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FNS allows efficient event‑driven 
spiking neural network simulations 
based on a neuron model 
supporting spike latency
Gianluca Susi1,2,3*, Pilar Garcés1, Emanuele Paracone3, Alessandro Cristini3, Mario Salerno3, 
Fernando Maestú1,2,4 & Ernesto Pereda1,5

Neural modelling tools are increasingly employed to describe, explain, and predict the human brain’s 
behavior. Among them, spiking neural networks (SNNs) make possible the simulation of neural 
activity at the level of single neurons, but their use is often threatened by the resources needed in 
terms of processing capabilities and memory. Emerging applications where a low energy burden 
is required (e.g. implanted neuroprostheses) motivate the exploration of new strategies able to 
capture the relevant principles of neuronal dynamics in reduced and efficient models. The recent 
Leaky Integrate-and-Fire with Latency (LIFL) spiking neuron model shows some realistic neuronal 
features and efficiency at the same time, a combination of characteristics that may result appealing 
for SNN-based brain modelling. In this paper we introduce FNS, the first LIFL-based SNN framework, 
which combines spiking/synaptic modelling with the event-driven approach, allowing us to define 
heterogeneous neuron groups and multi-scale connectivity, with delayed connections and plastic 
synapses. FNS allows multi-thread, precise simulations, integrating a novel parallelization strategy 
and a mechanism of periodic dumping. We evaluate the performance of FNS in terms of simulation 
time and used memory, and compare it with those obtained with neuronal models having a similar 
neurocomputational profile, implemented in NEST, showing that FNS performs better in both 
scenarios. FNS can be advantageously used to explore the interaction within and between populations 
of spiking neurons, even for long time-scales and with a limited hardware configuration.

Today’s advanced magnetic resonance imaging (MRI)-based techniques allow a thorough estimation of the struc-
tural connectome (i.e., the map of physical connections in the brain), as well as volume and morphology of single 
brain areas.

Through the application of graph theory, such data can be employed to synthesize dynamic brain models, 
which have shown to appropriately reproduce brain oscillations revealed by functional imaging techniques such 
as functional MRI1,2, Magnetoencephalography/Electroencephalography (M/EEG)3,4, Multi-Unit Activity (MUA) 
and Local Field Potential (LFP)5, providing new information on the brain operation. In such approaches, nodes 
represent surrogates of brain regions (corresponding to gray matter), and edges represent the long-range con-
nections, along fibre tracts, between them (corresponding to white matter), usually estimated using techniques 
based on diffusion-weighted MRI data (like the diffusion tensor imaging, DTI) (Fig. 1).

Simulation studies on brain connectomics revealed that transmission delays introduced by the large-scale con-
nectivity play an essential role in shaping the brain network dynamics, not being, however, the only constraint4,6. 
On the other hand, complementary investigation remarks the substantial role of local dynamics in shaping 
large-scale functional brain states7.

Among the approaches used to reproduce the local activity of single brain regions, spiking/synaptic mod-
els3,8, 9 present a very large number of degrees of freedom, capable of giving rise to highly complex and realistic 
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behaviours on a broad frequency range of the related oscillations5. In addition, spiking/synaptic models offer 
the opportunity to relate to real-brain data transversely (micro-, meso-, and macro-scale, referring to the catego-
risation of Bohland et al.10), as well as to easily implement spike-timing dependent plasticity (STDP), which is 
indispensable in many kinds of computational neuroscience studies. On the other hand, spiking/synaptic-based 
brain simulations present their criticalities, first of all the fact of being computationally expensive. This often 
translates to the use of oversimplified spiking neurons thereby reducing the realism of the overall brain model. It 
motivates a continuous exploration of new avenues for brain modelling based on spiking neural networks (SNNs).

Spiking neuron models are usually described by differential equations and simulated with clock-driven (syn-
chronous) algorithms, by means of proper integration methods (see Brette et al.11 for an extensive review). In 
this way the update is done at every tick of a clock X(t) → X(t + dt) , and involves all network elements (neu-
rons and possibly synapses). Conversely, in the event-driven (or asynchronous) approach a network element is 
updated only when it receives or emits a spike. Then, such approach does not envisage a periodic update, neither 
a check of all network elements, in line with the sparseness of brain-like activity. Nevertheless, the need of an 
explicit solution for the neuron state between spikes, and the consideration of incoming and outgoing pulses as 
discrete events, make the event-driven simulation of classic bio-realistic models very challenging. This has stimu-
lated a big interest among the scientific community in developing both realistic and event-driven-compatible 
spiking neuron models12–15, which has led to the development of event-driven based SNN simulators16,17, and 
hybrid event/time-step based simulation strategies18–22. In particular, the Leaky Integrate-and-Fire with Latency 
(LIFL) model is a recent neuron model that can be simulated in event-driven fashion, preserving important 
computational features at the same time17,23–26. LIFL supports relevant neuronal features among which spike 
latency27–29, which has been embedded in the model through a mechanism extracted from the Hodgkin-Huxley 
(HH) equations (as described by Salerno and colleagues14), and has proved to bring valuable qualities for neural 
computation30,31, as well as beneficial role at the group level as desynchronization23 (additional effects of spike 
latency have been reported by other authors, and summarized in “Methods” section). Then, the LIFL represents 
an interesting candidate for the event-driven simulation of brain networks. In this work we present FNS (which 
stands for Firnet NeuroScience), a LIFL-based event-driven SNN framework, implemented in Java and aimed at 
exploring the underpinnings of brain network dynamics. FNS allows the user to generate networks of interact-
ing neurons on the basis of a versatile graph-based multi-scale neuroanatomical connectivity scheme, allowing 
for heterogeneous neuron groups and connections. FNS puts the focus to the reproduction of neuronal activity 
considering real long-range structural data, even with limited computing resources. FNS uses a novel neuron 
model, with the possibility to implement diversity at the level of both regions and connections and the option of 
enabling STDP. In addition to the high customizability of the network, proper input and output modules allow the 
user to relate model activity to real data. Through the node parameters it is possible to achieve a rich repertoire 
of intrinsic dynamics, and a set of structural connectivity matrices enables the interaction between the network 
nodes via specific connection weights, time delays and type of connections.

Figure 1.   Synthesis of a computational brain model using the graph approach. White matter connections can 
be extracted by means of DTI. Brains of individual subjects can be coregistered to a parcellation template (atlas) 
in order to assign connections to couples of brain areas. After conferring local dynamics to the nodes of the 
structural connectome obtained, the network activity emerges from the interaction of the component nodes. 
The number of nodes of the model depends on the template used, and each node can be represented at different 
levels of abstraction (e.g., ensemble of spiking neurons).
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While a high level of biological detail is necessary for a class of neural modeling studies, such an approach 
is not always the right key to interpret emergent complex neural dynamics. There are numerous neuroscience 
studies in which the understanding of neural mechanisms can be facilitated by the use of reduced models. For 
example, regarding spiking neurons it has been shown that a rich repertoire of states can be obtained even with 
a few computational ingredients32 (see, e.g., Brochini and colleagues33 for criticality and phase transitions, and 
Bhowmik and colleagues34 for metastability and interband frequency modulation). In this direction, with FNS 
we do not want to propose an alternative to today’s detailed simulation softwares, but rather a compact and 
efficient tool to explore the interaction within and between neuronal populations, even in a simplified manner. 
In short, FNS aims to facilitate the study of the network dynamics with regards to single neuron neurocomputa-
tional features and properties of long-range connections. FNS gives the possibility both to import DTI-derived 
structural connectivity matrices, and to design custom networks. In addition, a mechanism of periodic dumping 
and memory management allows the user to face simulations of long-term behavior also with limited hardware. 
The latter is an important aspect if we want to study phenomena that stretch different time-scales such as STDP-
related modifications35, criticality36 or metastability37 in large-scale connectivity models.

This formula seems to allow an interesting trade-off between carrying out simulations that capture both neu-
ron behaviors and macro-scale dynamics, and being able to grasp the contribution of the different computational 
features. In this regard, the LIFL allows the user to activate/deactivate independently each single feature, to study 
their effect, either individually or combined, on the network dynamics.

In “Results” section, we evaluate the performance of FNS in terms of simulation time and used memory, 
making a comparison with the software NEST, considering neuron models similar to the LIFL.

In “Discussion” section, we summarize our work and envisage how to improve FNS in future works.
In “Methods” section, we describe the neurobiological principles and mathematical models underlying FNS, 

the possibilities that the framework offers for the synthesis of custom models and the design of specific simula-
tions. The salient technical aspects of the simulation framework (e.g., design principles, event-driven implemen-
tation and parallelization strategy) are reported in the Appendices (Supplementary information).

In this manuscript, a single neuron is designated with n; an axonal connection between two neurons, with 
e; a neuron population (corresponding to a region or subregion in real case), with N, and called network node; 
the complete set of connections between two nodes (corresponding to fibre tracts of the real case) with E, and 
called network edge.

The software can be freely downloaded at the official FNS website: http://​www.​fnsne​urals​imula​tor.​org.
On the website, a user guide (including a short description of how to install and run it) and some network 

models are also provided with the software.

Results
Simulation examples and performance evaluation.  We evaluated the performance of FNS in terms 
of simulation time and memory usage considering two different scenarios. First, we analyze the scaling behavior 
with respect to the network size and to the simulated biological time, considering a single node. Then, we test 
the effectiveness of the parallelization mechanism through the simulation of 14 nodes interconnected with a 
connectome-like structure. Finally, we compare the behavior of the neuron models considered. Given the dual 
interest in simulating long timescales and obtaining data for future analysis, we have as prerequisite the storage 
of the data on disk, to avoid out-of-memory errors. We chose to compare FNS with NEST21,38, which is one of the 
most used simulators today and integrates useful commands to write the simulation output to file, disabling the 
recording to memory (allowing us to execute a fair comparison between the simulators). In NEST we have con-
sidered neuronal models that present neurocomputational profiles similar to that of the LIFL: IAF_psc_delta and 
AEIF_psc_delta , i.e., the leaky integrate and fire with delta synapses and the adaptive exponential integrate-and-
fire with delta synapses, respectively. While IAF neuron does not support spike-latency, the AEIF is the simplest 
model available in NEST with this feature39; for this latter, we disabled both subthreshold and spike-triggered 
adaptation, by initializing aAEIF = bAEIF = 0 . For completeness, we finally compared the LIFL with the precise-
spiking version of the IAF (i.e., the IAF_psc_delta_ps40), that is the simplest precise-spiking neuron model avail-
able in NEST (i.e., characterized by the fact that the location of an outgoing spike is not grid-constrained and 
determined analytically). The simulations have been carried out using a laptop equipped with Intel(R) Core(TM) 
i7-2670QM CPU and 8GB of RAM. We used the following software versions: NEST 2.20 (https://​zenodo.​org/​
record/​36055​14#.​YHitj​uhLjIV) and FNS 3.3.92 (https://​github.​com/​fnsne​urals​imula​tor/​versi​ons/​tree/​main/​
FNS_3.​3.​92). Other simulation details are present in the Appendix F.

Benchmark A: one randomly intra‑connected node.  As a first neural network example we simulated the bench-
mark 4 network model of Brette et al.11, which is a random connectivity network with voltage jump synapses 
(i.e., the spikes consist in Dirac pulses). The network is composed of 4000 neurons with a connection prob-
ability of 2% , and arranged in 2 pools, one excitatory and one inhibitory, forming 80% and 20% of the neurons, 
respectively. The neurons are characterized by a decay constant of 20 ms and a refractory period of 5 ms. Firing 
threshold is fixed to −50 mV and reset potential to −60 mV , and their initial membrane potential is randomly 
chosen between these two levels of potential. Neuron interactions are permitted by delta synapses, such that each 
excitatory event causes an instantaneous increase of 0.25 mV on the membrane potential of the target neuron, 
whereas an inhibitory event causes a decrease of 2.25 mV. For FNS such set of parameters has been adapted to 
the LIFL neuron (see Appendix F).

We feed the network with a set of 4000 external Poisson processes with mean frequency of 5 Hz, each one 
connected to 10 randomly chosen neurons, obtaining a mean firing rate activity of ∼ 10 Hz from each neuron. 
NEST simulations have been executed for different values of time resolution (i.e., 0.1 ms and 0.01 ms), while in 

http://www.fnsneuralsimulator.org
https://zenodo.org/record/3605514#.YHitjuhLjIV
https://zenodo.org/record/3605514#.YHitjuhLjIV
https://github.com/fnsneuralsimulator/versions/tree/main/FNS_3.3.92
https://github.com/fnsneuralsimulator/versions/tree/main/FNS_3.3.92
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FNS the time is defined as a floating-point variable. In addition to the network already described, we repeated 
the test using networks of 8,000 and 16,000 neurons. To obtain the same mean firing rate in all the considered 
networks, we preserved the same balance between excitatory and inhibitory neurons and scaled the number of 
inputs and connections accordingly (see Table 1).

As for simulation times, LIFL showed significantly better performance compared to IAF, IAF_ps and AEIF 
with time resolution 0.01 ms, and slightly better performances than the IAF, IAF_ps and AEIF with time resolu-
tion 0.1 ms. In terms of RAM usage, LIFL has shown significantly higher performance than the other models/
implementations considered. Results are summarized in Fig. 2a.

Figure 2.   Results from the simulation benchmarks. (a) Benchmark A, where the LIFL (implemented in FNS) 
is compared with the neuron models AEIF with delta synapses and IAF with delta synapses (grid-based and 
precise-spiking versions) with resolutions of 0.1 ms and and 0.01 ms (implemented in NEST). Up: simulation 
time as a function of the size of the network. The simulations have been repeated for 1 s and 5 s of biological 
time. Each reported value is an average over 5 simulation runs with different randomly generated networks of 
the same type. Down: used memory as a function of the size of the network. In this case we show only one plot 
representative of the two cases (1 s and 5 s), since the duration does not affect the memory usage significantly. 
(b) Benchmark B. Comparison of simulation time and memory usage between the LIFL (implemented in FNS) 
and the neuron models of Benchmark A with lower resolutions. A scheme of the populations considered for 
the DMN is reported, with related localization in the right emisfere: 1—precuneus; 2—isthmus cingulate; 3—
inferior parietal; 4—superior frontal; 5—middle temporal; 6—anterior cingulate; 7—(para/) hippocampal. (c) 
Scheme of the simulation battery carried out for the behavioral analysis.

Table 1.   Summary of the network parameters for benchmarks A and B.

Benchmark ID
Number of external 
inputs

Number of internal 
neurons

Number of input 
connections

Number of intra-node 
excitatory connections

Number of intra-node 
inhibitory connections

Number of inter-
node (excitatory) 
connections

A1 4k 4k 40k 256k 64k –

A2 8k 8k 80k 512k 128k –

A3 16k 16k 160k 1024k 256k –

B 56k 56k 560k 3584k 896k ∼ 100k
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Benchmark B: 14 interconnected nodes.  Here we evaluated the performance of FNS in a multi-threading sce-
nario, considering 14 nodes of the type described in the benchmark A1 (4k neurons), connected using data of the 
human structural connectome. In particular a well-known brain subnetwork has been considered, the Default 
Mode Network (DMN). The use of real structural data here is only a pretext to make nodes interact with different 
strengths and delays (our aim here is not to model the real interactions that take place in the brain). We modeled 
the connectivity and spatial organization of the DMN using DTI data extracted from real subjects, considering 
the mean lengths and the number of tracts that connect the brain regions of which the DMN is composed. The 
14 neuron populations have been placed as vertices of the synthetic DMN and interconnected through excita-
tory-to-excitatory inter-node connections; to ensure a considerable interaction between the network nodes we 
have uniformly raised the inter-node weights of the network edges until we obtained a mean firing rate activity 
of ∼ 12 Hz considering the neurons of the overall network.

We considered the same neuron models used in the Benchmark A. For NEST, we considered as time resolu-
tion only the value 0.1 ms, assumed that with 0.01 ms, lower performance in terms of memory and simulation 
times are expected. Network parameters are summarized in Table 1.

LIFL outperformed IAF, IAF_ps and AEIF implemented in NEST, both in terms of simulation times and 
RAM usage. Results are shown in Fig. 2b.

Behavioral analysis and comparison.  Finally, we carried out a battery of simulations to quantify the behavioral 
differences between the models under consideration, analyzing the spike patterns resulting from three single-
node configurations in specific working regimes: homogeneous activity (HA), sporadic discharges (SD), and regu-
lar discharges (RD). To obtain the HA regime, we simply considered a node organized as in benchmark A1 (4000 
neurons, mean firing rate of ∼ 10 Hz ), where the activity is homogeneous. To obtain the SD regime, we made 
the module fully connected and reduced the input strength to reach an average firing rate of ∼ 1 Hz , character-
ized by sparse activity with occasional synchronous neuronal discharges. To obtain the RD regime, starting from 
A1 we doubled the connection probability and set excitatory and inhibitory weights to an equal, opposite value, 
achieving frequent and regular synchronous neuronal discharges; the firing rate has been subsequently adjusted 
to a value of ∼ 50 Hz through the variation of the input strength. To extract a measure of inter-model similar-
ity, for each network configuration and neuron model we simulated a set of 30 trials (of 1s, except for SD, for 
which we simulated trials of 4s to take in account the lower firing rate), considering 0.01ms time resolution for 
the time-driven neuron implementations. Before each trial we re-synthesized the node and initialized the neu-
rons’ membrane potentials to random values, to avoid effects related to peculiar wiring configurations or initial 
conditions. Finally we evaluated the two following indices from the spike activity produced by the combinations 
of network configuration/neuron model: (1) the amplitude of the highest peak of the PST-histogram consider-
ing bins of 1 ms ( maxPSTH ) , and (2) the count of high-synchrony peaks of the PST-histogram considering a 
threshold of cth = 100 spikes ( chi−PSTH ). To obtain a measure of information degradation deriving from missed 
spikes, we repeated the set of simulations for 0.1ms time resolution, and evaluated the firing rate decrease (FRd), 
that is, the percentage reduction of the average firing rate as a consequence of time-step increase (from dt = 0.01 
to dt = 0.1 ). A scheme of the comparison process is given in Fig.2c, and the results are summarized in Table 2.

Considering the three regimes on the whole, AEIF and LIFL are the models whose behavior is most similar, 
presumably reflecting the affinity of their neurocomputational profile. Specifically, in the SD example they present 
a similar value of chi−PSTH and maxPSTH , while IAF e IAF_ps models behave differently, even from each other. As 
for the artifactual effects deriving from the variation of time sampling, FRd0.01→0.1 identifies that IAF presents 
a significant decrease of average firing rate when switching simulation resolution from dt = 0.01 to dt = 0.1 in 
the SD regime. Expectedly, the IAF_ps proved to be robust to this phenomenon, since it is specialized to perform 
integration with continuous spike times in discrete-time simulations19; although for the AEIF this phenomenon 

Table 2.   Behavioral measures obtained with HA, SD, RD regimes. Both mean and standard deviation are 
reported for maxPSTH and chi−PSTH . The index FRd was not computed for the LIFL model since this simulation 
did not involve time steps; for the other models, only values ≥ 2 have been considered relevant and then 
reported (n.r. instead).

Network configuration Neuron model maxPSTH , dt = 0.01 chi−PSTH , dt = 0.01 FRd0.01→0.1

HA (F.R.≈ 10 Hz)

AEIF 66.99 (1.76) 0 (0) n.r.

IAF 65.34 (2.66) 0 (0) n.r.

IAF_ps 63.32 (0.72) 0 (0) n.r.

LIFL 68.11 (1.94) 0 (0) –

SD (F.R.≈ 1 Hz)

AEIF 160.49 (95.15) 0.88 (0.99) n.r.

IAF 243.31 (70.4) 6.00 (2.56) 13.53%

IAF_ps 97.25(81.98) 0.25 (0.7) n.r.

LIFL 171.07 (114) 1.12 (0.81) –

RD (F.R.≈ 50 Hz)

AEIF 2925.5 (61.21) 48.85 (0.73) n.r.

IAF 2956.48 (27.3) 49.4 (0.48) n.r.

IAF_ps 2803.65 (11.255) 49.8 (0.51) n.r.

LIFL 3020 (25.50) 50 (0.41) –
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was not substantial for the considered regimes and time resolutions, a complementary set of simulations con-
cerning the same regime highlighted discrete spike losses at different resolution ratios ( FRd0.001→0.01 = 2.02 ; 
FRd0.001→1 = 9.03 ). Considering that in FNS the events are integrated in a continuous-time domain, this parasitic 
effect is not possible for the LIFL (for this reason the related resolution reduction tests are not contemplated 
by the table). For completeness, considering each combination of network configuration/neuron model we 
compared the values of maxPSTH and chi−PSTH related to the simulation sets performed with the two different 
resolutions, without observing substantial differences.

In conclusion, regarding the three explored regimes, AIF_ps is robust to loss of spikes compared to AIF, but 
neither supports latency. The AEIF model is the most similar to the LIFL. The latter has proven versatile as it 
supports latency like the AEIF, and the event-driven implementation makes it devoid of parasitic effects related 
to time-resolution. Considering also the performance benefits showed in the case of interconnected nodes (espe-
cially the reduced memory consumption in benchmark A; both memory consumption and simulation times in 
benchmark B), LIFL can be advantageously used in different simulation scenarios.

Discussion
Dynamic models of brain networks can help us to understand the fundamental mechanisms that underpin neural 
processes, and to relate these processes to neural data. Among the different existing approaches, SNN-based 
brain simulators allow the user to perform a structure-function mapping at the level of single neurons/synapses, 
offering a multi-level perspective of brain dynamics.

Here we present FNS, the first neural simulation framework based on the LIFL model, which combines spik-
ing/synaptic neural modelling with the event-driven simulation technique, able to support real neuroanatomical 
schemes. FNS allows us to generate models with heterogeneous regions and fibre tracts (initializable on the basis 
of real structural data), and synaptic plasticity; in addition, it enables the introduction of various types of stimuli 
and the extraction of outputs at different network stages, depending on the kind of activity to be reproduced.

FNS is not an alternative to today’s detailed simulation softwares, but rather a compact and efficient tool to 
simulate brain networks, constrained by real structural large-scale brain connectivity schemes with the nodes’ 
intrinsic dynamics originated by spiking neuron-based populations. The framework is based on previous studies 
which emphasize two basic findings:

•	 the importance of long-range delays in sustaining interaction patterns between areas of resting-state networks. 
Specifically, the inclusion of DTI-derived long-range connectivity data is able to contribute notably in shaping 
the network dynamics, resulting in an increase of the fit among the model and the real case3, 4.

•	 the importance of local dynamics in shaping large-scale functional brain states7 and, in particular, the need 
to have spiking models to relate specific neuronal features to brain network dynamics. FNS allows the user to 
easily inspect the contribution of some neural features on the network operation, investigating their impact 
on the spectral properties and implication in (within- and cross- frequency) functional coupling. Among 
these, it is important to mention the latency, which has been shown to have important implications at the 
level of neuronal assembly, fostering higher frequencies25, and conferring robustness to noise41, as well as 
desynchronizing14,23 and stabilization properties29 .

FNS would provide the scientific community with a tool to easy understand how these two aspects are able to 
influence the signal characteristics and the functional connectivity profile in networks of interconnected neuron 
populations.

FNS gives the possibility to both create custom networks, and import large-scale connectivity structures 
directly from DTI-derived matrices; through two output files (representing spiking and postsynaptic activity) 
the resulting simulated signal can be extracted to evaluate the matching with the related real functional data.

Network models built on the anatomical structure enable use-cases of practical clinical interest, e.g., to 
interpret the effect of changes in the large scale network structure associated to neurodegenerative diseases42? . 
Importantly, FNS allows the study of long-term behavior of neural networks, a task that is computationally 
challenging even for a small number of nodes35. In facts, on one hand, the simulation has to evolve over minutes 
of biological time to capture the timescales of long-term effects such as that of STDP; on the other hand, the 
simulation has to be sufficiently precise, to capture modifications of weights and internal states as well as time 
differences that characterize that processes. In FNS, the event-driven technique guarantees high temporal preci-
sion, and the implemented memory dump strategy ensures that the simulated biological time does not reflect 
in an increase in the RAM usage. It gives the possibility to perform long and precise LIFL-based simulations, 
even with limited hardware setup. As for the “Achille’s heels” of FNS, one of these could be represented by the 
minimum inter-node delay of the anatomical model: due to the parallelization strategy implemented, the more 
the minimum internode delay approaches zero, the more the synchronization steps will intensify, resulting in a 
worsening of the FNS performance. Another critical aspect, inherited by the event-driven method, is represented 
by simulations with heavy interaction between the coupled network nodes, since the high number of events could 
slow down the execution16. Nevertheless, the usage scenario of FNS makes these criticalities not an obstacle: 
connectome-like structures usually foresee delays between populations large enough not to pose a threat to FNS 
execution (except for fine-grained parcellations, less used in this kind of studies). With regards to the second 
point, heavy interaction is usually an indication of a bad design of the network, since a weak coupling between 
the brain network regions is normally supposed9,43.

With regards to the tests we carried out, and with reference to the neuron models that have been tested, FNS 
has proven to be versatile and advantageous both in terms of memory and simulation times. In benchmarks A 
and B, FNS reported even better performances than a model without latency and worse precision implemented 
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in NEST. Moreover, it has to be noted that the possibility to manually set low-level simulation parameters (i.e., 
serialization buffer and Java heap size, see Appendix E) gives us the the possibility to adjust the balance between 
memory usage and simulation time on the basis of the available computing resources.

Among the future developments of FNS, we envisage to develop an user-friendly interface and to improve 
the compatibility with existent functional-connectivity estimation tools (e.g., Hermes44). Then, we have in mind 
to enrich FNS with new neurocomputational features, both for neurons (e.g., mixed mode and adaptation) and 
synapses. Regarding the latter, diverse models have been developed to approximate experimentally observed 
conductance changes (e.g., alpha function45,46 and difference of two exponentials47,48), which unfortunately are 
not suitable for event-driven implementations, at least in their original form. A possible strategy for our scenario 
is to consider the effect of non-instantaneous rise of conductances directly in the neuron’s inner state variable 
S, using piecewise-defined functions. Such mechanism would introduce a rise phase (which takes in account 
the non-delta behaviour of the synapse), combined with a shift of the starting point of the following phase (i.e., 
underthreshold decay, or depolarization if the spiking threshold is reached), allowing even to set the time con-
stants of rise and decay independently (a key feature for modeling certain types of synapses48), and/or to use 
different functions (i.e., exponential-exponential, or combined linear-exponential). We show in Fig. 3 a scheme 
of this mechanism, which we call rise and decay intervals (RDI) and in Appendix G the modifications to be done 
to the current algorithm to embed this feature. The RDI approach is easily implementable in event-driven and 
would introduce a negligible computational cost because the rise function will be computed only if new con-
tributions actually arrive during the rising phase, otherwise the computation will remain basically unchanged.

Finally, we plan to develop an alternative version of the software characterized by a lower precision of the 
internal variables, to achieve a further increase in performance (at the expenses of a little amount of introduced 
error). The current version of FNS is written in Java(R) . The software is open-source and published under a free 
license, permitting modification and redistribution under the terms of the GNU General Public License v.3. 
The reader can find the software package and technical documentation on the FNS website http://​www.​fnsne​
urals​imula​tor.​org.

Methods
From neurobiology to mathematical models.  Recent works highlight that bioplausibility and diver-
sity characterize the human brain at all scales, and are central aspects to be taken into account to obtain realistic 
dynamics in brain models, both at intra-region49,50 and among-region8,51–53 levels.

In this section we present mathematical models used in FNS, aimed at guaranteeing the possibility to take 
into account such aspects while at the same time focusing on ease of use.

LIFL neuron model.  Altough the classic LIF model is very fast to simulate, it has been regarded as unrealisti-
cally simple, thereby incapable of reproducing the dynamics exhibited by cortical neurons54. FNS is based on the 
LIFL, that besides being computationally simple it is also able to support a greater number of neuronal features 
than the LIF.

A brief introduction to the spike latency neuro‑computational feature.   The spike latency is the delay exhibited 
by a neuron in response to a depolarization. It prevents the immediate spike generation and depends on the 
strength of the input signal28. Considering pulses as input, it is the membrane potential-dependent delay time 
between the overcoming of the “threshold” potential and the actual spike generation. It is an important neuro-
computational feature because it extends the neuron computation capabilities over the “threshold”, giving rise to 
a range of new behaviors. Spike latency is ubiquitous in the nervous system, including the auditory, visual, and 
somatosensory systems55,56.

From a computational point of view it provides a spike-timing mechanism to encode the strength of the 
input41 conferring many coding/decoding capabilities to the network24,57,58, whereas, from a statistical point of 
view, it results in a desynchronizing effect14,23, fostering the emergence of higher frequencies25 and providing 
robustness to noise to the network41. Interestingly, in the presence of plasticity, spike latency has proven to play 
an important role in stabilizing and extending polychronous groups, even able to explain unusual results in the 

Figure 3.   Time course of the neuron’s internal state reached with a single input spike at t = t0 . The alpha shape 
(red) is compared with (a) delta synapses: exponential and linear type (blue and light blue respectively); (b) 
RDI synapses: exp-exp and lin-lin type (green and light green, respectively). In (c) we show the internal state 
evolution in case of threshold crossing considering RDI synapses. The rise and decay phases of RDI approach 
are indicated through cyan and pink highlights, respectively.

http://www.fnsneuralsimulator.org
http://www.fnsneuralsimulator.org
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dynamic of the weights29. Taken together, these findings point out that its inclusion in neuronal models is crucial 
if the goal is to investigate biologically plausible behaviors emerging from neuron assemblies. Spike latency has 
already been introduced in some variants of the LIF, as QIF59 and EIF60. In LIFL, spike latency is embedded with 
a mechanism extracted from the realistic HH model14, both simple and suitable to the event-driven simulation 
strategy. LIFL is characterized by a simple and modular mathematical form, so that its neurocomputational 
features, as the spike latency, can be independently switched on/off, allowing to study their effect on the network 
dynamics in a single or combined way.

LIFL operation.   The LIFL neuron model is characterized by a real non-negative quantity S (the inner state, 
corresponding to the membrane potential of the biological neuron), which ranges from 0 (corresponding to the 
resting potential of the biological neuron) to Smax (maximum state), a value much greater than one, at most ∞ . 
Simple Dirac delta functions (representing the action potentials) are supposed to be exchanged between net-
work’s neurons, in form of pulse trains. The model is able to operate in two different modes: passive mode when 
S < Sth , and active mode when S ≥ Sth , where Sth is the state threshold, a value slightly greater than 1 which cor-
responds to the threshold potential of the biological neuron. In passive mode, S is affected by a decay, whereas 
the active mode is characterized by a spontaneous growth of S. Assuming that neuron nj (i.e., the post-synaptic 
neuron) is receiving a pulse from neuron ni (i.e., the pre-synaptic neuron), its inner state is updated through one 
of the following equations, depending on whether nj was in passive or in active mode, respectively:

Sp j represents the post-synaptic neuron’s previous state, i.e., the inner state immediately before the new pulse 
arrives. Ai represents the pre-synaptic amplitude, which is related to the pre-synaptic neuron, and can be positive 
or negative depending on whether the neuron sends excitatory or inhibitory connections, respectively.

Wi,j represents the post-synaptic weight (corresponding to the conductance of the real case); if this quantity 
is equal to 0, the related connection is not present. The product Ai ·Wi,j globally represents the amplitude of 
the pulse arriving to the post-synaptic neuron nj (i.e., the synaptic pulse) from the pre-synaptic neuron ni . In 
this paper, w or ω will be used instead of W, depending on whether the connection is intra- or inter- node, 
respectively.

Tl (the leakage term) takes into account the behaviour of S during two consecutive input pulses in passive 
mode. The user is allowed to select among linear or exponential underthreshold decays characterized by the decay 
parameter, as explained in the Appendix A. For each node, such parameter can be set with different values for 
excitatory and inhibitory connections (i.e., Dexc and Dinh ) in order to model different synapse types.

Tr (the rise term) takes into account the overthreshold growth acting upon S during two consecutive input 
pulses in active mode. Specifically, once the neuron’s inner state crosses the threshold, the neuron is ready to 
produce a spike. The emission is not instantaneous, but it occurs after a continuous-time delay corresponding 
to the spike latency of the biological neuron, that we call time-to-fire and indicate with tf  in our model. This 
quantity can be affected by further inputs, making the neuron sensitive to changes in the network spiking activity 
for a certain time window, until the actual spike generation. S and tf  are related through the following bijective 
relationship, called the firing equation:

where a, b ≥ 0 . Such rectangular hyperbola has been obtained through the simulation of a membrane patch stim-
ulated by brief current pulses (i.e., 0.01 ms of duration), solving the HH equations61 in NEURON environment62, 
as described in14. Then, if the inner state of a neuron is known, the related tf  can be exactly calculated by means 
of Eq. (2). As introduced in , this nonlinear trend has been observed in most cortical neurons28; similar behav-
iors have been also found by other authors, such as55 and56, using DC inputs. Conversely to previous versions 
of LIFL17,30, constants a and b have been introduced in order to make the model able to encompass the latency 
curves of a greater number of neuron types; in particular, a allows us to distance/approach the hyperbola to its 
centre, while b allows us to define a Smax , conferring a bio-physical meaning to the inner state in active mode 
(note that if b = 0 , then Smax = ∞ ; nevertheless, the neuron will continue to show the spike latency feature).

The Sth can be equivalently written as:

where c is a positive value called threshold constant, that fixes a bound for the maximum tf  . According to Eq. (3), 
when S = Sth , the tf  is maximum, and equal to:

where tf ,max represents the upper bound of the tf  . As mentioned above, the latter consideration is crucial in 
order to have a finite maximum spike latency as in biological neurons27. From the last equation, we obtain the 
restriction c < a/b.

As described in Appendix B, using Eq. (2), it is possible to obtain Tr , as follows:

(1a)Sj = Spj + Ai ·Wi,j − Tl , for 0 ≤ Spj < Sth

(1b)Sj = Spj + Ai ·Wi,j + Tr , for Sth ≤ Spj < Smax

(2)tf =
a

(S − 1)
− b

(3)Sth = 1+ c

(4)tf ,max = a/c − b
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in which Sp represents the previous state, whereas �t is the temporal distance between two consecutive incom-
ing pre-synaptic spikes. The Eq. (5) allows us to determine the inner state of a neuron at the time that it receives 
further inputs during the tf  time window. In Fig. 4 are shown both the operation of LIFL and the effect of Eq. (5).

Assuming that an input spike leads the inner state overthreshold at time tA , the arrival of a contribution 
during the latency time (i.e., at time tB ) results in a new tf  . Excitatory (inhibitory) inputs increase (decrease) the 
inner state of a post-synaptic neuron. Therefore, when a neuron is in active mode, excitatory (inhibitory) inputs 
decrease (increase) the related tf  (post-trigger anticipation/postponement respectively). If the inhibitory effect is 
as strong as to pull the post-synaptic neuron state under Sth , its tf  will be suppressed and its state will come back 
to the passive mode (post-trigger inhibition)14,17.

(5)Tr =
(Sp − 1)2�t

a− (Sp − 1)�t

Figure 4.   Neural summation and spike generation in a LIFL neuron. (a) Input/output process scheme, with 
firing equation curve ( a = 1 , b = 0 , c = 0

+). (b) Temporal diagram of LIFL operation (basic configuration). 
Excitatory (inhibitory) inputs cause an instantaneous increase (decrease) of the inner state. When S exceeds Sth 
the neuron is ready to spike; due to the latency effect, the spike generation is not instantaneous but it occurs after 
tf  . (c) Effect of the arrival of further inputs when the neuron is overthreshold. An excitatory synaptic pulse is 
able to (left) anticipate the spike generation (post-trigger anticipation); an inhibitory synaptic pulse is able to 
(center) delay the spike generation (post-trigger postponement), or (right) to cancel the spike generation 
(post-trigger inhibition). The state evolution in the simple case of no further inputs is reported in grey.
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For a given neuron j in active mode, the arrival of new input contributions implies tf  updating. Once the tf  is 
reached, the output spike is generated and the inner state is reset. Note that if incoming spikes are such as to bring 
S < 0 , S is automatically set to 0. Differently, if incoming spikes bring S > Smax , a spike is immediately generated. 
We emphasize the fact that spike latency enables a mechanism to encode neural information, supported from all 
the most plausible models. Thus, there is lack of information in models that do not exhibit this relevant property.

Hitherto we have discussed a basic configuration of LIFL, which defines an intrinsically class 1 excitable, 
integrator neuron, supporting tonic spiking and spike latency. Nevertheless, thanks to the simplicity of its math-
ematical model, it can be enriched with some other neuro-computational features to reproduce different kinds 
of cortical neurons28 by introducing minimal modifications to the model equations, or by adding extrinsic prop-
erties at the programming level. This is the case of refractory period for which the neuron becomes insensitive, 
for a period tarp , to further incoming spikes after the spike generation, and tonic bursting for which the neuron 
produces a train of Nb spikes spaced by an inter-burst interval IBI, instead of a single one.

In addition to the spike latency, emerging from the neuron’s equations, in the next section another kind of 
delay will be introduced, to characterize the long-range connections between neurons belonging to different 
groups.

Connection between 2 neurons.  In FNS the network nodes are groups of spiking neurons to represent brain 
regions. Neurons of the same node interact instantaneously, whereas a settable time delay ( ≥ 0 ) is present 
between neurons of different nodes to reflect the remoteness between the regions to which they pertain.

A scheme of inter-node neuron connection ( ei,j ) is illustrated in Fig. 5, where �i,j represents the axonal length 
block and ωi,j represents the post-synaptic weight block. Such two link elements (belonging to a directed connec-
tion) are able to introduce delay and amplification/attenuation of the passing pulse, respectively. As in3, 4 a global 
propagation speed v is set for FNS simulations, so that inter-node connection delays are automatically defined 
from the axonal lengths, as τi,j = �i,j/v . Connection delays are important since they allow to take into account 
the three-dimensionality (i.e., spatial embeddedness) of the real anatomical brain networks.

For the reasons mentioned before, conversely to the inter-node connection (represented as Ei,j in Fig. 5), the 
intra-node connection (represented as ej,k in the same figure) does not provide the axonal length block (although 
synaptic weight block continues to be defined).

Figure 5.   Neuron connection model and pulse transfer. (a) Compact representation and (b) logical block 
representation, where the black dot represents synaptic junctions. (c) Two nodes connected by an edge. While 
an intra-node connection is characterized by its weight, an inter-node connection is defined by weight and 
length; an edge is described by number of axons and related distribution of weights and lengths. (d) Inter-node 
diagram considering an excitatory neuron: � produces a translation of the output pulse along time axis, while ω 
acts on the pulse amplitude. Output pulses represent the spiking activity, whereas synaptic pulses represent the 
synaptic currents.
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For biological and mathematical reasons, it is desirable to keep the synaptic weights under a certain value, 
Wmax , a global parameter of the model.

In the following sections we call firing event the pulse generation by a pre-synaptic neuron, and burning event 
the pulse delivery to a post-synaptic neuron.

From brain regions to graph nodes.  FNS allows us to define regions constituted by one or more nodes where 
each node consists of a neuron group with specific properties. In order to reproduce heterogeneous nodes, a 
Watts-Strogatz based generative procedure is implemented as detailed below, allowing the generation of net-
works with structure properties of real neuron populations.

The implemented procedure allows us to model intra- and inter-node diversity: number of neurons and con-
nectivity, percentage of inhibitory neurons, distribution of weights and type of neuron; in addition, it is possible 
to represent a region with more than one node to model intra-region neuronal pools of different connectivity 
and neuron types. In the extreme case, a group can be composed of a single neuron, e.g., for reproducing small 
and deterministic motifs. In the following sections we illustrate the procedure used by FNS for the generation 
of network nodes and the structure of intra- and inter- node connections.

Watts‑Strogatz‑based node generation procedure.   The original Watts-Strogatz procedure is able to generate 
different types of complex networks (from regular to random), including networks with small-world properties 
(i.e., networks that present large clustering coefficient and small average path length), that has been demonstrated 
to reasonably approximate a patch of cortex with its neighborhood (i.e., coupled both to nearby cells within 
50−100 µm , and to some others placed millimeters away63). In FNS the original Watts-Strogatz procedure is 
adapted to generate a group including both inhibitory and excitatory, directed, connections9. Given the integer 
n (i.e., number of neurons), k (i.e., mean degree), p (i.e., rewiring probability), and R (i.e., excitatory ratio), with 
0 ≤ p ≤ 1 and n ≫ k ≫ ln(n) ≫ 1 , the model generates a directed graph with n vertices and nk single connec-
tions in the following way:

•	 a regular ring lattice of n spiking neurons is created, of which R · n are able to send excitatory connections 
and the remaining (1− R) · n are able to send inhibitory connections;

•	 for each neuron an outgoing connection to the closest k neurons is generated (k/2 connections for each side, 
with k ≤ n− 1 , integer and even);

•	 for each neuron i, every link ei,j with i < j , is rewired with probability p; rewiring is done by exchanging ei,j 
and ei,m where m is chosen with uniform probability from all possible (excitatory or inhibitory) neurons 
that avoid self-loops ( m  = i ) and link duplication. This process is repeated n times, each one considering a 
different neuron.

Note that the parameter p allows to interpolate between a regular lattice ( p = 0 ) and a random graph ( p = 1 ): 
as p increases, the graph becomes increasingly disordered. For intermediate values of p the network presents 
small-world properties. The parameters n, k, p allow the user to customize the network nodes on the basis of 
the real anatomy. For example, in the case of simulation of biological networks n can be chosen in accord to the 
volume of the region that is intended to be represented (estimated from a specific subject through volumetry, 
or extracted from existing atlases).

Characterization of intra‑node connections.   Once connections have been established, weights have to be 
assigned. Several authors have addressed this problem, setting intra-node weights in different manners. Depend-
ing on the specific study, weights have been chosen to have the same, static value2, or characterized by a specific 
distribution43, or varying in a certain range by means of plasticity64. In order to encompass the most of these 
possibilities, in FNS a set of Gaussian distributed values can be defined by the user for the initialization of the 
intra-node post-synaptic weights, for each of the node.

From fibre tracts to graph edges.  In FSN an edge represents a monodirectional set of long-range axons that links 
a node to another. In the brain, inter-region connections are often characterized by non negligible delays, which 
are determined by axon length, diameter and myelination degree. FNS allows the user to evaluate the impact of 
different edge features on the functional properties of the network.

Characterization of inter‑node connections.   FNS allows the user to set the number of connections Ne and to 
specify distribution of weights and lengths for each edge of the network. The distribution of edge weights follows 
a Gaussian function43, characterized by the parameters µω and σω . Differently, a gamma distribution is imple-
mented for the edge lengths, characterized by mean parameter µ� and shape parameter α� , since there is prob-
ably not a unique prototypical shape for edge delays, as discussed in previous studies8. Indeed, this distribution 
allows the user to explore different shapes, to investigate the impact of different choices on the network activity, 
to mimic pathological states as the effect of structural inhomogeneity65, or spatially-selective conduction speed 
decrease due to demyelination. FNS supports STDP a well-known type of plasticity mechanism, believed to 
underlie learning and information storage in the brain, and refine neuronal circuits during brain development66. 
Importantly, studies have shown that STDP varies widely across synapse types and brain regions67. Accordingly, 
in FNS it is possible to specify a different set of STDP parameters for each node, or to apply STDP uniquely 
for certain nodes. The implementation aspects of STDP are detailed in Appendix C. Finally, for each edge, the 
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user can specify the type of neurons involved as senders and receivers (i.e., excitatory or inhibitory or mixed, to 
excitatory or inhibitory or mixed), by means of the parameter tE.

Input stimuli.  Several types of stimuli can be of interest in brain simulation studies. Of these, two prototypical 
types of stimuli are:

•	 the noisy fluctuations tipically observed in vivo, which can be modeled by uncorrelated Poisson-distributed 
spike trains3, 43, 68;

•	 the DC current used by neurophysiologists to test some neuron features8,28.

In addition, in many simulation scenarios the possibility of giving arbitrary spike streams (e.g., sequences that 
mimic sensory-like processed data) can be of interest, in order to test the response of specific brain subnetworks.

In light of these observations, in FNS it is possible to stimulate brain nodes with three different types of inputs: 
Poisson-distributed spike train, constant spike train, and arbitrary spike stream. The user is allowed to stimulate all 
or only a part of the network nodes, choosing for each kind of input a customizable number of fictive excitatory 
external neurons, and the characteristics of the required stimuli. An external neuron is permanently associated 
to one or more neuron of the related node.

Poisson‑distributed spike train.   This option provides the injection of Poisson-like spike trains, obtained by an 
exponential distribution, in which the underlying instantaneous firing rate rP is constant over time.

In FNS, a user-defined number of fictive external neurons nextP,k is set for each stimulated node Nk . By defin-
ing a tstartP,k and a tendP,k for the external stimuli, each external neuron can send spikes in a discrete number of 
instants (tstartP,k − tendP,k)/δtP . The target neurons receive pulses of amplitude AP,k.

Pulses are injected from each external neuron to the neurons belonging to a set of nodes defined by the user, 
by specifying the following set of parameters for each chosen node Nk : nextP,k , tstartP,k , tendP,k , rP,k , δtP,k and AP,k.

Constant spike train.   This option provides the injection of emulated DC current stimulation. Note that since 
we simulate the network by means of an event-driven approach, the DC input is not continuous but it is con-
stantly sampled with an adequately small time step, called interspike interval and indicated with int c.

In FNS, a user-defined number of fictive external neurons next c,k is set for each stimulated node Nk . Each 
external neuron can send spikes from time tstart c,k to tend c,k , with amplitude Ac,k . Such kind of input is injected 
from each external neuron to the neurons belonging to a set of nodes defined by the user, by specifying the fol-
lowing set of parameters for each chosen node Nk : next c,k,tstart c,k , tend c,k , int c,k and Ac,k.

Arbitrary spike stream.   Arbitrary spike streams can be injected to neurons belonging to a set of nodes defined 
by the user by specifying the following set of parameters for each chosen node Nk : the spike amplitude Ass,k , 
and a couple ( nss,k , tss,k ) for each event to be introduced (i.e., external source number and related spike timing, 
respectively).

Output signals.  Depending on the type of contributions we are considering at the network level, i.e., output 
pulses (corresponding to action potentials) or synaptic pulses (corresponding to post-synaptic currents), the same 
network activity gives rise to different signals, due to the presence of connection delays and weights.

In particular, action potentials coincide with the activity emerging from firing events, because they take place 
before the axon, thus they are spatially localized at the emitter node; whereas post-synaptic currents coincide 
with the post-synaptic activity, because they take place downstream the axon, thus they are spatially localized 
to the receiver node, and are affected by the shifting effect introduced by (heterogeneous) fibre tract’s delays and 
post-synaptic weights.

Action potentials are of interest for some studies8, whereas post-synaptic currents can be useful for some 
others (see3,69 for LFP and MEG signal reconstruction).

In order to give the user the possibility to recostruct such different types of signals, output module of FNS 
allows to store both pulse emission and arrival times ( tF and tB ), transmitter and receiver neurons ( nF and nB ) 
and related nodes ( NF and NB ), as well as amplitude weights ( Wev ) involved in each event occurring during the 
simulation interval, for some nodes indicated by the user before the simulation starts.

Structure of the simulation framework and implementation strategies.  On the basis of the mod-
elling introduced, here we describe the framework structure and the tools it offers to the user for implementing 
a custom network, stimulating it, and obtaining the outputs of interest.

The framework is articulated in three main modules: Generator module, Neuroanatomical module and Output 
module (see Fig. 6). In order to design a simulation, the user interacts with such modules by means of proper 
configuration files, which are defined in Table 3.

FNS allows the user to both simulate synthetic network motifs and reproduce real biological networks. A 
scheme of the simulation steps needed to obtain simulated electrophysiology activity is shown in Fig. 7.

Generator module.  This module allows the user to inject the desired input to some selected nodes. Poisson spike 
train, constant spike train and arbitrary spike stream can be combined to send more than a kind of input to the 
same node simultaneously.
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Module Components Name

Generator module

nextP Number of Poisson spike train external neurons

tstartP Poisson input onset

tendP Poisson input offset

rP Firing rate

δtP Delta

AP Poisson input amplitude

next c Number of constant spike train external neurons

tstart c Constant input onset

tend c Constant input offset

int c Interspike interval

Ac Cnstant input amplitude

tss1, tss2, ... Input stream spike timings

nss1, nss2, ... Related neuron numbers

Ass Stream input amplitude

Neuroanatomical node module

n Number of neurons

p Rewiring probability

k Mean degree

R Excitatory ratio

Aexc Exc. pre-synaptic amplitude

Ainh Inh. pre-synaptic amplitude

µw ,exc Intra-node exc. post-synaptic weight distr.mean (Gaussian)

µw ,inh Intra-node inh. post-synaptic weight distr.mean (Gaussian)

σw ,exc Intra-node exc. post-synaptic weight distr.st.dev. (Gaussian)

σw ,inh Intra-node inh. post-synaptic weight distr.st.dev. (Gaussian)

a Latency curve center distance

b Latency curve x-axis intersection

c Threshold constant

Dexc Decay parameter (excitatory)

Dinh Decay parameter (inhibitory)

tarp Absolute refractory period

Nb Burst cardinality

IBI Inter-burst interval

Ne Number of connections (edge cardinality)

µω Inter-node post-synaptic weight distr.mean (Gaussian)

σω Inter-node post-synaptic weight distr.st.dev. (Gaussian)

µ� Inter-node length distr.mean (gamma)

α� Inter-node length distr.shape (gamma)

tE Inter-node sender-receiver type

τ+ LTP time constant

τ− LTD time constant

η+ LTP learning constant

η− LTD learning constant

TO STDP timeout constant

Wmax Maximum weight

v Global conduction speed

tstop Simulation stop time

Sb Serialization buffer

Nm Neuron model

Ut Underthreshold type

Output module

NOI1,NOI2, ... List of NOIs

nF Pre-synaptic neuron number (if firing event)

NF Pre-synaptic node number (if firing event)

tF Firing event time (if firing event)

nB Post-synaptic neuron number (if burning event)

NB Post-synaptic node number (if burning event)

tB Pulse arrival time (if burning event)

WB Synaptic weight (if burning event)
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Neuroanatomical module.  This module allows the user to define the network model: local dynamics, structural 
parameters, plasticity constants and global parameters. Each node is fully characterized by its local dynamics 
parameters, consisting of topology parameters, intra-node connection parameters and neuron parameters. From 
the definition of node’s weight distribution, the simulator computes all the single intra-node synaptic weights 
and stores them in proper data structures (see Appendix D).

Each edge is fully characterized by the inter-node connectivity parameters, consisting of edge cardinality, inter-
node weight distribution, length distribution parameters, and sender-receiver type. From the definition of such 
parameters the simulator generates the inter-node connections, computes all the related lengths and weights 
and stores them in proper data structures (see Appendix D). The STDP parameters define the STDP to act on 
a specific node.

As for the global parameters of the system, tstop specifies the neural activity time we want to simulate in bio-
logical time units (ms), Nm is a binary variable that allows us to switch among LIFL and LIFL neuron models, and 
Ut is a binary variable that indicates the underthreshold behaviour to be implemented. The remaining parameters 
are described along this document.

Output module.  This module allows the user to choose regions and type of contributions to be recorded during 
the simulation. Before the simulation starts, the user can specify the list of nodes for which to store all simulation 
data (i.e., the nodes of interests (NOIs)). Data of all firing and burning events in which such NOIs are implicated 
are collected in a differentiated manner and made available to the user through the two files firing.CSV and 
burning.CSV. Such files report exhaustive information on firing events and burning events, for the extraction of 

Table 3.   Definition of the system parameters.

Figure 6.   FNS framework overall structure. The reader can find the meaning of the abbreviations in Table 3.
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simulated electrophysiological signal (firing activity in the first case and postsynaptic activity in the second case, 
respectively, see Fig. 7).

Ethics approval and consent to participate.  The DTI data used for this study comes from a study 
approved by the ethics committee of hospital Clinico San Carlos, Madrid.

Data availability
Please refer to the website http://​www.​fnsne​urals​imula​tor.​org or the GitHub repository http://​github.​com/​fnsne​
urals​imula​tor for the download of the simulator. Data concerning the benchmarks is available at the following 
URL: http://​github.​com/​fnsne​urals​imula​tor/​FNS-​bench​marks.
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