CTV can

receive the same 95% prescribed dose. We would call this kind of

expansion ‘‘non-uniform expansion’’ in that it is no longer

statistically uniform in all directions. In the same way, we can

perform ‘‘non-uniform expansion’’ for CTVs of other shapes and

sizes. However, we should be aware that ‘‘non-uniform expan-

sion’’ would result in a larger PTV (the proof of this statement is

beyond the scope of this paper). Therefore, ‘‘non-uniform

expansion’’ should only be used in particular circumstances (for

example, if the spinal cord is highly adjacent to the CTV in one

direction).

Austin-Seymour et al. [4] described a model to generate the

PTV by cylindrical expansion of the CTV. These authors

suggested that in order to attain a nominal probability of 95%,

the height of the cylindrical expansion should be 1:65s and the

radius should be 2:54s. However, it should be noted that

cylindrical expansion is one type of ‘‘non-uniform expansion’’

that would result in an unnecessarily large PTV. Craig et al. [12]

have also discussed ‘‘uniform margins’’ and ‘‘non-uniform

margins’’. However, their definitions were quite different from

ours. The ‘‘uniform margins’’ mentioned by these authors refer to

the addition of equal margins in the x, y and z directions, no

matter whether sx, sy and sz are equal or not. In addition, the

‘‘non-uniform margins’’ they defined involved adding nsx, nsy

and nsz in the x, y and z directions, respectively, which equates to

what we would term ‘‘uniform expansion’’. In other words, their

use of ‘‘uniform’’ was in the context of ‘‘geometrically uniform’’,

whereas ours is in the context of ‘‘statistically uniform’’. Antolak

et al. [3,13] argued that to ensure every point on the surface of the

CTV is within the PTV approximately 95% of the time, the CTV

should be expanded with a sphere of normalized radius R~1:65s.

Applying our method, we know that 1.65 is the kr{95 for a huge

spherical CTV. To our knowledge, the study of Antolak et al. is

one of the few that have taken into consideration the shapes and

sizes of the CTVs. Using numerical integration methods, these

authors deduced that if a spherical CTV of radius 3s is expanded

with a 1:65s margin, the probability of any CTV surface point

being within the PTV is about 92%. Although Antonlak et al. were

of the opinion that this small difference (92% vs. 95%) could be

ignored, their results are nonetheless consistent with ours.

We derived the kr{95 based on the presumption that the isodose

surface is ideally identical to the PTV surface, i.e., 100% inside the

PTV and 0% outside the PTV. However, in practice, the dose

gradient around the PTV would not be so steep, and obviously this

would reduce the value of kr{95.

Theoretically, our method can be applied to CTVs of any shape

and size; however, it is burdensome and sometimes almost

impossible to calculate kr{95 values for all surface points of a

bulky and complex CTV. It is hoped that our methods could be

incorporated into the Treatment Planning System to take into

account both the shape and size of the CTV and the real dose

gradient to automatically generate an appropriate PTV.

Margins accounting for systematic errors
Van Herk et al. [1] suggested a margin recipe of 2:5ssz0:7sr

to meet the criterion that ‘‘for 90% of the patient population, the

minimum dose to the CTV must be 95% of the nominal dose or

higher’’. This recipe also took only translational errors into

account. With respect to systematic errors, their recipe is

consistent with ours, because if we set our confidence level more

generously to 90%, we can obtain the same ks{90 of 2.5.

So far, we have only discussed how to generate the PTV

margins to account for systematic errors when the random errors

are zero. However, if we want to generate a margin to account for

both systematic errors and random errors so that ‘‘95% of the

systematic displacements of the CTVs for a population of patients

are inside the PTVs’’ and ‘‘every point of these 95% CTVs receive

at least 95% of the prescribed dose’’, the first step required is to

expand every point on the surface of the CTV with an ellipsoid of

semi-axes ks{95ssx, ks{95ssy and ks{95ssz, which need not pay

attention to the random errors. Thus, ks{95 is independent of

random errors and will always be 2.79.

Conclusion

The margin for a CTV surface point accounting for random

errors depends on the local shape and size. For a complex CTV,

different margins should be tailored to different parts. The

derivation of the margin to account for systematic errors should

be under the restriction that the total CTV must be simultaneously

inside the PTV. This restriction endows the margins for systematic

errors, independent of CTV size, CTV shape, and the number of

treatment fractions.
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