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A B S T R A C T

Non-pharmaceutical interventions (NPIs) are important to mitigate the spread of infectious diseases as long as
no vaccination or outstanding medical treatments are available. We assess the effectiveness of the sets of non-
pharmaceutical interventions that were in place during the course of the Coronavirus disease 2019 (Covid-19)
pandemic in Germany. Our results are based on hybrid models, combining SIR-type models on local scales
with spatial resolution. In order to account for the age-dependence of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), we include realistic prepandemic and recently recorded contact patterns between
age groups. The implementation of non-pharmaceutical interventions will occur on changed contact patterns,
improved isolation, or reduced infectiousness when, e.g., wearing masks. In order to account for spatial
heterogeneity, we use a graph approach and we include high-quality information on commuting activities
combined with traveling information from social networks. The remaining uncertainty will be accounted
for by a large number of randomized simulation runs. Based on the derived factors for the effectiveness of
different non-pharmaceutical interventions over the past months, we provide different forecast scenarios for
the upcoming time.
1. Introduction

With more than 2.2 million reported deaths [1], the coronavirus
disease 2019 (Covid-19) remains one of the most pressing issues for
the whole globe. Already in October, WHO officials estimated that 10%
of the world’s population had been infected [2] and vaccination of the
population will still take a considerable amount of time. Since exposing
people is highly unethical [3], the only interim solution is to mitigate
the spread of the disease by the application of non-pharmaceutical
interventions.

The assessment of non-pharmaceutical interventions and prediction
by simulation has to be based on reliable models; cf. [4–11] for the
spread of SARS-CoV-2 (severe acute respiratory syndrome coronavirus
2) and other infectious diseases. Only then, the most effective interven-
tions can be determined as a basis for informed political decisions.
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The aim of our study is to assess non-pharmaceutical interventions
and to provide a reliable forecast of the Covid-19 pandemic in Germany
based on four principles. First, we account for the age-dependence
of SARS-CoV-2 [12–14]. Second, we include realistic contact patterns
between different age groups [15–19]. Third, we include high-quality,
spatially resolved information on commuting activities [20,21] com-
bined with traveling information based on the social network Twitter.
Fourth, we combine all information and account for the remaining
uncertainty by Monte-Carlo Ensemble runs. To our knowledge, such an
in-depth study is not accounted for in the literature so far.

The remainder of this paper is structured as follows. We first present
our mathematical model and its numerical solution approach. Then,
we present the social and non-pharmaceutical parameters used in our
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Fig. 1. SIR-type model and strongest inter-county commuter activities. SIR-type model for one German county, based the on first version of [9] (left). We omit the age-
dependence index 𝑖 for clarity; see Tables 1 and 2 for a description of the parameters. Graph with center points of all German counties as nodes and edges according to commuter
activity (right). Edges only shown where more than 10 000 workers commute on a daily basis.
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model and we discuss afterwards the epidemiological parameters ob-
tained by extensive analyses. Our results are presented and discussed
in the following.

2. Materials and methods

2.1. Model and solver

There are various models to forecast the spread of infectious dis-
eases across a country or community. Besides the well known SIR-type
ODE models [22,23], there are integro-differential models [22,24],
Bayesian Monte Carlo approaches [11], or agent-based models [25,26].
While SIR-type models are praised for their simplicity and understand-
ability, they lack for a good representation of spatial heterogeneity.

To combine the advantages of a SIR model without loss of spatial
resolution, we use multiple SIR-type models on a fine local scale and
connect the compartments and age groups by graphs that represent
traveling; cf. [27] among others. These SIR-type models can be easily
exchanged by agent-based models due to the generic implementation
of our graphs. This is integrated as part of our high performance mod-
ular epidemics simulation software MEMILIO that is continuously under
development [28].

2.1.1. Age-resolved SIR-type model
The base of our SIR-type model can be found in the first ver-

sion of [9]. Our model consists of the compartments Susceptible (S),
ealthy individuals without immune memory of SARS-CoV-2; Exposed

(E), who carry the virus but are not yet infectious to others; Carrier
(C), who carry the virus and are infectious to others but do not yet
show symptoms (they may be pre- or asymptomatic); Infected (I), who
carry the virus, are infectious and show symptoms; Hospitalized (H),

ho experience a severe development of the disease; In Intensive Care
nit (U); Dead (D); and Recovered (R), who cannot be infected again.
o resolve age-specific disease parameters, we divide the totality of
eople 𝑁 into 𝑛 different age groups. We then have  ∶=

⋃𝑛
𝑖=1 𝑖 ∶=

⋃𝑛
𝑖=1{𝑆𝑖, 𝐸𝑖, 𝐶𝑖, 𝐼𝑖,𝐻𝑖, 𝑈𝑖, 𝑅𝑖, 𝐷𝑖}.
For each age group 𝑖 = 1,… , 𝑛, the transmission risk is denoted by

𝜌𝑖 and the proportion of infected people not isolated or quarantined
is denoted by 𝛽𝑖; see Tables 1 and 2 for details. Infection results from
contact with people from different age groups. We introduce the contact
frequency matrix

𝛷 = (𝜙𝑖,𝑗 )𝑖,𝑗=1,…,𝑛, (1)

where 𝜙𝑖,𝑗 represents the (mean) daily contacts of a person of age group
𝑖 with people from age group 𝑗. We refer to [29] which states that
‘‘the resulting matrix is not symmetric due to the different number of
 i

2

individuals in each age-group". So due to the particularly chosen age
groups and the demography of Germany, these contact matrices will be
non-symmetric in our case.

The naming convention for the remaining parameters can be under-
stood as follows: We use the variables 𝑇 ∗2

∗1 for the time spent in state
∗1∈ 𝑖 before moving to state ∗2∈ 𝑖. For example, 𝑇𝑅𝑖

𝐻𝑖
represents

the time an individual in age group 𝑖 = 1,… , 𝑛 spent in the hospital
before returning home due to recovery from the disease. Accordingly,
𝜇∗2
∗1 represents the probability of a patient to transit to state ∗2 when

that patient is currently in state ∗1.
The model, as expressed in Fig. 1, is

𝑑𝑆𝑖
𝑑𝑡

= −𝑆𝑖𝜌𝑖
𝑛
∑

𝑗=1
𝜙𝑖,𝑗

𝐶𝑗 + 𝛽𝑗𝐼𝑗
𝑁𝑗

, (2)

𝑑𝐸𝑖
𝑑𝑡

= 𝑆𝑖𝜌𝑖
𝑛
∑

𝑗=1
𝜙𝑖,𝑗

𝐶𝑗 + 𝛽𝑗𝐼𝑗
𝑁𝑗

− 1
𝑇 𝐶𝑖
𝐸𝑖

𝐸𝑖, (3)

𝑑𝐶𝑖
𝑑𝑡

= 1
𝑇 𝐶𝑖
𝐸𝑖

𝐸𝑖 −
⎛

⎜

⎜

⎝

1 − 𝜇𝑅𝑖
𝐶𝑖

𝑇 𝐼𝑖
𝐶𝑖

+
𝜇𝑅𝑖
𝐶𝑖

𝑇𝑅𝑖
𝐶𝑖

⎞

⎟

⎟

⎠

𝐶𝑖, (4)

𝑑𝐼𝑖
𝑑𝑡

=
1 − 𝜇𝑅𝑖

𝐶𝑖

𝑇 𝐼𝑖
𝐶𝑖

𝐶𝑖 −
⎛

⎜

⎜

⎝

1 − 𝜇𝐻𝑖
𝐼𝑖

𝑇𝑅𝑖
𝐼𝑖

+
𝜇𝐻𝑖
𝐼𝑖

𝑇𝐻𝑖
𝐼𝑖

⎞

⎟

⎟

⎠

𝐼𝑖, (5)

𝑑𝐻𝑖
𝑑𝑡
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𝐼𝑖
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𝐼𝑖
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⎛

⎜

⎜

⎝

1 − 𝜇𝑈𝑖
𝐻𝑖

𝑇𝑅𝑖
𝐻𝑖

+
𝜇𝑈𝑖
𝐻𝑖

𝑇 𝑈𝑖
𝐻𝑖

⎞

⎟

⎟

⎠

𝐻𝑖, (6)

𝑑𝑈𝑖
𝑑𝑡

=
𝜇𝑈𝑖
𝐻𝑖

𝑇 𝑈𝑖
𝐻𝑖

𝐻𝑖 −
⎛

⎜
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1 − 𝜇𝐷𝑖
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𝑇𝐷𝑖
𝑈𝑖

⎞

⎟

⎟

⎠

𝑈𝑖, (7)

𝑑𝑅𝑖
𝑑𝑡

=
𝜇𝑅𝑖
𝐶𝑖

𝑇𝑅𝑖
𝐶𝑖

𝐶𝑖 +
1 − 𝜇𝐻𝑖

𝐼𝑖

𝑇𝑅𝑖
𝐼𝑖

𝐼𝑖 +
1 − 𝜇𝑈𝑖

𝐻𝑖

𝑇𝑅𝑖
𝐻𝑖

𝐻𝑖 +
1 − 𝜇𝐷𝑖

𝑈𝑖

𝑇𝑅𝑖
𝑈𝑖

𝑈𝑖, (8)

𝑑𝐷𝑖
𝑑𝑡

=
𝜇𝐷𝑖
𝑈𝑖

𝑇𝐷𝑖
𝑈𝑖

𝑈𝑖. (9)

The Eqs. (2)–(9) represent the transition of people from one state to
nother. Note that people in an age group 𝑖 cannot transit to another
roup 𝑗 for 𝑖 ≠ 𝑗. In the section of the epidemiological parameters,
e will discuss in detail which of the parameters we assume to be age-
ependent and how this is included in our model. These findings are
ummarized in Tables 1 and 2.

.1.2. Spatial resolution
While SIR-type models are straightforward to apply and interpret,

hey lack the possibility of modeling local effects or spatial heterogene-
ty. In order to avoid averaging over important effects such as infection
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Table 1
Description of parameters and main resources for their derivation.

Param. Description Reference Resources

𝜌(0) 𝜌𝑖 age-dependent transmission risk Eq. (14),(2),(3) [30–36]
𝑘 seasonality parameter Eq. (15), (14) [37–40]
𝛽 proportion of not isolated or quarantined symptomatic individuals Eq. (2), (3) Assumption.
𝑇 𝐶
𝐸 period of latent non-infectious stage Eq. (3), (4) [9,41,42]

𝜇𝑅
𝐶 proportion of mild, asymptomatic cases Eq. (4), (5), (8) [35,43–46]

𝑇 𝑅
𝐶 period of asymptomatic stage before recovery Eq. (4), (8) [9]

𝑇 𝐼
𝐶 period of latent infectious stage Eq. (4), (5) [9,41,42]

𝜇𝐻
𝐼 proportion of symptomatic cases needing hospitalization Eq. (5), (6), (8) [14,47],[48, Report of Sept. 15]

𝑇𝐻
𝐼 period of mild symptoms for individuals requiring hospitalization later on Eq. (5), (6), Suppl. Mat. [49–51]

𝑇 𝑅
𝐼 period of mild symptoms for individuals not requiring hospitalization later on Eq. (5), (8) [9,52]

𝜇𝑈
𝐻 proportion of hospitalized individuals getting ICU treatment Eq. (6), (7), (8) [47,53,54]

𝑇 𝑈
𝐻 period of hospitalization before ICU treatment (of critical cases) Eq. (6), (7), Suppl. Mat. [49,50]

𝑇 𝑅
𝐻 period of hospitalization before recovery (of non-critical cases) Eq. (6), (8), Suppl. Mat [9]

𝜇𝐷
𝑈 proportion of individuals in ICU care that die Eq. (7), (8), (9), Fig. 4 [54,55]

𝑇 𝑅
𝑈 period of ICU treatment before recovery Eq. (7), (8), Suppl. Mat [9,50,56]

𝑇𝐷
𝑈 period of ICU treatment before death Eq. (7), (9), Suppl. Mat [9,50]
Table 2
Summary of the age-dependency of parameters and their ranges.

Range in age group

Param. 0–4 5–14 15–34 35–59 60–79 80+

𝜌(0) [0.02, 0.04] [0.05, 0.07] [0.08, 0.10] [0.15, 0.20]

𝑘 [0.1, 0.3]

𝛽 sigmoidal curve from [0.1, 0.3] to [0.3, 0.5]

𝑇 𝐶
𝐸 [2.67, 4.00]

𝜇𝑅
𝐶 [0.20,0.30] [0.15,0.25]

𝑇 𝑅
𝐶 𝑇 𝐼

𝐶 + 0.5𝑇 𝑅
𝐼

𝑇 𝐼
𝐶 sampled with 𝑇 𝐶

𝐸 and (16), incubation period = 5.2

𝜇𝐻
𝐼 [0.006,0.009] [0.015,0.023] [0.049,0.074] [0.15,0.18] [0.20,0.25]

𝑇𝐻
𝐼 [9,12] [5,7]

𝑇 𝑅
𝐼 [5.6,8.4]

𝜇𝑈
𝐻 [0.05,0.10] [0.10,0.20] [0.25,0.35] [0.35,0.45]

𝑇 𝑈
𝐻 [3,7]

𝑇 𝑅
𝐻 [4,6] [5,7] [7,9] [9,11] [13,17]

𝜇𝐷
𝑈 [0.00,0.10] [0.10,0.18] [0.3,0.5] [0.5,0.7]

𝑇 𝑅
𝑈 [5,9] [14,21] [10,15]

𝑇𝐷
𝑈 [4,8] [15,18] [10,12]

clusters, we assign one particular age-resolved model to each county.
We represent each county by a node of a (directed) graph. The edges
of the graph represent the connections between the different counties
and are weighted with the number of people commuting daily and
traveling on average. The edges do not only hold single values (weights)
for how many people daily commute between different counties but
also coefficients to determine the proportion of people of different age
groups and compartments that commute or travel. Doing so, we can
restrict travel activities to healthy or only mildly infected individuals.

Let 𝑛𝐶 be the number of counties (nodes of the graph). Then, for two
nodes 𝑎𝑘 and 𝑎𝑙, 1 ≤ 𝑘, 𝑙 ≤ 𝑛𝐶 , the weight 𝑤𝑘,𝑙 on edge 𝑒𝑘,𝑙 represents
he proportion of people going daily from 𝑎𝑘 to 𝑎𝑙.

2.1.3. Numerical solver
Common numerical solvers for the system of nonlinear ordinary

differential Eqs. (2)–(9) are semi-implicit or adaptive explicit. While the
former allow for larger time steps, the latter allow adaptive time steps
to prevent large numerical errors. We have implemented an adaptive
Runge–Kutta -Fehlberg45 (RKF45) method [57] that uses methods of
4th and 5th order and solves the equations without excessively small
time steps.

The numerical procedure becomes more challenging when we also
resolve the equations spatially. For this, we define a commuter as a

person who travels from county 𝑎𝑘 to 𝑎𝑙, 1 ≤ 𝑘, 𝑙 ≤ 𝑛𝐶 and back again

3

within one day (whether it is work or free time related). Given start
values from day 𝑡, we advance our adaptive RKF45 solver for 0.5 days.
Next, we allow people to commute or travel. Their amount is defined
by the commuter rate between two counties, namely the weights 𝑤𝑘,𝑙
introduced in the previous section and further specified in following
section. Note that commuting also depends on the infection state since
hospitalized individuals cannot commute and infected individuals will
travel less than healthy ones. For the latter, we assume the same level of
isolation or quarantine as on county level. With the updated population,
we again advance our adaptive solver for 0.5 days.

Additionally, we conduct an auxiliary step with step size of 0.5 days
with an explicit Euler solver where we only consider the in-commuters,
using the county’s population as contact population only. This step is
executed since, after the high precision scheme from 𝑡+0.5 to 𝑡+1, we
do not know the updated state of our commuters (e.g., susceptible may
have become exposed or carriers have become symptomatic). This is
due to the nature of the SIR model (2)–(9) that does not keep track of
individuals. Still, the commuters have to go back to their home county,
and we need to know their most likely infection state. We use the results
from the explicit Euler step, to quantify the proportion of individuals of
the different compartments that return. With this estimation, we start
the returning process. These considerations are summarized in Fig. 2.

2.2. Social and non-pharmaceutical parameters

The spread of SARS-CoV-2 depends on many parameters. While
some of these parameters are inherent to the virus, others depend
on social contact patterns and non-pharmaceutical interventions in-
troduced by decision makers. In this section, we will focus on non-
pharmaceutical interventions and their influence on contact patterns
and commuter rates in our model.

2.2.1. Inter-county travel
Let us first continue with the spatial resolution of our model and

focus on how we specify the rate of work or leisure commuters 𝑤𝑘,𝑙
between different counties 𝑎𝑘 and 𝑎𝑙. To estimate 𝑤𝑘,𝑙 on the edge 𝑒𝑘,𝑙
that connects both counties, we use statistics from the German Federal
Employment Agency [20] complemented with geo-referenced Twitter
data.

From [20], we have for each county the number of incoming
commuters from each other county. However, it is not specified if
commuting takes place on a daily basis. We assume that any commuting
activity with a linear distance of 100–200 km only happens twice a
week and for a distance of over 200 km, we assume that it happens
only once a week. We thus scale the corresponding off-diagonal matrix
entries by 0.5 and 0.2, respectively. After this smoothing procedure,
we remain with about 11.8 million daily commuting activities. These

values are then divided by the approximate population size in working
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Fig. 2. Illustration of our numerical scheme for spatial heterogeneity. The individuals represent the size of the compartments in our SIR-type model (2)–(9). First, we evolve
County A and County B separately, resulting in updated compartments in both counties. Then, a proportion of the county’s population commutes. We solve the SIR model for
another half day including the in-commuters and excluding the out-commuters. Additionally, we do one step of an auxiliary low order scheme (with residents as contact persons
only) to estimate the updated states of the in-commuters (shown in the dashed box). Then, the commuters return home.
Fig. 3. Inter-age group contact patterns. Combined prepandemic contact patterns 𝜙𝐺𝑒𝑟
𝐵 of [16,17] for Germany interpolated to age intervals as provided by [58] (top). Extrapolated,

pandemic contact patterns 𝜙𝐺𝑒𝑟
𝑀 for simulated lockdown phase for Germany (as of end March in the UK; based on contact study [18]) (bottom).
age. This results in the work commuting population 𝑐𝑘,𝑙, 1 ≤ 𝑘, 𝑙 ≤ 𝑛𝐶
which is only taken from age groups and compartments that commute
for work. For the geometry of complex and network-driven contagion
phenomena, we also refer to [59].

Motivated by [60,61], we also analyzed a totality of about 2.8 mil-
lion geo-referenced tweets obtained from the Twitter API [62] between
January 1, 2018 and January 31, 2020. Since [20] is biased towards
the working population, the geo-referenced tweets act as a ‘‘counter-
part’’ with a bias towards the younger population, student commuters,
and leisure traveling individuals. From the totality of tweets, we first
removed all tweets from users with more than 1000 tweets in the
considered period to waive statistical anomalies introduced by bots
or hyperactive users. For each pair of consecutive user tweets in the
considered period, we then count one travel action from 𝑎𝑘 to 𝑎𝑙 if
the first tweet happened from 𝑎𝑘 and the second happened from 𝑎𝑙,
𝑘 ≠ 𝑙. In order to further reduce the influence of the most active users,
we remove the 300 users with the most travels. Then, there remain
4

about 36 000 active users from which 11 000 had five or more travel
activities. In total, we have about 235 700 travel activities. In 95% of
the nontrivial matrix entries, one unique user adds only two activities
on average.

Although different in scale, the remaining tweets show similar
travel patterns as obtained from [20]; see supplementary figures for
a comparison. Note, however, that a certain amount of deviation is to
be expected since both sources are biased towards either the working
or the student population. In twitter mobility, for instance, we observe
relatively strong connections to bigger cities like Hamburg, Hannover,
Cologne, or Stuttgart.

Assuming that the mobility obtained from Twitter accounts for 20%
of all travel activities (work commuting, student commuting, leisure
travel etc.), we scale the twitter matrix accordingly. The resulting
values are divided by the population size and the result will be denoted
by 𝑡 , 1 ≤ 𝑘, 𝑙 ≤ 𝑛 .
𝑘,𝑙 𝐶
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𝜙

The amount of mobility in our model is given be the edge weights
𝑘,𝑙 of the graph. These weights are derived from the matrix 𝑐𝑘,𝑙 for

the work commuters and from 𝑡𝑘,𝑙 for the ‘Twitter’ activities. The
weights also depend on the implementation of non-pharmaceutical
interventions. In particular, they depend on the NPI related parameters
𝑟(∗)𝑊 ,𝑖,𝑖 for work and 𝑟(∗)𝑂,𝑖,𝑖 for ‘‘other’’ places related measures that mainly
affect free-time activities. Here, ∗∈ {1, 2} and 𝑖 = 1,… , 𝑛 are the
corresponding age groups; see the corresponding section and Table 3
for details on these parameters.

The commuter matrices contain many insignificant coefficients close
to zero. These are due to loosely coupled regions where only a very
limited number of individuals commute on a daily basis (e.g., 1 or 2).
To reduce the computational effort, we eliminate edges 𝑒𝑘,𝑙 where 𝑐𝑘,𝑙 <
4 ⋅ 10−5 and 𝑡𝑘,𝑙 < 1 ⋅ 10−5. The cutoff values are chosen so only 1% of
information is dropped and that more than 99% of travels are included.
We also paid attention to reflect the above assumption that Twitter data
represents 20% of travels. With this procedure, the number of edges
is reduced by approximately 60% and the computational efficiency is
increased significantly.

2.2.2. Contact patterns in Germany
In the following, we focus on the intra-county contact patterns. In

this section, we derive a baseline, prepandemic contact matrix 𝜙𝐺𝑒𝑟
𝐵

and a minimum contact matrix 𝜙𝐺𝑒𝑟
𝑀 for a simulated strict lockdown

in Germany.
As SARS-CoV-2 transmission occurs mainly during human-to-human

interaction, reducing contacts can efficiently slow down the spread of
the disease; cf. [15–17,63] for literature on contacts and the spread
of infectious diseases. However, lockdowns which effectively reduce
contacts to a minimum should be avoided due to their profound nega-
tive impact on many individuals and communities [3]. Therefore, the
challenge for today’s decision makers is to find the most appropriate
and effective interventions for the actual developments.

Prepandemic patterns. In order to quantify the potential of trans-
mission reduction by contact pattern changes, good prepandemic as
well as recent data is needed. From [15] and its projections [17], we
use realistic contact patterns for Germany split up into the categories
‘‘Home’’, ‘‘School’’, ‘‘Work’’, and ‘‘Other’’. In [15], contacts are defined
as skin-to-skin contact, or where at least three words were exchanged.

For the particular case of school contacts, the mean numbers of
contacts recorded in [15] are rather low for Germany. Given the fact
of aerosol transmission risk in closed spaces, we suggest to assume
slightly higher contact rates for a conservative estimate on the spread
of the disease. Further information is offered by the demography-based
school contact matrix in [16]. We use the quotient of the maximum
eigenvalues between both matrices to scale the contact matrix of [17]
which then results in a larger number of school contacts.

The combination of baseline contacts for ‘‘Home’’, ‘‘Work’’, and
‘‘Other’’ from [15,17] and for ‘‘School’’ based on the comparison of [16,
17] results in the contact matrix 𝜙𝐺𝑒𝑟

𝐵 ; cf. Fig. 3 (top).

SARS-CoV-2-related minimum patterns. The potential of possible
contact reduction is limited by the minimum number of necessary con-
tacts that keep essential sectors of the society running. To assess this,
we consider the contact study [18], that started during the lockdown
phase in the United Kingdom. By the end of March, many ‘non-essential’
parts of the economy were shut down and social interaction was limited
to a minimum [64]. This study yields the minimum contact matrix
𝛷𝑈𝐾

𝑀 .
The matrix 𝛷𝑈𝐾

𝑀 is missing values since only individuals aged
18 or older participated in [18]. In order to fill out the missing
information, we follow a strategy similar to [65]. We employ the
prepandemic/baseline contact matrix 𝛷𝑈𝐾

𝐵 from [17]. We scale this
matrix by the ratio of the dominant eigenvalues 𝜆 and 𝜆 of the
𝐵 𝑀
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Table 3
Summary of different non-pharmaceutical interventions and implementations in
simulations.

Intervention Implementation Factor ranges Comment

working weak 𝑟(1)𝑊 ,𝑖,𝑗 ∈ [0.0, 0.1]

from intermediate 𝑟(1)𝑊 ,𝑖,𝑗 ∈ [0.2, 0.3]

home strong 𝑟(1)𝑊 ,𝑖,𝑗 ∈ [0.4, 0.5]

partial school none 𝑟(1)𝑆,𝑖,𝑗 = 0.0

closures and weak 𝑟(1)𝑆,𝑖,𝑗 = 0.25

remote intermediate 𝑟(1)𝑆,𝑖,𝑗 = 0.5

schooling complete 𝑟(1)𝑆,𝑖,𝑗 = 1

gathering bans, weak 𝑟(1)𝑂,𝑖,𝑗 ∈ [0.0, 0.2] additional increase of

(partial) closing rather weak 𝑟(1)𝑂,𝑖,𝑗 ∈ [0.2, 0.4] 𝑟(1)𝑊 ,𝑖,𝑗 by 0.05 to 0.20,

of bars, intermediate 𝑟(1)𝑂,𝑖,𝑗 ∈ [0.4, 0.6] according to strictness;

restaurants, strong 𝑟(1)𝑂,𝑖,𝑗 ∈ [0.6, 0.8] cf. corresp. section

cinemas etc. very strong 𝑟(1)𝑂,𝑖,𝑗 ∈ [0.8, 1.0]

face masks, weak 𝑟(2)∗,𝑖,𝑗 ∈ [0.0, 0.2]

distancing, rather weak 𝑟(2)∗,𝑖,𝑗 ∈ [0.2, 0.4]

regular intermediate 𝑟(2)∗,𝑖,𝑗 ∈ [0.4, 0.6] ∗∈ {𝐻,𝑆,𝑊 ,𝑂}

ventilation of strong 𝑟(2)∗,𝑖,𝑗 ∈ [0.6, 0.8]

closed spaces very strong 𝑟(2)∗,𝑖,𝑗 ∈ [0.8, 1.0]

lower-right, square matrices (𝜙𝑈𝐾
∗,𝑖,𝑗,)𝑖,𝑗≥3, ∗∈ {𝑀,𝐵}. Then, we use this

caled version to fill out the missing subset

𝑈𝐾
𝑀,𝑖,𝑗 = 𝜙𝑈𝐾

𝐵,𝑖,𝑗 ⋅
𝜆𝑀
𝜆𝐵

∀𝑖 ∈ {1, 2}, 𝑗 ∈ {1,… , 6}. (10)

We aim at deriving a minimum contact matrix 𝜙𝐺𝑒𝑟
𝑀 for a simulated

strictest lockdown in Germany. We consider the number of contacts in
the UK by the end of March to be a minimum that we can achieve in
a SARS-CoV-2-related lockdown. From the UK data, we consider the
quotient of contact reduction

𝑑𝑖,𝑗 = 𝜙𝑈𝐾
𝐵,𝑖,𝑗∕𝜙

𝑈𝐾
𝑀,𝑖,𝑗 ∀𝑖, 𝑗 ∈ {1,… , 6}, (11)

and apply these factors to the matrices 𝜙𝐺𝑒𝑟
𝐵,𝑖,𝑗 derived from [16,17]

𝜙𝐺𝑒𝑟
𝑀,𝑖,𝑗 = 𝑑𝑖,𝑗 ∗ 𝜙𝐺𝑒𝑟

𝐵,𝑖,𝑗 ∀𝑖, 𝑗 ∈ {1,… , 6}. (12)

In Fig. 3, the minimum 𝛷𝐺𝑒𝑟
𝑀 is shown at the bottom. Note that the

single entries given in the bottom row of Fig. 3 are not required to be
smaller than the ones in the top row. The minimum of contacts during
lockdown is to be understood as the minimum of total contacts of all
individuals. Locally, for one location and the interaction of two age
groups, the mean contacts could even increase slightly. The difference
between the top and bottom of Fig. 3 defines realistic boundaries for all
non-pharmaceutical interventions that could possibly be implemented.
To assess uncertainty, we allow for a 5–10% deviance of the given
values in our ensemble runs. From [66], we have an estimated contact
reduction during spring lockdown in Germany of 63%, taking the
minimum values here, we could achieve a contact reduction of 76%.

2.2.3. Contact-related interventions
There are two ways to reduce potentially dangerous contacts,

namely, to avoid the contacts (first level of reduction) at all or to wear
masks, keep distance and ventilate closed spaces (second level).

While the mean number of daily contacts in Germany is lower than
in many other European countries, a relatively large percentage of
contacts happens at workplaces [15]. Hence, many transmissions can
be avoided by working from home whenever possible. From a recent
analysis of Germany [21], up to 40–50% of the population could work
from home if necessary. We suppose that in the prepandemic phase

‘‘home office’’ was only used by 5% with as much as 20–35% working
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from home during different phases of the pandemic [21, pp. 96–101].
Further contact reduction is induced by people who stop working
altogether, so these values have to be subtracted from the prepandemic
matrix. We know that about 20% of the population stopped working in
March and April [21, p. 96]. For the less strict interventions, we assume
values of 5–10%.

While working from home is feasible for a larger part of the popula-
tion, global school closures and the resulting home schooling ‘‘present
an unprecedented risk to children’s education, protection and well-
being’’ [67]. Apart from school closures, contacts in schools can be
reduced by smaller classes where possible, fixed seating arrangements,
regular ventilation, or pooled testing [68]. There are a number of
further locations where contact reductions are feasible such as bars,
restaurants, supermarkets, or public transport.

We here include the effect of interventions such as face masks,
distancing etc. In many studies such as [38,69], face coverings and
ejected air flows while breathing, speaking, or coughing are studied.
The meta analyses in [70] and [71] find (large) protective effects of
face masks for SARS-CoV-2 transmission such as 40% or even a pooled
odds ratio of 0.35. In particular, the protective effect of community-
wide masks is shown in [72]. We will consider different risk reduction
ranges for wearing masks combined with keeping distance and regular
ventilation of closed spaces.

In the predictive analysis of the spread of infectious diseases, not
only non-pharmaceutical interventions and one-time contact changes
but also adherence to interventions is important. While there is a small
decrease in adherence to preventive measures observed in [19,73]
after months of the pandemic, the adherence is still large and rather
stable with an even increasing number of people wearing masks [73]
(e.g., 93% wear them often or always). In the consequence, we do not
include these opposing effects in our simulations.

In the results section, we vary the strictness of the interventions
according to the political decisions and Table 3.

2.2.4. Deducing contact patterns from interventions
In this section, we provide the influence of the NPIs on the contact

patterns and commuter rates. Let 𝜙𝐵,∗,𝑖,𝑗 and 𝜙𝑀,∗,𝑖,𝑗 denote the mean
daily contacts as shown in Fig. 3 in the top and bottom row, respec-
tively, with 1 ≤ 𝑖, 𝑗 ≤ 6 for the age groups and ∗∈ {𝐻,𝑆,𝑊 ,𝑂} for the
locations.

Since different interventions like working from home and face
masks reduce the mean contacts by sequentially applied multiplicative
factors to the remaining contacts, we use a multiplicative definition. For
two intervention levels 𝑙, e.g., 𝑙 = 1 for gathering bans and 𝑙 = 2 for face
masks and distancing, we introduce factors 𝑟(𝑙)∗,𝑖,𝑗 ∈ [0, 1] with 𝑙 = 1, 2
and ∗∈ {𝐻,𝑆,𝑊 ,𝑂}. For the modeling of events such as carnival, we
could also have 𝑟(𝑙)𝑂,𝑖,𝑗 < 0.

We define the resulting contact patterns as

𝜙𝑖,𝑗 =
∑

∗∈{𝐻,𝑆,𝑊 ,𝑂}

(

𝜙𝐵,∗,𝑖,𝑗 −

(

1 −
2
∏

𝑙=1
(1 − 𝑟(𝑙)∗,𝑖,𝑗 )

)

(𝜙𝐵,∗,𝑖,𝑗 − 𝜙𝑀,∗,𝑖,𝑗 )

)

.

(13)

The factors 𝑟(𝑙)∗,𝑖,𝑗 corresponding to each intervention are summarized
in Table 3. If all factors are set to zero, the baseline contact rate is
obtained.

Note that a third level could be used to, e.g., implement particular
awareness of senior population. In our simulations, however, includ-
ing additional parameters for senior contact reduction always led to

underestimations of the number of deaths.

6

2.3. Epidemiological parameters

In this section, we provide interval ranges for the epidemiological
parameters used in our model. The main references for each parameter
are given in the corresponding subsection. For certain parameters, we
also refer to the derivation in [9]. Furthermore, we derive different
parameters in the clinical section of our model (stages and transitions
between 𝐼 , 𝐻 , 𝑈 , 𝐷, and 𝑅) from the LEOSS study [74]. Some recent
results from LEOSS can also be found in [75]. Based on 3 265 hospi-
talized patients with Covid-19, we provide age-specific mean values
and confidence intervals for the probabilities 𝜇𝑈

𝐻 and 𝜇𝐷
𝑈 . For the time

spans 𝑇𝐻
𝐼 , 𝑇𝑅

𝐻 , 𝑇 𝑈
𝐻 , 𝑇𝑅

𝑈 , and 𝑇𝐷
𝑈 , we use median values and uniform

distributions. We further provide distribution fits to the age-resolved
data in the supplementary figures which are of larger interest when
using agent-based models. We considered gamma, Weibull, lognormal,
normal, and exponential distributions and fitted according to the lowest
Pearson’s cumulative test statistic.

2.3.1. Transmission risk, secondary attack rate
We denote the transmission risk 𝜌𝑖, 𝑖 ∈ {1,… , 6}. As mortality

is clearly found to be age-specific for Covid-19 [13], age-dependent
susceptibility or transmission is less clear and under discussion [46].
There is, however, evidence showing odds ratios smaller than 0.5 for
children below 15 years compared to adults [34–36], with an odds ratio
of about 0.34 for children compared to adults and 1.47 of seniors above
65 years compared to adults. The meta analysis of [33] also showed
higher susceptibility in adults than in children.

From [30], we find the number of second generation infections
divided by the number of close contacts of the first generation as 132

2147 .
From [31], we know that the secondary attack rate in households
was found to be lower than 20% (in most of the studies) and thus
even lower in general (non-household) settings. From [32] and the
first cases of Germany, we have a secondary attack rate of 5–10%.
The meta analysis in [33] found a pooled secondary attack rate in
household settings of 18% and of 0–5% in workplace, school or social
settings. Taking relative susceptibility as described before into account
and adding uncertainty, we have 𝜌(0)1 ∈ [0.02, 0.04], 𝜌(0)𝑖 ∈ [0.05, 0.07],
𝑖 =∈ {2, 3, 4}, 𝜌(0)5 ∈ [0.08, 0.10]. From the mortality for Germany, we
derived that a slightly larger 𝜌(0)6 ∈ [0.15, 0.20] had to be used to account
for many infection clusters in residential homes for the elderly [48,
Report of Dec. 16]. Then, we define

𝜌𝑖 = 𝑠𝑘(𝑡)𝜌
(0)
𝑖 , 𝑖 ∈ {1,… , 6} (14)

with the seasonality factor 𝑠𝑘(𝑡) given in the next section in Eq. (15). By
this parameter, we take the influence of seasons into account, a factor
that is still under discussion in the literature [37,76]. We will allow for
a slight variation of the infection rate with the seasons as detailed in
the next subsection.

2.3.2. Influence of the seasons
As Covid-19 raged all over the world and did not disappear in

the summer months, only reduced seasonality can be expected. The
analysis of over 100 articles in [37] found only a ‘‘weak modulation
effect" so far, with more evidence only to be expected in 2021.

Another important aspect of seasons is the transition from outdoor
to indoor contacts. While counter-strategies like face masks [38,71,72]
or adapted air flows [69], or both [77,78] are studied, it is reasonable
to assume that they cannot fully waive the risk of indoor infections.
In [39], the large majority of considered clusters appeared in closed
environments, while [40] even quantified the risk of indoor infections
18.7 times larger than the risk of open-air infections. As we do not
distinguish between contacts in closed spaces and in outdoor spaces,
we allow the infection rate 𝜌 (cf. (14)) to vary slightly with the seasons
by using

𝑠 (𝑡) ∶= 1 + 𝑘 sin
(

𝜋
( 𝑡 + 1)) , (15)
𝑘 182.5 2
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where 𝑡 is the day of the year and 𝑘 ∈ [0.1, 0.3]. The chosen parameter 𝑘
will yield scenarios with modest seasonal influences. From the simula-
tion results, we will see that the implemented seasonality is capable of
reproducing low and only modestly increasing numbers of infections to
the end of the summer period. On the other hand, we can also correctly
model the recent horizontal development of detected cases in autumn
and beginning of winter scenarios. For more details, see the results
section.

Recently, our choice of 𝑘 has been validated by an empirical global
study [79] and a modeling study [80], particularly for Germany. Our
mean value 𝑘 = 0.2 realizes peak values of 𝑠𝑘(𝑡) = 0.8 and 𝑠𝑘(𝑡) = 1.2
n summer and winter, respectively. Similar values have been used
y [80] and [79] found a 59.71 ± 8.72% increase in total infections in
he Southern Hemisphere during the cold period and a 46.38 ± 29.10%
ecrease in total infections in the Northern Hemisphere during the
arm period.

.3.3. Quarantine and isolation
Note that we use the parameter 𝛽 (or 𝛽𝑖) differently than the 𝛽 in

he most recent version of [9]. In the latter, 𝛽 represents the risk of
nfection from the detected and infected symptomatic patients not yet
ffectively isolated.

The parameter 𝛽 in our model additionally represents the share
f infected people 𝐼𝑋 that are not detected. For comparison, suppose
= 𝐼𝑋+𝐼𝐻+𝐼𝑅, i.e. the infected are the sum of the undetected 𝐼𝑋 , those

later hospitalized 𝐼𝐻 and those that recover on their own 𝐼𝑅. Then, our
𝛽 and 𝛽 in [9] are related by

𝛽𝐼 = (𝐼𝑋 + 𝛽(𝐼𝐻 + 𝐼𝑅))

𝛽 = (𝐼𝑋∕𝐼 + 𝛽(𝐼𝐻 + 𝐼𝑅)∕𝐼)

A value of 𝛽 = 0.5 could then mean that the number of unreported
ases 𝐼𝑋 equals the number of reported cases 𝐼𝑋 = 𝐼𝐻 + 𝐼𝑅 = 𝐼∕2,

and reported cases are perfectly quarantined from the first moment of
infection (𝛽 = 0) while unreported cases move freely for the whole time
of infection. Of course this is only the very unlikely edge case.

The decrease of 𝛽 is what the national strategy [81] of test, trace,
and isolate majorly contributes to [82]. Unfortunately, we already
faced ‘‘no longer traceable transmission chains’’ [48, Report of Oct. 28].
Since it is difficult to quantify how phases of relative transmission con-
trol or ‘‘diffuse spread’’ [48, Report of Oct. 28] influence 𝛽, we assume
𝛽 ∈ [0.1, 0.5] and consider different scenarios. Thereby, we let 𝛽 increase
along a sigmoidal (cosine) curve from the minimum in [0.1, 0.3] to the
maximum value in [0.3, 0.5]. We assume the minimum for phases with
less than 50 infections per 100 000 individuals increasing smoothly to
the maximum for about 250 infections per 100 000 individuals.

2.3.4. Exposure, carrier, and infection transition
𝑇 𝐶
𝐸 denotes the time elapsed between exposure and carrier state and

𝑇 𝐼
𝐶 the time between the beginning of carrier state and the onset of

symptoms. We assume that these parameters do not depend on age.
𝑇 𝐶
𝐸 represents the time an individual remains in a latent non-infectious

stage following the transmission. The incubation period is the time
between exposure and when symptoms are first apparent, i.e.

incubation period = 𝑇 𝐶
𝐸 + 𝑇 𝐼

𝐶 . (16)

We use an incubation period of 5.2 days and assume that infections
occur randomly during the infectious period [9]; for more details,
see [9,41,42]. We allow for 𝑇 𝐶

𝐸 ∈ [2.67, 4.00]. Hence, by median, 𝑇 𝐶
𝐸 =

3.2 and 𝑇 𝐼 = 2.
𝐶

7

2.3.5. Asymptomatic individuals
During the early outbreak in Germany, a proportion of 22% of

infections was reported to be asymptomatic [83]. Two recent meta
analyses [44,45] found ranges of asymptomatic cases from 3–67% with
an overall estimate of 17% and 20%, respectively. The role of children
is still heavily under discussion, and the number of asymptomatic cases
in children is even less clear [35,43,44,46]. For instance the stud-
ies [35,46] considered children diagnosed with SARS-CoV-2 infection.
The former found 28% of asymptomatic cases compared to 12% in
adults, and the latter found 19% with another 25% of mild cases. We
thus consider 𝜇𝑅

𝐶,𝑖 ∈ [0.20, 0.30] for 𝑖 = 1, 2 and 𝜇𝑅
𝐶,𝑖 ∈ [0.15, 0.25] for

𝑖 > 2.
While the asymptomatic individual remains infectious, we assume

𝑇𝑅
𝐶 = 𝑇 𝐼

𝐶 + 1
2𝑇

𝑅
𝐼 ; for more details, we refer to [9].

2.3.6. Symptomatic individuals
Symptomatic cases are divided into those with mild symptoms not

requiring hospitalization and those where an initially mild stage be-
comes severe. From [48, Report of Sept. 15], we have a range of 5% to
22% of hospitalized cases with respect to the reported number of cases
in Germany. The highest number in the report occurs during a time
of presumed huge underreporting and when also many elderly people
were infected. In [14] and its adjusted version for Great Britain [47]
the symptomatic cases range from about 0% for age group 0–9 to 18%
and 27%, respectively, for people older than 80 years. We range our
samples accordingly and allow for a deviance of up to 20% from the
mean or median; see Table 2.

For the recovery time 𝑇𝑅
𝐼 of mild cases, we take a median of about

seven days [9,52] With a deviance of up to 20%, we consider a range
𝑇𝑅
𝐼 ∈ [5.6, 8.4]. For the time span 𝑇𝐻

𝐼 of initially mild symptoms
becoming severe and where hospitalization is needed, we assume 𝑇𝐻

𝐼 ∈
[9, 12] for patients aged 0–34 years and 𝑇𝐻

𝐼 ∈ [5, 7] for individuals older
than 35 years. In [9], we refer to some earlier studies [49–51] providing
a median period of 4, 4.9 and 7 days, respectively. From [74] and 3 265
patients, we have a median time of known infection to hospitalization
of 9 days for age group 0–14 and 12 days for age group 15–34, and
6 days for 35–65 years, 7 days for 65–75 years, and 5 days for 75+
years; see supplementary figures. Note that the time of known infection,
however, only provides a lower bound for the time of symptoms onset
to hospitalization.

2.3.7. Hospitalized individuals and transfer to intensive care
In our model, there are essentially two possibilities for patients

which are admitted to a hospital. Either individuals recover directly in
the hospital or individuals are transferred to intensive care units with
probability 𝜇𝑈

𝐻 .
In an early study [53], 26% of hospitalized patients needed in-

tensive care which comes close to the 25% reported in [54]. In our
analysis of LEOSS [74], we see an increase from no cases or only a few
for the youngest individuals to 37% for the age group 66–75 years,
with a surprising slight decrease to 24% for the age group 80+. The
latter could be explained by personal decisions to refuse intensive care
treatment but the data lacks a qualified explanation. In contrast, [47]
provides a monotonous curve from 5% to 70%. Combining the results,
we let 𝜇𝑈

𝐻 range from 0.05 to 0.45 for the different age groups; see
Table 2 for details.

The median time from symptoms onset to intensive care (𝑇𝐻
𝐼 +

𝑇 𝑈
𝐻 ) is estimated to be 9 and 9.8 days in [49,50] (with a median

of 4 and 4.9 days from symptoms onset to hospitalization, i.e., 𝑇𝐻
𝐼 ).

From [74], we derive hospital stays for patients admitted to ICU (and
recovering later on) of 11.3 to 8.4 days on average (median 13 to 5
days). This includes, however, days before and after intensive care; see
supplementary figures. Combining these results, we consider a range of
3 to 7 days for 𝑇 𝑈

𝐻 for all age groups.
For the time 𝑇𝑅

𝐻 of individuals recovering in the hospital without

needing intensive care, we refer to our reasoning in [9] where 7–16
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(

Fig. 4. Age-specific probabilities. Age-specific probability 𝜇𝑈

𝐻 to need intensive care once hospitalized (left). Age-specific probability 𝜇𝐷
𝑈 to die once intensive care was necessary

right). Mean value shown in blue, 95% confidence interval shown in dashed black lines. Graphs derived from LEOSS [74].
Fig. 5. Number of deaths, ICU patients and infections in Scenario 1. Total numbers (top) and deaths per age group (center and bottom), as of our simulations compared to
extrapolated real world data from June 1 to July 15.
days were considered. From [74] and our supplementary figures, we
have median recovery time spans of 4 to 6 days for age groups 0–14 and
15–35 years, respectively. This value rises to 8 days for 36–65 years,
10 days for 66–75 years, and 15 days for 76 years and older.
8

2.3.8. Intensive care, recovery and death
At last, we have to determine the mortality 𝜇𝐷

𝑈 of patients in
intensive care and the patients’ average time spans to either recovery
(𝑇𝑅) or death (𝑇𝐷).
𝑈 𝑈
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Fig. 6. Geographic spread of the disease in Scenario 1. Extrapolated real world data (left) and simulated number of infections (right), relative per 100 000 inhabitants, on June
15 (top), and June 30 (bottom). On average we have 0.4 exceedances of 200 infections per 100 000 inhabitants where stricter local NPIs are implemented.
For 𝜇𝐷
𝑈 , we use the ranges as presented in Table 2 based on a

combination of the following findings: In [55], the overall ICU mortal-
ity is estimated as 41%. The mortality among mechanically ventilated
patients is considered in [54] and ranges from 28% to 72% from the
youngest to the oldest age group. For non-ventilated patients, these
numbers range from 1% to 34%. From the LEOSS survey [74], we
have ICU mortalities of 0%, no cases, or large confidence intervals
around low values for the youngest individuals, increasing up to 57%
for patients aged 76 years and older; cf. Fig. 4.

The recovery time 𝑇𝑅
𝑈 for severe or critical cases can take up to 3–

weeks [9,56]. In [50], the pooled median from symptoms onset to
ecovery was 18.3 days. However, this also potentially includes mild
ases. From the LEOSS survey [74], we have mean recovery time spans
f 6 and 11 days (median: 7 and 7 days) for people between 0–14 and
5-35 years. For older people, the average time spans are 17, 21, and
5 days (median: 14, 18, and 9 days); see Table 2 for the ranges used
n our simulations.

The pooled time span 𝑇𝐷
𝑈 from symptoms onset to death is estimated

as 15.9 days in [50]. In our database from [74], no death is observed
for individuals aged 0–14 years. For the age groups, 15–35, 36–65, 66–
75, and 76 and more years we have mean values of 12, 18, 18, and
12 (median: 15, 16, 15, 9). In [9], we also assume 𝑇𝐷

𝑈 to be slightly
shorter than 𝑇𝑅

𝑈 . For the ranges finally considered in our simulations,
ee Table 2.

.4. Results and discussion

In this section, we present different scenarios based on the course of
he pandemic in Germany. Four of these scenarios are retrospective and
9

start at June 1, July 15, September 1, and October 10, respectively, and
they last for a period of 45 days. Twelve scenarios are considered for the
time span of December 12 to January 10. Our aim is to qualitatively
capture the trend of infections and their time-dependent distribution
across Germany. We use the same set of epidemiological parameters
for every scenario without adapting them for the specific situation. We
implement different sets of interventions that lead to different rates of
contact reductions. The mean effectiveness of the sets of NPIs is derived
from the development of SARS-CoV-2 infections and Covid-19-related
deaths in Germany.

2.4.1. Aims and expectations
Our first aim is to qualitatively capture the infection trends and death

rates for all scenarios without tweaking specific parameters for a better
local fit. These local fits are often achieved by a daily fitting of contact
patterns which often result in overfitting and less generalizable results.
We thus do not expect to exactly predict the number of deaths or
infections for all scenarios. We rather expect slight under- and over-
shoots depending on the scenario and the quality of the underlying
data. The simulation times in the retrospective scenarios are rather long
and we know that predictions for many weeks become increasingly less
reliable. We do not expect that this is different for our model. What we
want to see here is that our model reproduces the main trend.

The prediction of SARS-CoV-2 infections or related deaths is a
challenging task and heavily depends on the input data. Our model is
age-resolved, but some of the input data is not. While already relatively
good data is available from RKI [58] and DIVI [84], additional data
may be necessary to further validate our simulations. For the deaths



M.J. Kühn, D. Abele, T. Mitra et al. Mathematical Biosciences 339 (2021) 108648
Fig. 7. Number of deaths, ICU patients and infections in Scenario 2. Total numbers (top) and deaths per age group (center and bottom), as of our simulations compared to
real world data from July 15 to August 29.
reported with age resolution, only the dates of the assumed infection
are available in the repository [58], and we thus have to extrapolate
the time of death from the time of infection in the real data. This is then
only an approximation to the real life situation. The overall number in
the situation reports, however, is not age-resolved. ICU occupancy also
lacks age resolution, so we have to extrapolate intensive care for the
different age groups.

A further approximation in our model is that people can only die
after they were in intensive care first; cf. Fig. 1. In real life, and in
particular in times of high infection rates, Covid-19-related deaths can
also happen in, e.g., residential homes for elderly care. This leads to an
overestimation of ICU occupancy in our model.

Our second aim is to capture the regional spread of the infection across
Germany. Our model must be able to predict the spread of the virus
along the routes provided by our mobility data. Our model is only
calibrated with real data once at the beginning. Local effects are very
hard to capture in the simulation. For example, in the real world, the
implemented local NPIs in regions with very high incidence might differ
considerably in their effectiveness. A further local driving mechanism
of the infection are super-spreading events. As these events are by
nature random, we expect regional deviations between the simulated
scenarios and the extrapolated real data that may, of course, also
10
influence the global infection spread. However, if local hot spots are
already contained in the initial data, we expect to see their effects.

Our third and main aim is to assess the mean effectiveness of mit-
igation strategies. We implement local dynamic NPIs to control hot
spots with more than 200 infections per 100 000 inhabitants. These
are used carefully to avoid overfitting and to not distort the image
of the country-wide mitigation strategy. By variation of the country-
wide contact reduction over a large number of simulations runs, the
comparison with the extrapolated real data will yield the effective
contact reduction of implemented mitigation strategy.

2.4.2. Retrospective scenarios
For all simulations, we use the ranges for the epidemiological

parameters in Table 2. We run sets of 1000 Monte Carlo runs with
different levels of mitigation as in Table 3. We then identify ranges
for the effective mitigation in the different scenarios by comparing our
simulation results to the real data.

In all scenarios, school holidays are implemented for the corre-
sponding dates for all federal states. Furthermore, we group the most
relevant interventions on state level to single dates and consider their
mean effectiveness over periods of multiple weeks. In the following,
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a

Fig. 8. Geographic spread of the disease in Scenario 2. Extrapolated real world data (left) and simulated number of infections (right), relative per 100 000 inhabitants, on July
30 (top), and August 14 (bottom). On average we have 0.03 exceedances of 200 infections per 100 000 inhabitants where stricter local NPIs are implemented.
m

for better readability, we drop the indices 𝑖 and 𝑗 of the NPI-related
parameters 𝑟(∗)∗,𝑖,𝑗 ; cf. Table 3.

Set of NPIs for June to October. For the time span of June 1 to
September 30, we model rather weak effective contact reductions —
in accordance with the lifting of many interventions in the summer
period as described in [85,86] – to reproduce the slow spread of the
disease. We assume contact reductions in the range of 0 to 20% in home
and other locations, a working from home percentage between 20 and
30%, up to 5% of people who stopped working altogether (also cf. [21])
as well as an additional contact reduction in all locations by wearing
masks and distancing of up to 20%. These considerations translate to
𝑟(1)𝐻 ∈ [0.0, 0.2], 𝑟(1)𝑊 ∈ [0.2, 0.3] + 𝛿 with 𝛿 ∈ [0.0, 0.05], 𝑟(1)𝑂 ∈ [0.0, 0.2]
with 𝑟(2)∗ ∈ [0.0, 0.2], ∗∈ {𝐻,𝑆,𝑊 ,𝑂}; see the corresponding section.

In addition, by averaging we implement the partial school closures
nd remote schooling (𝑟(1)𝑆 = 0.5) from June 1 until June 15 for all

states; after that, schools operate as usual with 𝑟(1)𝑆 = 0 (except for the
school holidays on federal level, where 𝑟(1)𝑆 = 1).

From our simulations runs, we assess the effectiveness of the miti-
gation strategies in this period on the overall contact reduction by 15%
with schools open and by 30% during school holidays.

Set of NPIs for October. From October 1 to October 30 we assume
slightly stricter contact reductions than in the summer based, e.g., on
the call to further attentiveness end of September [87]. We identify
slightly increased values for contact reduction at home (20 to 40%,
i.e., 𝑟(1)𝐻 ∈ [0.2, 0.4]) with increased values for protective interventions
such as wearing masks, regular ventilation of closed spaces, or dis-

(2)
tancing (20 to 40%, i.e., 𝑟∗ ∈ [0.2, 0.4], ∗∈ {𝐻,𝑆,𝑊 ,𝑂}). All other s
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NPIs are kept in place as before. The NPIs’ effect on the median overall
contact reduction that we obtained from our simulations is about 31%.

Set of NPIs for November. For the time span of November 1 to
November 30, stronger restrictions are in place [88]. We assume con-
tact reduction in homes by 40 to 60%, a proportion of non-working
individuals of 0 to 10% plus a proportion of home-working individuals
of 20 to 30%. Since restaurants, bars, and most leisure-related facilities
were closed, we model a contact reduction in other locations by 60
to 80%. Additional protective effects to avoid contacts are estimated
as 20 to 40% in homes and schools (since face masks are less worn in
private situations [18,73] and since school contacts are more difficult to
reduce than work or other contacts) and 40 to 60% in work and other
situations. Through our simulations runs, we assess the effectiveness
of the mitigation strategies in this scenario on the overall contact
reduction with 50%. This is slightly larger than the estimation of
43% by [66] but still far from the reported reduction in spring (63%)
that may have been necessary to substantially mitigate the spread of
the virus. Note however, that, in our simulations, wearing masks and
keeping distance is modeled as contact reduction such that the values
we present are slightly larger than in cases were this is not considered
a contact reduction.

To summarize, we set 𝑟(1)𝐻 ∈ [0.4, 0.6], 𝑟(1)𝑊 ∈ [0.2, 0.3] + 𝛿 with
𝛿 ∈ [0.0, 0.1], and 𝑟(1)𝑂 ∈ [0.6, 0.8]. We further assume 𝑟(2)∗1 ∈ [0.2, 0.4],
∗1∈ {𝐻,𝑆} and 𝑟(2)∗2 ∈ [0.4, 0.6], ∗2∈ {𝑊 ,𝑂}.

Dynamic and local non-pharmaceutical interventions. In order to
itigate the spread in local hot spots, we dynamically implement a
et of strict non-pharmaceutical interventions. Once 200 infections
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Fig. 9. Number of deaths, ICU patients and infections in Scenario 3. Total numbers (top) and deaths per age group (center and bottom), as of our simulations compared to
extrapolated real world data from September 1 to October 15.
per 100 000 inhabitants and county are reached, an enforced contact
reduction is implemented for 14 days. The parameters of this local set
of interventions are the sames as the NPIs for November described above
with the following modifications: 𝑟(1)𝑆 = 0.25, 𝑟(1)𝑊 ∈ [0.2, 0.3] + 𝛿 with
∈ [0.1, 0.2], since additional facilities may be closed on a local scale,

nd 𝑟(2)∗ ∈ [0.6, 0.8], ∗∈ {𝐻,𝑆,𝑊 ,𝑂}, which is a quite strong measure
or distancing, face masks and other interventions.

imulation. Our initial conditions are derived from the age-resolved
ase data provided by [58]. We take confirmed cases around the start
ate of our simulation from which we extrapolate the compartments in
q. (2)–(9) by using the parameters in Table 2. Based on [84] and our
arameters, we extrapolate age-resolved ICU data. In order to obtain
ge-resolved ICU data, we slightly reduce the initial extrapolation of
0+ intensive care cases since too large death rates occur in the
eginning part of the simulation otherwise. We refrain from further
orrection of initial values without having more reliable data.

Given positive rates of 1% or less during summer [48, Report of Aug.
6], we assume that the number of unknown symptomatic infections
as small. Therefore, we start our simulations on June 1, July 15, and
eptember 1 directly from the number of confirmed cases. Given the
ncreased proportion of positive tests up to mid of October, we start the
imulations with a twofold of the confirmed cases. For each scenario,
12
we run 1000 Monte Carlo runs such that we have a reliable set of
parameters sampled in the given ranges. For the runs, we provide the
median values as well as the percentiles obtained from the simulation
runs. We use a seven day moving average of real world data and
extrapolate the day of death, using the parameters from Table 2.

2.4.3. Discussion of retrospective scenarios
In the following, we discuss the results of the four different retro-

spective scenarios with the described sets of implemented NPIs over
time. We compare the overall and the age-resolved death rates with
the extrapolated real data. We also compare the overall infection rates
and the ICU occupancy. In the corresponding Figs. 5, 7, 9, and 11, we
present the median (percentile p50) and the percentiles ranges from
(p05 and p95) as well as p25 and p75 as explained above. Additionally,
in the maps of Figs. 6, 8, 10, and 12, we show two snapshots of the
regional spread of the infection, where we compare the extrapolated
real data on the left with our simulation on the right. Note that the
scaling of the color bars differs for the scenarios and represents the
relative number of infections per 100 000 inhabitants.

Scenario 1. Our first scenario (S1) is computed 45 days from June 1
onward. During the summer months, we observe only a slow rise in the

infections in the RKI data and a decrease of ICU occupancy from DIVI
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Fig. 10. Geographic spread of the disease in Scenario 3. Extrapolated real world data (left) and simulated number of infections (right), relative per 100 000 inhabitants, on
September 15 (top) and September 30 (bottom). On average we have 44 exceedances of 200 infections per 100 000 inhabitants where stricter local NPIs are implemented.
(Fig. 5). Both are captured well with the median of our simulations.
The small elevation in the number of infections in June is due to an
outbreak of Covid-19 in a slaughterhouse in Gütersloh. As expected,
we cannot capture such a stochastic event.

Focusing on the first part of June (see Fig. 6, top), we observe
further regions that are underestimated by our simulation and some
where it is the other way around. Overall, however, a larger incidence
in the RKI data mostly corresponds to a larger incidence in the sim-
ulation data. Note that over- and underestimating also happens due
to a different strictness of local interventions. Worth mentioning is
the spread of infections into neighboring regions which we can see
for Berlin from the middle to the bottom. Due to the inclusion of
mobility, we see that the infection spreads into the near regions in
our simulation (right) as in the extrapolated real data (left). Due to
the longer simulation time, the results on the bottom show further
deviation from the data.

In Fig. 5, we plot the median death rate, the percentiles and the
extrapolated real data for the different age groups. Our model is quite
close to the overall death rate. The age group 60–79 years is captured
very well and the age groups below are also captured well. We are a
little less close for the age group 80+ years. The deviations are to be
expected since we aim for an overall good fit of our model without
tweaking it for the individual scenarios. Additionally, we lack age-
resolved ICU occupancy data and have to extrapolate the intensive
care input data for the different age groups. This then also affects the
simulated death rates. Note that the age groups below 15 years only
contribute marginally to the death rate. The deviance with simulation
13
seems large, but due to the small numbers (0 or 1), we are actually
close to the real world value.

Scenario 2. Our second scenario (S2) is computed 45 days from July 15
onward. The results of this Scenario are very similar to the results of S1.
This holds for the overall death rates and the death rates in the different
age groups as depicted in Fig. 7. A main difference is the influence of
travel returners [48, Report of Aug. 9] that might be responsible for the
rise of infected in the beginning of August with a plateau reached at
the end of that month; cf. Fig. 7. Such an influence is not considered in
our simulation which contributes to the underestimation of infections.
Similarly, we underestimate the number of ICU occupancy.

In addition to travelers, many smaller outbreaks in a number of
administrative districts in various settings (social, industrial, etc.) are
reported [48, Report of Aug. 9]. There is an increasing trend in 7-
day incidences in North Rhine-Westfalia (NRW) and Hamburg and
higher-than-average 7-day incidences in Hesse and Berlin, as well as a
Covid-19 related outbreak in the Bavarian district of Dingolfing–Landau
(DL) with > 400 cases. This is what we observe in the map of the
extrapolated real world data in Fig. 8 (left).

In our simulation (Fig. 8, right), NRW still seems to be a little
underrepresented, but interestingly, we catch the outbreak in DL with
our input data from July 15, as well as its spread to neighboring regions
that we observe in the real data. Hesse and Berlin are regions of higher
infection rates in our simulation as well. Some local hot spots, maybe

due to weddings in that time, are again missed due to their stochastic
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Fig. 11. Number of deaths, ICU patients and infections in Scenario 4. Total numbers (top) and deaths per age group (center and bottom), as of our simulations compared to
extrapolated real world data from October 15 until November 30.
nature. The qualitative regional infection spread is however captured
well.

Scenario 3. Our third scenario (S3) is computed 45 days from Septem-
ber 1 onward. Compared to S1 and S2, we overestimate the number
of deaths for all age-groups (Fig. 9) compared to the extrapolated real
data. However, by the end of this period, on October 15, we also have
9710 deaths reported in the [48, Report of Oct. 15]. This means that
some of the infected died earlier then we could extrapolate from the
assumed day of infection in [58]. 9710 deaths is then already much
closer to the prediction of our simulation.

The slight overestimation of deaths is consistent with the projected
infection numbers and ICU occupancy that are overestimated as well.
As the proportion of positive tests grew considerably from 0.7% to 5.6%
in the considered period, we assume that there might have been a larger
number of undetected cases at the end of this scenario which are not
reflected in the real data yet. As explained in Section 2.4.1, we expect
our model to rather overestimate ICU occupancy in phases of high
infection rates. This might also already contribute to the overestimation
we observe in Fig. 9.

Our simulations from September 1 predict larger incidences in West
and Southern Germany with lower incidence in the center and North-

Eastern Germany; see Fig. 10 (right). Although we have a qualitatively
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similar picture in the extrapolated real data, the number of reported
cases are substantially below the predicted values; see Fig. 10 (left).
However, we see that these and even much higher incidences are to be
found in the real data in October in these precise regions; see Fig. 12.
This suggests a larger number of undetected cases in the infections that
are not captured in the real data in Fig. 10 (left).

Scenario 4. Our fourth scenario (S4) is computed 45 days from October
15 onward. Due to the increased proportion of positive tests, we start
this simulation with the assumption of twice as many confirmed cases,
which is also the reason for the difference between the infected in the
real data and the simulation data in the initial phase depicted in Fig. 11.
We see that the curve of predicted deaths is steeper in the beginning
while the extrapolated real data curve becomes steeper towards the end
of the scenario; see 12. As in the last scenario, the situation reports
already yields 16 248 deaths at the end of November [48, Report of
Nov. 15], but again the corresponding age-resolved data that we need
to compare to is not directly available. In this scenario, we overestimate
the sum of the extrapolated deaths while we still underestimate the
overall number of 16 248 in the situation report.

While we see a slight decrease in reported cases towards the end of
November, our model instead predicts a slight but further increase of
infections; see Fig. 11. This predicted increase is however consistent



M.J. Kühn, D. Abele, T. Mitra et al. Mathematical Biosciences 339 (2021) 108648
Fig. 12. Geographic spread of the disease in Scenario 4. Extrapolated real world data (left) and simulated number of infections (right), relative per 100 000 inhabitants, on
October 30 (top) and November 14 (bottom). On average we have 371 exceedances of 200 infections per 100 000 inhabitants where stricter local NPIs are implemented.
Fig. 13. Prediction of the infected individuals in Germany from December 12 to January 10. Application of a strict lockdown (LD) from December 16 and based on different
potential numbers of undetected cases on December 12 (50% left and 150% right). Lifting of the lockdown restrictions for December 24–26 (XMAS) with lower contact reductions
(CR) as presented.
with the increasing number of confirmed cases in the beginning of
December; cf. [48, Report of Dec. 16].

The slight decrease in confirmed cases end of November is likely to
be a statistical artifact obtained due to a changed test strategy that has
been in place in Germany since November 11 [48, Report of Nov. 18].
After that, the conducted PCR tests fell by around 200,000, while the
positive rate rose. Again, the curve of predicted intensive care patients
lies above the extrapolated data. Our model thus shows the expected
behavior in times of higher infections.

Summary of retrospective results. All in all, we have reached our
aims: The median of our death and infection rates is close to the
15
extrapolated real data without further adaptations for each individual
scenario. We can identify the mean effectiveness of the sets of non-
pharmaceutical interventions during different phases of the pandemic
in Germany. Although we have no mechanism to predict local stochas-
tic super-spreading events, we see how commuter activities lead to the
spread of the disease along the routes visualized in Fig. 1 (right). We
can predict regions with larger incidence over time spans of several
weeks.

2.4.4. Predictive scenario
On December 18, we submitted twelve prospective scenarios for

Germany from December 12 to January 10 to the preprint server. In
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these scenarios, we assess different strictness and compliance levels in
relation to the recently announced lockdown [89]. We assume that
the strictness of the lockdown, the strictness of the partial lifting
over Christmas, and the number of infected individuals (detected &
undetected) will have the most influence on the effective mitigation
and prediction of the spread of SARS-CoV-2 in that period.

We assume an effective contact reduction of this lockdown of 74%
or 67%. From December 12 to December 16, we use the same contact
reduction (50%) as in our November scenario in retrospective section.
In our scenarios the lockdown restrictions are lifted for December 24–
26 with contact reductions as given in Fig. 13. Our predictions are
based on an assumed initial number of undetected cases on December
12, namely 50% and 150%. Since the effects on the number of deaths
through contact reduction in this period will only be seen from mid
of January onward, we do not provide predictions for the number of
deaths.

2.4.5. Discussion of predictive scenarios
In Fig. 13, we present scenarios considering contact reductions of

74% and 67% during lockdown with different increases in contact rates
over Christmas. The scenarios on the left assume 50% of undetected
infections while the scenarios on the right assume 150% of undetected
infections on December 12.

Qualitatively, the curves in Fig. 13 are similar for both proportions,
50% (left) and 150% (right), of undetected infections. We see that the
strictest measures with 74% contact reduction (CR) during lockdown
and 74% (green) or 52% (orange) reduction over Christmas lead to the
lowest number of infections by January 10. With a contact reduction of
67% during the lockdown and over Christmas (brown), the number of
infections also declines, but not to the same extent. The purple curve
(52% CR over Christmas) behaves to the brown scenario as the orange
to the green scenario. With only 26% contact reduction over Christmas
(blue or red), there is a substantial new rise of the number of infections
before the lockdown can take its effect.

We observe that only slight additional contact reductions during
lockdown can substantially change the speed of infection mitigation.
Considering a lifting of restrictions over Christmas to allow for a mean
of 7.2 daily contacts (CR 26%) could throw back the containment of the
virus for weeks. Note that these 7.2 daily contacts cannot be directly
translated to persons in a room but highly depend on further param-
eters like (the type of) masks, distancing, ventilation etc. Considering
the contact reduction of 52% which may be closer to the NPIs in place
over Christmas, we see that they contribute far less to the spread the
virus than the 26% scenario.

2.5. Conclusion

We have extended the model [9] by age-resolution and added a
model to resolve spatial heterogeneity using mobility data from the
German Federal Employment Agency [20] and Twitter [62]. A numer-
ical solution approach for the regional models was also introduced.
One important future achievement will be the release of our modular
epidemics simulation software MEMILIO [28] which uses the presented
model and data. Our open-source software will also be available via a
front-end that can be used by the public and decision makers.

We have collected extensive data on epidemiological parameters
and conducted own analyses based on patient-specific data. While age-
resolved incidence data is a good starting point, further data such as
daily number of tests per age group, age-resolved hospitalization and
intensive care data would be valuable information to further validate
our model.

We have run experiments with different contact reduction factors
and thus have identified parameters for the effectiveness of mitigation
during different phases of the pandemic in Germany. In the retrospec-
tive scenarios the trends of infections have been reproduced well with

the derived factors on the effective mitigation strategy in Germany.

16
Local stochastic events such as super-spreading, which are naturally
random, cannot be predicted. However, once infection information is
included in the starting data, we see how commuter activities lead
to increased infections also in surrounding counties. On the other
hand, we see that less affected regions like the center of Germany
or North-Eastern Germany are also predicted to be less affected by
our simulations. Infection clusters as, e.g., appeared in large areas of
Southern and Western Germany from beginning of autumn could be
reproduced.
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