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Abstract: In this paper, a method based on the inherent event-based sampling capability of laser
optical feedback interferometry (OFI) is proposed to assess the optical feedback factor C when the
laser operates in the moderate and strong feedback regimes. Most of the phase unwrapping open-loop
OFI algorithms rely on the estimation of C to retrieve the displacement with nanometric precision.
Here, the proposed method operates in open-loop configuration and relies only on OFI’s fringe
detection, thereby improving its robustness and ease of use. The proposed method is able to estimate
C with a precision of <5%. The obtained performances are compared to three different approaches
previously published and the impacts of phase noise and sampling frequency are reported. We
also show that this method can assess C on the fly even when C is varying due to speckle. To the
best of the authors’ knowledge, these are the first reported results of time-varying C estimation. In
addition, through C estimation over time, it could pave the way not only to higher performance
phase unwrapping algorithms but also to a better control of the optical feedback level via the use of
an adaptive lens and thus to better displacement retrieval performances.

Keywords: optical feedback interferometry; self-mixing; speckle; optical feedback factor; displace-
ment measurement; non-uniform sampling

1. Introduction

Optical feedback interferometry (OFI), also referred to as the self-mixing (SM) effect
in laser diodes (LDs) [1–3], has been widely investigated in recent decades as it results in a
self-aligned and cost effective sensing system. The resolution of a stationary OFI-based
displacement sensor depends on the employed signal processing techniques. Displacement
measurement with a basic resolution of a half-wavelength (λ0/2) can be easily achieved
with an OFI sensor under a optical feedback regime by fringe counting [1]. The basic
resolution can be improved by locking the laser phase to a half-wavelength [4] or by
fringe duplication [5,6] or by utilizing phase unwrapping techniques. Different phase
unwrapping techniques (based on time-domain OFI signal processing) have been proposed
in the literature [7–13], providing accuracy from λ0/8 to λ0/60. Except for the fringe-
locking method [4,14,15], for an accuracy exceeding λ0/40, as well as for recent neural-
network-based methods [16], these methods [8,9] require elaborate time-domain SM signal
segmentations as well as estimations of key OFI parameters, such as optical feedback
coupling parameter C [17]. In addition, the estimation of C can also be performed to allow
an automatic OFI system setting via an adaptive optical lens [18]. As a result, assessing
C over time appears to be necessary to achieve nanometric displacement reconstruction,
especially in the presence of speckle.

Different methods have been devised to estimate C alone or conjointly with the
linewidth enhancement factor α. In [18], a crude yet simple method based on the ratio of
fringe sizes is used to ensure proper operation of the LD in the moderate feedback regime
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(1 < C < 4.6). In [19], a method to measure α together with C has been developed based on
the Lang–Kobayashi theory [20]. From the shape of rising and decreasing SM fringes, two
phase values, Φ13 and Φ24, corresponding to the phase difference between the fringe zero-
crossing and discontinuity, can be extracted. Then, a unique set of [α, C] suits [Φ13, Φ24].
Even though this method can be used to characterize an LD, it might not be practical to be
used during displacement measurement as it might suffer from non-linear displacements,
high C values and speckle, which might lead to low frequency OFI signal modulation,
thereby corrupting the zero-crossing detection. In [21], in order to alleviate this issue, it
was demonstrated that from the frequency domain analysis of the phase of the LD with
optical feedback ΦF, C can be estimated by calculating the ratio ∑ f⊂Ω ΦF/ ∑ f⊂Ω sin ΦF
with Ω denoting the spectral domain of validity, as defined in [21]. The range covered by
this method is much larger than the previous one. However, it requires a proper estimation
of ΦF, which requires both detecting all the fringes and unwrapping the SM signal. The
unwrapping step [8] might be a difficult task to successfully complete due to noise. In [8],
ΦF unwrapping is also required as a first step. Then, in a manner similar to [7], a joint
estimation of C and α is performed via an optimization procedure based on minimization
of residual discontinuities in ΦF. As a result, this method is not suitable as such when the
SM signal suffers from speckle.

Subsequently, here we propose a new open-loop approach that allows estimating C
while retaining the inherent simplicity of OFI as the required hardware consists only of
amplifying and acquiring the SM signal. Here, as presented in [22], we propose perceiving
SM interferometers as inherent non-uniform sampling systems with their own embedded
phase level-crossing detectors. Non-uniform sampling (NUS) approaches are often used
in applications for which the retrieved information is sparse. Based on the NUS theory,
we show that it is possible to retrieve C, which induces different quantization levels for
the rising and decreasing fringes. Consequently, phase unwrapping techniques are no
longer necessary. In addition, to recover C values either for sub-λ/2 displacements, for
which a maximum of only one level crossing can be detected, or for SM signals disturbed
by speckle, we propose adding a phase dither Φd, either obtained by vibrating the sensor
itself or by modulating the LD driving current, to the SM phase so that both the number of
crossed levels as well as the rate of level crossings can be increased. This can allow a way
to monitor C evolution to be devised and thus leads to the possibility of tuning a liquid or
an adaptive lens to maintain the laser in the optimal C range for the chosen displacement
reconstruction algorithm [18]. Note that dithering techniques have already been employed
in OFI to achieve a high displacement resolution [23,24].

We will show that our method allows recovering C in the moderate feedback regime
with a precision <3% (measured). In addition, we propose pushing this approach further to
estimate C on the fly with a <5% precision when C is varying due to speckle (simulation).
In the following section, Section 2, we present the non-uniform sampling theory applied to
SM signals and how C can be estimated. We show how by applying a dithering signal, C
can also be recovered in the presence of speckle. Then, in Section 3, the performances of
the proposed method will be compared through extensive simulation to three other known
methods [8,19,21]. This study will also encompass the effects of the sampling frequency of
the data acquisition system, of the phase noise, of the amplitude and randomness of the
displacement. In particular, it will show that knowing the C value over time is necessary to
achieve nanometric displacement. In Section 4, different experimental test benches are then
described and results are analyzed to assess the system performances. Both mechanical and
electrical dithering methods are also used for comparison. Finally, conclusions are drawn
in Section 5. It shows, in particular, that using dithering can allow retrieving varying C
over time, which is necessary to achieve precision displacement better than 5 nm.
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2. Proposed Method
2.1. OFI Overview

In OFI, a portion of the laser beam can be back-scattered from target placed at a
distance D0 from the laser (moving with displacement D(t)) and can thus re-enter the
active laser cavity (Figure 1). This causes a mixing of generated and phase-shifted back-
scattered beams. This “self-mixing” causes fluctuation in the optical output power (OOP)
of the laser, denoted as P(t), given by [1]:

P(t) = P0(1 + m cos(ΦF(t))) (1)

where P0 is the emitted optical power under free-running conditions, m is the modulation
index and ΦF(t) is the laser output phase in the presence of feedback. ΦF(t) is related to
the laser output phase without feedback Φ0(t) = 4πD(t)/λ0 by [1,2]:

Φ0(t) = ΦF(t) + C sin(ΦF(t) + arctan α) (2)

Depending on C, the laser can operate in different regimes. SM sensing is generally
performed under weak feedback regime (C < 1), moderate feedback regime (1 < C < 4.6),
or strong feedback regime ( C > 4.6). However, a moderate feedback regime (1 < C < 4.6)
is usually preferred as the apparently simple saw-tooth shaped SM fringes belonging to
such a regime [25] intrinsically provide motion direction indication and require simplified
SM fringe detection processing [26].
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Figure 1. Self-Mixing displacement sensor set-up with a piezoelectric transducer (PZT) used as a
target. A dithering signal can be added either via the laser drive current I0 + Id(t) or via a shaker
vibrating the sensor itself with an amplitude Ad(t).

2.2. OFI as a Non-Uniform Sampling System

In the moderate feedback regime, based on (1) and (2), the information on D(t) is
completely enclosed within phase ΦF. It was shown in [22] that SM interferometers
can be perceived as an inherent non-uniform sampling system with its own embedded
phase level-crossing detector. A phase domain level crossing every 2π corresponding
to the OOP discontinuities can thus be obtained (Figure 2). These discontinuities occur
when Φ0(t) = Φ0(k). However, it is important to note that, as shown in Figure 2, these
phase levels Φ0(k) are slightly different (by an amount denoted ∆Φ) for an increasing and
decreasing Φ0 phase. These phase levels can thus be referred to as Φ0R and Φ0F when Φ0
is increasing or decreasing, respectively. They are completely defined by (2) with ΦF as
given in [27] whenever ΦF has infinite slopes. ∆Φ can be expressed as a function of C [21]:

∆Φ = 2
(

arccos
(
−1
C

)
+
√

C2 − 1− π

)
(3)

From (3) and Figure 3, it is clear that the function ∆Φ(C) is bijective for C > 0. As a
result, estimating ∆Φ is the cornerstone of the proposed approach.
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Figure 2. Simulated typical self-mixing signal showing hysteresis (c) obtained for (a) a 1.25 µm
sinusoidal displacement, a laser wavelength λ0 = 1550 nm and an optical coupling factor C = 2 with
(b) its corresponding phase Φ0 and its phase quantization levels Φ0,F and Φ0,R for the decreasing
and increasing phases, respectively.
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Figure 3. Simulated ∆Φ vs. C where ∆Φ denotes the phase quantization difference between the
rising and decreasing fringes.

2.3. Proposed C Estimation Method

In most phase unwrapping algorithms, the first step consists of reconstructing a rough
estimation Φstair of Φ0 by simply adding or subtracting 2π whenever a phase quantization
level Φ0R and Φ0F is crossed, respectively. Based on the previous explanation, it is clear
that Φstair does not take into account ∆Φ and hence contains some errors inherently. Here,
we take advantage of this error to estimate ∆Φ.

To solve this issue, the non-uniform sampling approach allows one to look at it from
a different perspective [22]. Instead of considering Φ0R and Φ0F to be different, they can
be supposed to be equal if a virtual square-like displacement Ds is added on top of D,
with its rising (decreasing) edges corresponding to the change in direction. For the sake
of clarity, this principle is illustrated by Figure 4. This figure shows that from the non-
uniform sampling point of view, the sampled data (marked with red circle and black cross
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in Figure 4) are exactly the same. It thus ensures that the reconstructed signal from these
samples is the same.
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Figure 4. Illustration of the proposed equivalence between (a) the quantization levels which are
different for rising (dash green) and decreasing (dash red) signals (by an amount here of 0.5 a.u.) and
(b) where the quantization levels for rising and decreasing signals are the same due to addition of a
square signal of 0.25 a.u. amplitude.

The peak-to-peak amplitude of this virtual square displacement should be equal to the
equivalent displacement corresponding to ∆Φ. Thus, its amplitude As can be expressed as:

As =
1
2

λ0

2
∆Φ
2π

=
λ0∆Φ

8π
(4)

Consequently, ∆Φ can be indirectly estimated by measuring the amplitude of this
virtual displacement Ds. More precisely, if ∆Φ is not taken into account, then harmonic
distortion is bound to be generated in the reconstructed displacement due to the presence
of this virtual square signal. By monitoring the amount of distortion, it is possible to
estimate C. For instance, in the case of a sinusoidal displacement D, the third harmonic
distortion amplitude, which should be equal to 4As/3π, can be easily monitored. Figure 5
shows the performances that can be achieved based on this approach for different values
of C. In accordance with Equation (2), it clearly shows that α has a negligible influence
on the obtained results. In addition, C estimation accuracy expectedly depends on the
displacement amplitude since the performance of the reconstruction algorithm based on
NUS greatly improves with the number of crossed quantization levels [22].

However, while monitoring the third harmonic distortion amplitude is relatively
convenient, it might not be effective in case of random displacements or in presence of
speckle. In addition, the amplitude of the third harmonic not only depends on the C value
but also on the interpolation algorithm that is used to reconstruct the displacement from
the non-uniform samples. As a result, three different aspects of the proposed approach
have been developed:

• F1, estimation of C based on the direct amplitude of the 3rd harmonics and on (3).
• F2, minimization of the amplitude of the 3rd harmonics by tuning the parameter

∆Φ/2 that is added (subtracted) to all the samples corresponding to the rising
(decreasing) phase.



Sensors 2021, 21, 3528 6 of 22

• F3, minimization of the amplitude of all the harmonics, the frequency of which
exceeds twice the frequency fp of the highest significant peak (>λ0/2) by tuning the
parameter ∆Φ/2 that is added (subtracted) to all the samples corresponding to the
rising (decreasing) phase.

It is important to highlight once again that only F3 can lead to relevant results in the
case of non-periodic signals.
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Figure 5. Simulated relative error in estimation of C based on the third harmonic amplitude of the
reconstructed displacement using the non-uniform sampling approach as described in [22], with
spline interpolation, for different α values. Remote sinusoidal displacement is of 2.5 µm (plain line)
and 25 µm (dash line) amplitude at 90 Hz, λ0 = 785 nm, and sampling frequency of the SM signal is
1 MS/s.

As a result, the proposed method to estimate C can be summarized by the block dia-
gram shown in Figure 6 and the three following steps: (1) SM fringe detection, (2) displace-
ment reconstruction based on non-uniform sampling approach [22] and (3) C estimation.
During the first step, similarly to [22], from the SM signal, all the fringes should be detected
to obtain all the time-phase pairs [tn, Φn], where tn corresponds to the time instant when
the SM signal experiences a phase discontinuity. Since these pairs [tn, Φn] must be recorded,
these tn values are quantized Q(tn) with a time resolution of 1/ fs (where fs is the sampling
frequency of the data acquisition system) to generate non-uniform samples, [Q(tn), Φ(tn)].
Then, during the second step, as shown in [28], the continuous time input signal can be
reconstructed from these corrected samples if the quantization sampling rate of the input
signal exceeds twice the input signal bandwidth. In addition, to be further processed,
these [Q(tn), Φ(tn)] sets are usually fed to an interpolator to generate a uniformly sampled
rate output signal. In this paper, the spline interpolator is used for simplicity. Finally, C
can be estimated via the estimation of ∆Φ that can be performed directly either from the
amplitude of the displacement’s third harmonic (in the case of a sinusoidal displacement)
F1 or from a minimization procedure of the harmonics by correcting the non-uniform
time-phase pairs [tn, Φn] by adding or subtracting ∆Φ/2. Figure 7 shows the SM signal
spectrum sampled at 10 MS/s and obtained for a 90 Hz 4µm sinusoidal displacement and
C = 3.3. In addition, Figure 8 emphasizes its corresponding reconstruction error with and
without considering the estimated Cest = 3.298 by the proposed approach F2 and 10 MS/s
sampling frequency. As expected, without considering C, the error is similar to a square
signal with an amplitude of 120 nm (≈λ0∆Φ(3.3)/8π = 117 nm) at the displacement signal
frequency of 90 Hz, while by taking into account the estimated value of C, the root mean
square (RMS) error is reduced down to approximately 1.9 nm. This clearly shows that once
C has been estimated, it is then possible to efficiently reconstruct the displacement using
the non-uniform sampling approach.
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Figure 6. Block diagram of the proposed approaches to estimate C.
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Figure 7. Simulated spectrum of a reconstructed displacement with 4µm amplitude at 90 Hz by
processing a SM signal with C = 3: without estimating C (dashed black line) and with estimating C
and correcting the phase accordingly (plain red line).
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Figure 8. Simulated displacement reconstruction error ε for a displacement of 4µm amplitude at
90 Hz with C = 3.3 without estimating C (orange line) and with estimating C and correcting the phase
accordingly (blue line) using F2.

2.4. Analysis of the Impact of Variations of C on the Reconstructed Displacement

Up to now, C was considered to be constant. However, this is not usually the case as it
depends on the amplitude of the displacement, on the remote target surface and on the laser
beam spot. Consequently, the SM signal might suffer from the speckle phenomenon [29],
which can cause signal amplitude fading and regime-change [30]. As a result, the C value
may vary along the displacement. In this case, the phase gaps ∆ΦR and ∆ΦF between
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two successive Φ0,R and Φ0,L levels, respectively, are no longer constant and equal to 2π.
Consequently, the displacement reconstruction cannot be accurate if these variations are
not taken into account.

Before dealing with a randomly varying C value, we propose analyzing first the case
where C is experiencing sinusoidal variations C(t) = C0 + δC(t) with δC(t) = CA sin(ωct).
This will give us more insight into the impact of these variations on the reconstructed
displacement. In addition, in the case of periodic displacements, δC(t) can be assumed to
also be periodic with a period equal to a multiple of that of the displacement. As a result,
such a variation can be described in terms of Fourier series.

Based on Equation (2), it can be shown that:

∂Φ0

∂C

∣∣∣∣
ΦF,R

=

√
1− 1

C2
0

(5)

∂Φ0

∂C

∣∣∣∣
ΦF,F

= −
√

1− 1
C2

0
(6)

Based on Equations (5) and (6), if δC(t) are not taken into account, the reconstructed
phase, assuming that C = C0, Φ0|C=C0

(t), is given by the following first order approximation:

Φ0|C=C0
(t) = Φ0(t)− (−1)dir(t)δC(t)

√
1− 1

C2
0

(7)

where dir depends on the target direction, which corresponds to dir = 0 and 1 for the case
of Equations (5) and (6), respectively.

From Equation (7), it is clear that if δC(t) are not taken into account by the displace-
ment reconstruction algorithm, then error occurs as δC(t) is interpreted as a phase change.
It also shows that once δC(t) is assessed, a first order approximation of Φ0 can be per-
formed. Figure 9 illustrates this analysis with a sinusoidal displacement of 3 µm amplitude
at f0 = 25 Hz and C = 2.5 + 0.4 sin(2π × 5 f0t). As expected using Equation (7), the spec-
trum (Figure 10) clearly shows a modification of the reconstructed displacement harmonics
at 100 and 150 Hz.
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Figure 9. Simulated SM signal for a 3µm amplitude at f0 = 25 Hz displacement with C = 2.5 + 0.4×
sin(2π × 5 f0t).
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Figure 10. Simulated spectrum of the reconstructed displacement from the SM signal described in
Figure 9, where C varies periodically, assuming that C is constant (red line), while the blue curve
shows the spectrum of the reconstructed displacement if C is constant and equal to 2.5.

It is therefore necessary to estimate C in order to correctly reconstruct the displacement.
However, the proposed method (shown in Section 2.3) cannot be directly applied as the
frequency at which the displacement direction changes is lower than the speed at which C
changes. As a result, by directly applying the proposed method, only an average value of C
can be obtained. Here, similarly to [22], in order to be able to apply the proposed approach,
we propose adding a dithering signal that can be either generated by vibrating the LD
itself or modulating the LD current at a frequency fd or using a phase modulator system
based on the electro-optical properties of certain crystals (e.g., lithium niobate crystal)
whose refractive indexes can be changed via the application of an electric field [31], to
generate fringes and induce direction changes at a higher rate. Further, adding a dithering
signal can be useful to retrieve sub-λ0 displacement in a manner similar to approaches
used in non-uniform sampling analog-to-digital converters [32,33]. Then, contrary to the
previous case where C was supposed to be constant, in order to improve the time resolution
regarding the estimation of C, it is necessary here to apply a spectral analysis using a sliding
Hanning window along the SM signal. Together with the proposed method F3, which relies
on minimizing the harmonics amplitude, this will allow one to measure an average value
of C across the Hanning window through the minimization of the power spectral density
for frequencies higher than fd.

Here, the proposed method extracts the information related to C by measuring the
amount of distortion generated by the incorrect position of the phase quantization levels
used for displacement reconstruction. This estimation is facilitated when the change of
direction occurs as the error induced by ∆Φ is dominant. Consequently, to achieve a good
estimation of C, it is necessary that the average rate of direction changes induced by the
dithering signal should be at least twice the bandwidth of C variations to fulfill the Nyquist
criterion [22]. However, the proposed method also relies on a time-frequency method based
on applying spectral analysis over a sliding Hanning window. As a result, this implies
a trade-off between the time and spectral resolutions. On the one hand, a wider sliding
window will result in a better spectral resolution at the expense of time resolution and C
estimation since the extracted value would correspond to the average value of C over the
window. On the other hand, a shorter one will result in a better temporal resolution at
the expense of the spectral resolution. Consequently, the method F3 based on minimizing
the harmonic content will greatly suffer from this reduced spectral resolution. Here, as a
trade-off and as shown later, we have chosen to use a Hanning window that spans over
5/ fd, which in return implies that the dithering frequency should be at least 10 times higher
that the C bandwidth of interest in order to estimate C with a minimal error.

As previously mentioned, for large displacement and in case of non-cooperative
remote target surfaces, C might also randomly vary due to the speckle phenomenon. In
the particular case of periodic displacements, the C variation should also be periodic. This
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implies that C variations can be decomposed using Fourier series. As a result, the approach
described in the previous section, Section 2.3, can be directly used. For randomly varying
C, the proposed technique can still be applied if the parameters related to the Hanning
window span and fd are in accordance with the required C bandwidth.

At last, in the case of a fast and sudden displacement (compared to the dithering
frequency) of the target of few wavelengths, the C value could also rapidly change. As a
result, if there is no phase direction change (induced by the dithering) during this event, the
system would only be able to correctly estimate the C value before and after this sudden
change and will only provide an interpolation in between, which might not be a correct
estimation of C occurring during the fast change.

2.5. Phase Noise Effect

As the electrical noise has an indirect impact on the fringe detection as it makes it
more difficult to detect them, different techniques have been proposed to alleviate it, such
as filtering, Hilbert transform [10] and wavelet based algorithms [34]. In our case, the
accuracy of the system is mainly dependent on the phase noise that directly affects the sets
[tn, Φn], thereby altering the estimation of C. Phase noise will directly result in an increase
of the noise floor. As a result, the optimization procedure can be stopped if the noise floor
is reached during the process. In addition, the amplitudes of the harmonics induced by an
incorrect estimation of C are also affected by the phase noise. More precisely, they will be
underestimated since noise will tend to spread the harmonic power over a wider spectrum.
Different noise sources can be identified [4]: the LD linewidth [35], the mechanical noise of
the experimental set-up, the LD driving current noise and the temperature noise, which can
both affect λ0. Here, phase noise was simulated by adding noise to the target displacement.

Using spline interpolation to reconstruct the displacement from the NUS samples
obtained via the SM signal, Figure 11 clearly shows that the floor noise increases with the
phase noise δΦ but also that the amplitude of the harmonics generated by ∆Φ decreases
with increasing δΦ. As a result, the proposed method accuracy will be directly limited by
δΦ and its effects will be prominent for low C values as ∆Φ is smaller for low C values
(Figure 3).
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Figure 11. Simulated 3µm amplitude sinusoidal displacement at 20 Hz reconstructed, using spline
interpolation, from an SM signal with C = 1.5 and different phase noise levels δΦ: 0 (with and without
C phase correction), 0.01 rad, 0.1 rad, 0.3 rad.

3. Simulation Results and Analysis

On top of the previously described simulation results, extensive simulations have
been carried out to validate the proposed approach to estimate C and to compare its
performances to other algorithms [8,19,21]. In order to ensure a fair comparison, the
algorithms [8,21] employ here the same ΦF reconstruction algorithm and all of them use
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the same fringe detection approach based on a basic derivative computation of the SM
signal. Table 1 summarizes the results for SM signals obtained for a 3 µm sinusoidal
displacements at 20 Hz sampled at fs = 1 MS/s with α = 3.6. These results are in accordance
with [8,21]. The proposed approach based on minimization seems to offer performances
similar to [8,19,21].

Table 1. Estimated C with the proposed method and with the ones proposed in [8,19,21] for a
simulated 3 µm sinusoidal displacement at 20 Hz sampled at fs = 1 MS/s with α = 3.6 without noise.

C Our Work [19] [21] [8]

F1 F2 F3

0.5 N/A N/A N/A N/A 0.613 0.488
1 1.184 1.046 1.003 1.01 0.991 0.999

1.5 1.458 1.511 1.501 1.46 1.506 1.499
2 1.887 2.01 2.001 1.98 2.015 1.999

2.5 2.323 2.506 2.501 2.47 2.518 2.499
3 2.771 3.004 3.000 2.98 3.009 2.999

3.5 3.256 3.507 3.505 N/A 3.494 3.499
4 3.286 4.056 3.999 N/A 4.043 3.991

4.5 3.663 4.476 4.497 N/A 4.553 4.493
5 4.05 5.08 4.965 N/A 5.016 4.989
6 4.85 6.13 6.060 N/A 6.096 5.98
7 5.75 7.19 7.069 N/A 7.135 6.974

3.1. Influence of the Sampling Frequency and Displacement Amplitude

As the proposed approach relies on the NUS theory, it has its advantages and re-
strictions. In particular, both a higher fs and higher amplitude result in a more accurate
estimation of C since the event can be dated more accurately and a higher number of
quantization levels are involved in the process.

Figures 12–14 show the influence of the sampling frequency fs, of the displacement
amplitude and of the SM phase noise on the achieved estimation of C, respectively. It
clearly shows that fs should allow approximately 25 samples per fringe to be generated to
date them with enough precision to achieve an approximation error of C lower than 2%
error (for the 3rd flavour).

Figure 13 demonstrates the influence of the displacement amplitude on the C estima-
tion error as expected.
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Figure 12. Simulated estimated C vs. the sampling frequency fs for a displacement of 3µm amplitude
at 20 Hz with C varying from 1 to 4.5 by 0.5 steps and α = 3.6: (a) using the proposed algorithm F1,
(b) F2 and (c) F3.
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by 0.5 steps and α = 3.6 ( fs = 1 MHz): (a) using the proposed algorithm F1, (b) F2 and (c) F3.
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Figure 14. Simulated estimated C vs. RMS phase noise for a displacement of 3µm amplitude at
20 Hz with C varying from 1 to 4.5 by 0.5 steps and α = 3.6: (a) using the proposed algorithm F1,
(b) F2 and (c) F3, (d) using [19], (e) [21] and (f) using [8]. Note that each time a “0” value occurs, it
corresponds to an absence of the algorithm convergence.

3.2. Influence of Phase Noise

Here, the algorithms used to pre-process the SM signals (filtering, etc.) were modified
to make them more resilient regarding noise. As a result, the obtained results without
phase noise might be slightly different. Regarding phase noise, the C estimation error
increases with phase noise with all the tested algorithms. Phase noise not only corrupts the
fringe dating but also can lead to incorrect fringe detection (depending on the algorithm
used for fringe detection). As a result, for the proposed algorithm, the phase noise will have
a greater impact on the C estimation for low C value where ∆Φ is low (Figure 2). Figure 14
also points out that the estimated C is always lower than the correct value, as expected for
the proposed approach. Likewise, the estimated C value by the other approaches is also
affected in the same manner.
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3.3. Arbitrary Displacement

In the case of arbitrary displacement, the algorithm proposed in [21] cannot be applied
as it expects the displacement power spectral density to be narrow-band. Similarly, [19]
cannot be used as it expects sinusoidal displacement. For a similar reason, the approaches
of F1 and F2 cannot be applied as there is no longer a 3rd harmonic that is properly defined.
In addition, it might be necessary to use dithering in order to achieve a better estimation of
C. In order to assess the performances, the input signal bandwidth is 100 Hz. Consequently,
on the one hand, without dithering, F3 is set to minimize the spectrum at frequencies
greater than 100 Hz. On the other hand, with the dithering frequency set at 200 Hz with
a 2 µm amplitude, F3 is set to minimize the spectrum at frequencies greater than 100 Hz.
Table 2 summarizes the results obtained for an arbitrary remote displacement (Figure 15)
with and without dithering. It shows that dithering is required to correctly estimate C.

Table 2. Estimated C with the proposed method F3 with and without dithering for a simulated
arbitrary displacement (Figure 15) at fs = 1 MS/s with α = 3.6.

C F3

No Dither Dither

1 1.422 1.003
1.5 1.529 1.491
2 1.743 1.998

2.5 1.605 2.503
3 1.976 3.005

3.5 2.649 3.521
4 1.997 4.013

4.5 2.582 4.526
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Figure 15. Simulated arbitrary displacement.

3.4. Speckle Affected SM Signals

Before processing arbitrarily varying C values, it is necessary to assess the perfor-
mances of the proposed approach. We have highlighted in Section 2.4 that fd should be at
least 10 times higher than fC, where fC is the frequency of C variation. In accordance with
this statement, Figure 16 clearly shows that to achieve an estimation of C with ∆C/C < 5%,
it is necessary that fd > 10 fC. To assess the influence of the Hanning window span on the
C estimation, simulations of different window sizes show in Figure 17 that the optimum
size is approximately 5/ fd.
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Figure 16. Simulated time-varying C estimation vs. the dithering frequency fd using method F3 with
the Hanning sliding window spectral analysis obtained for a target vibration at 10 Hz with a 5 µm
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dithering signal corresponds to an equivalent vibration of 2 µm amplitude at fd. The sliding window
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Figure 17. Simulated RMS error εC of the C estimation vs. the Hanning window size expressed as
a multiple of dithering period Td = 1/ fd. Here, the method F3 with the Hanning sliding window
spectral analysis is applied on the SM signal obtained for a target vibration at 10 Hz with a 5 µm
amplitude, while C is varying sinusoidally at fC = 20 Hz with an amplitude of 0.5 and offset of 2.
The dithering signal corresponds to an equivalent vibration of 2 µm amplitude at fd.

Figure 18 shows the case of a 10 Hz 10µm displacement affected by arbitrary C
variations with a limited bandwidth of 20 Hz. Even though the modulation index m from
Equation (1) is proportional to C, it is assumed to be constant here for the sake of simplicity
as it only affects the amplitude of the SM signal and thereby the fringe detection algorithm.
The dither signal amplitude and frequency are set to be equivalent to 2µm and fd = 200 Hz,
respectively. The chosen Hanning window span is equal to 5/ fd. The C variations are
correctly retrieved. The RMS error is approximately 2.4 nm with C taken into account to
be compared to 10.6 nm otherwise. The peak error is approximately 5 nm and 33 nm for
the former and latter, respectively. In addition, without dithering and C estimation, the
RMS error is 44.9 nm similar to previous algorithm [7]. The reconstructed displacement
spectrum shown in Figure 19 shows that a lower floor noise can be achieved and that
artifacts around the dithering frequency can be removed through correct C(t) estimation.
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Figure 18. Simulated displacement reconstruction error ε for a displacement of 10µm amplitude at
10 Hz with C varying: (a) displacement D(t), (b) SM signal with a 2µm dithering signal at 200 Hz,
(c) estimated C (orange line) compared to genuine C (blue line) and (d) error ε in the case of C
estimation and corresponding phase correction (orange line) and without C estimation (blue line).

Figure 19. Simulated reconstructed displacement spectrum for a displacement of 10µm amplitude at
10 Hz with C varying arbitrarily (limited to 20 Hz bandwith) obtained with 2µm dithering signal
at 200 Hz: with estimating C and correcting the phase accordingly (red line) and not correcting it
(dashed black line).

4. Experimental Results
4.1. Experimental Setups

Two SM test benches (TB) (Figure 20) were developed to assess the performances of
the proposed approach through two main test procedures. The aim of the first one (TB1
shown in Figure 20a) is to verify the ability of the proposed method to measure C. In this
case, the target generates a sinusoidal displacement and an optical attenuator is used to
modify C. The obtained values of C are compared to other methods and the reconstructed

Figure 18. Simulated displacement reconstruction error ε for a displacement of 10µm amplitude at
10 Hz with C varying: (a) displacement D(t), (b) SM signal with a 2µm dithering signal at 200 Hz,
(c) estimated C (orange line) compared to genuine C (blue line) and (d) error ε in the case of C
estimation and corresponding phase correction (orange line) and without C estimation (blue line).

Figure 19. Simulated reconstructed displacement spectrum for a displacement of 10µm amplitude at
10 Hz with C varying arbitrarily (limited to 20 Hz bandwith) obtained with 2µm dithering signal
at 200 Hz: with estimating C and correcting the phase accordingly (red line) and not correcting it
(dashed black line).

4. Experimental Results
4.1. Experimental Setups

Two SM test benches (TB) (Figure 20) were developed to assess the performances of
the proposed approach through two main test procedures. The aim of the first one (TB1
shown in Figure 20a) is to verify the ability of the proposed method to measure C. In this
case, the target generates a sinusoidal displacement and an optical attenuator is used to
modify C. The obtained values of C are compared to other methods and the reconstructed
displacement error is computed. Table 3 summarizes the results. In the second test bench
(TB2 shown in Figure 20b), the laser driving current was sinuoidally modulated to induce
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wavelength modulation. This will allow the generation of SM fringes to recover C not only
in the case of sub-λ0/2 displacement or even without any target displacement, but also in
the case of speckle by generating a high-frequency dithering signal.

Figure 20. The C estimation test bench: (a) TB1 with a laser diode at λ0 = 785 nm and (b) TB2 with a
laser diode at λ0 = 1550 nm.

In TB1, the LD, driven by a constant injection current of 30 mA, is a Hitachi HL7851G
emitting at λ0 = 785 nm. The system benefits from the autofocus based on the liquid lens
ARTIC 39N0 from Varioptic [18].

In TB2, the LD, driven by a average current of 25 mA, is a L1550P5DFB Telcordia
emitting at λ0 = 1550 nm. The driving current of this LD can be modulated up to ±5 mA to
induce dithering either at 50 Hz or 1 kHz.

For both experiments, a piezoelectric transducer (PZT) from Physik Instrumente
(P753.2CD) was used as a target positioned at 40 and 48 cm from the LD in TB1 and TB2,
respectively. It was equipped with an internal capacitive feedback position sensor for
direct-motion metrology with a 2 nm resolution. In order to generate speckle for large
displacement, a loud speaker was used as the target while a shaker can be used to generate
the dithering signal for TB1. The data were acquired by an NI USB 6251 data acquisition
system operating at 1 Msamples/s with a 16 bit resolution. In the case of the TB2, when
the LD was modulated at 1 kHz, the tektronix RTA4004 oscilloscope was used to acquired
the data instead of the NI USB 6251. Prior to any measurements, the system phase noise
for TB1 and TB2 was estimated to be approximately 0.136 rad and 0.192 rad, respectively,
using the method described in [35].

4.2. C Constant without Dithering (TB1)

Using TB1, Table 3 summarizes the obtained performances with our proposed ap-
proach compared to [8,19,21]. For each of the six different C values, which cover the whole
moderate feedback regime, twenty measurements were performed for a 1.5 µm sinusoidal
displacement at 50 Hz. The repeatability of our method, which can be estimated via the
average value of the obtained standard deviation σ, is similar or better than for the other
algorithms. It is interesting to also note that the obtained values are lower than [8,21]. This
can be explained by the fact that this approach is more affected by phase noise than the
others, as shown in the previous sub-section (Figure 14). Nevertheless, Figure 21 shows
that the measured SM signals (Table 3) and the simulated SM signal obtained with the
estimated C value for a similar displacement amplitude are very similar. This shows a
good correlation between the SM signal obtained using estimated C and the measured
SM signal.
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Figure 21. Comparison between the measured SM signals (Table 3) and simulated SM signal obtained
with the estimated C value for a similar displacement amplitude.

Table 3. Measured C with the proposed method F3 and with [8,19,21] using TB1. In total,
20 measurements were performed for each C value.

N Our Work F3 [19] [21] [8]

C σC C σC C σC C σC

1 1.01 0.03 1.01 * 0 * 1.75 0.7 0.94 0.07
2 1.03 0.06 1.01 * 0 * 1.84 0.4 1.17 0.04
3 1.71 0.05 1.9 0.06 2.87 0.25 2.49 0.03
4 2.15 0.10 2.3 0.08 2.95 0.2 2.84 0.05
5 3.42 0.10 3.5 0.1 3.57 0.21 3.96 0.12
6 4.05 0.10 – – 3.97 0.33 4.53 0.17

* For these experiments, the standard deviation is 0 and the estimated C is the same since the algorithm failed to
estimate C when too close to 1. As a result, it always returns the same value.

4.3. C Constant with Dithering (TB2)

In the TB2 configuration, the laser current was modulated either at 50 Hz or 1 kHz so
as to obtain virtual displacement fringes (Figure 22). Based on the proposed method, the
C value is extracted and compared to the one obtained with the same optical conditions
but without laser current modulation and target vibration (similar to TB1). Contrary to
TB1, the optical attenuator was removed here in order to avoid any parasitic reflections
from it. These parasitic reflections combined with the laser driving current modulation
could actually generate parasitic SM signals that might corrupt the extraction of the C
value related to the target. As a result, to obtain different C values, the target was slightly
shifted perpendicularly to the optical axis. For each setting, the SM signals were acquired
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10 times except for the 1 kHz modulation configuration, for which only five acquisitions
were performed due to a lack of automation. The results are summarized in Table 4. It
shows that the results obtained with the proposed method based on dithering generated
by current modulation are in good accordance with the proposed method without current
dithering and also with other methods [18,19] where the SM fringes are generated by the
vibrating target.
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Figure 22. Measured SM signal: (a) without current modulation with target vibrating at 50 Hz, (b)
with current modulation at 50 Hz (blue) and after power modulation removal (red), and (c) with
current modulation at 1 kHz (blue) and after power modulation removal (red).

Table 4. Measured C with the proposed method F3 without current modulation (a) with a current
modulation at 50 Hz (b) and 1 kHz (c) and with [19] (except for the 8th experiment marked with *
obtained with [18]) using TB2.

N (a) (b) (c) [19]

C σC C σC C σC C σC

1 1.21 0.13 1.23 0.3 1.32 0.45 1.18 0.09
2 1.57 0.02 1.54 0.09 1.49 0.24 1.48 0.04
3 1.87 0.09 1.78 0.06 2.21 0.17 1.86 0.05
4 2.08 0.04 2.21 0.07 2.38 0.13 2.07 0.05
5 2.30 0.07 2.32 0.03 2.51 0.18 2.342 0.04
6 2.79 0.07 2.75 0.05 3.01 0.31 2.70 0.07
7 3.31 0.10 3.30 0.12 3.48 0.39 3.23 0.08
8 4.65 0.14 4.19 0.05 4.27 0.35 4.24 * 0.02

4.4. C Varying

As mentioned previously, the SM signal can be affected by speckle, which induces C
variations. In the case where the C variation spectrum is lower than the target displacement
spectrum, it might be possible to recover these variations by using the method presented in
Sub-Section III.D. Figure 23 shows an SM signal affected by speckle for a target vibrating
at 50 Hz suffering from low frequency small lateral displacements. It demonstrates that
the proposed method can detect and assess the C variations. In addition, it also confirms
that choosing a window size of five times the period of the displacement main frequency
enables a good trade-off between time and amplitude estimation.
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Figure 23. Measured C from a speckle affected SM signal for a target vibrating at 50 Hz. The C value
was estimated using the method proposed in Sub-Section III.D for different Hanning window sizes.

In the case for which the speckle frequency spectrum is comparable to that of the
target displacement, the previous approach is not able to provide a correct estimation
of C as it will result in an average estimation of C. Consequently, it is necessary to add
a dithering signal to recover all the information. Figure 24 shows the measured results
extracted from the SM signal acquired during 0.4 s in order to retrieve C while the SM
signal is affected by speckle. In this case, the target is a loudspeaker vibrating at fv = 40 Hz
with an amplitude of 2.4 µm, approximately, while the dithering vibration induced by a
shaker is set at fd = 290 Hz with an amplitude of 1 µm, approximately. It clearly shows that
C varied from 1.3 to 3.2 with the maximum and minimum appearing with a frequency of
40 Hz and C appearing to follow a 10 Hz pattern. As expected, this pattern appears to be
periodic. It might be the result of the speckle induced by the loudspeaker vibration added
to the one induced by the laser vibration.
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Figure 24. Measured C from a SM signal obtained for a loudspeaker vibrating at 40 Hz with a 2.4µm
amplitude and a dithering signal generated by a shaker at 290 Hz with a 1µm amplitude.

In order to remove the impact of the mechanical dithering on C estimation in this case,
it can be possible to generate it by modulating the laser driver current, as previously shown
(Figure 20b). Here, the laser driver current was modulated at 5 kHz with an amplitude of
±3.6 mA. A shaker was used to vibrate at 170 Hz a piece of sandpaper to generate speckle
within one period. Figure 25 shows the estimated C. Even though the trend appears to be
correct, the algorithm used here to detect the fringes that is based on a basic derivative
computation of the SM signal, is not able to correctly detect all the fringes occurring
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more particularly for low C values as the displacement reconstruction graph (Figure 25c)
suggests it.
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Figure 25. Measured C from a speckle affected SM signal for a target vibrating at 170 Hz: (a) without
applying any dither in order to ease the visualization of the variation of C, (b) SM signal obtained for
the same displacement and by applying current dithering at 5 kHz, (c) reconstructed displacement
showing clearly the presence of dithering at 5 kHz and (d) the estimated C from (b). The C value is
estimated by using the method proposed in Section 3.4.

5. Conclusions

By interpreting OFI as a non-uniform event-based sampling system, as in [22], it was
shown that in the moderate optical feedback regime, the phase quantization levels depend
on C and that this property can be used to directly assess the value of C. Three different
aspects of the method were presented. While the first two (F1 et F2) can be directly derived
from the theoretical analysis of ∆Φ, they are both much less robust and versatile than F3.
Once C is correctly estimated, a better reconstruction of the displacement can be obtained
even with the spline interpolator [22].

In addition, it was shown that the proposed method to assess C achieves similar
simulated performances compared to [8,19,21]. The measured performances show that a
<5% precision can be achieved.

Further, compared to other works, which assume either a sinusoidal displacement
or an OFI signal devoid of speckle by adding a dithering signal, the proposed method
based on F3 can estimate C for arbitrary displacements and speckle affected OFI signals. It
thus paves the way toward estimating C on the fly. It was shown in simulation that being
able to estimate C in these conditions allows high-precision displacement reconstruction
εrms < 5 nm, while based on both a relatively simple set-up and processing method even
in the presence of speckle. Once C is estimated, during the first step of the unwrapping
algorithms [7,8], the rough phase estimation should not only be obtained by simply adding
or subtracting 2π when a discontinuity is detected for a moderate OFI regime, but also by
taking into account any ∆Φ induced by C variations.
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Up to now, the system’s main limitation is the bandwidth directly related to the
dithering frequency either due to the use of a bulky system or due to the laser wavelength
response to current modulation. This can be greatly improved by designing a very light
weight laser head with an embedded PZT. Likewise, using electro-optical modulation
appears to be also another promising way to achieve much higher bandwidths.
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