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ABSTRACT: Glioblastoma (GBM) is the most devastating and frequent
type of primary brain tumor with high morbidity and mortality. Despite the
use of surgical resection followed by radio- and chemotherapy as standard
therapy, the progression of GBM remains dismal with a median overall
survival of <15 months. GBM embodies a populace of cancer stem cells
(GSCs) that is associated with tumor initiation, invasion, therapeutic
resistance, and post-treatment reoccurrence. However, understanding the
potential mechanisms of stemness and their candidate biomarkers remains
limited. Hence in this investigation, we aimed to illuminate potential
candidate hub genes and key pathways associated with the pathogenesis of
GSC in the development of GBM. The integrated analysis discovered
differentially expressed genes (DEGs) between the brain cancer tissues
(GBM and GSC) and normal brain tissues. Multiple approaches, including
gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were employed to
functionally annotate the DEGs and visualize them through the R program. The significant hub genes were identified through the
protein−protein interaction network, Venn diagram analysis, and survival analysis. We observed that the upregulated DEGs were
prominently involved in the ECM−receptor interaction pathway. The downregulated genes were mainly associated with the axon
guidance pathway. Five significant hub genes (CTNNB1, ITGB1, TNC, EGFR, and SHOX2) were screened out through multiple
analyses. GO and KEGG analyses of hub genes uncovered that these genes were primarily enriched in disease-associated pathways
such as the inhibition of apoptosis and the DNA damage repair mechanism, activation of the cell cycle, EMT (epithelial−
mesenchymal transition), hormone AR (androgen receptor), hormone ER (estrogen receptor), PI3K/AKT (phosphatidylinositol 3-
kinase and AKT), RTK (receptor tyrosine kinase), and TSC/mTOR (tuberous sclerosis complex and mammalian target of
rapamycin). Consequently, the epigenetic regulatory network disclosed that hub genes played a vital role in the progression of GBM.
Finally, candidate drugs were predicted that can be used as possible drugs to treat GBM patients. Overall, our investigation offered
five hub genes (CTNNB1, ITGB1, TNC, EGFR, and SHOX2) that could be used as precise diagnostic and prognostic candidate
biomarkers of GBM and might be used as personalized therapeutic targets to obstruct gliomagenesis.

■ INTRODUCTION

Glioblastoma (GBM) is the most devastating and frequent
type of primary brain tumor with high morbidity and mortality.
Despite treatment regimens that include surgical resection with
radiation and concomitant adjuvant chemotherapy, the median
survival time for patients with GBM is 12−15 months, with
survival rates of 25% and 10% after 2 and 5 years,
respectively.1−4 Accumulating evidence in recent years shows
that GBM consists of the subpopulation of cells displaying
various stem cell-like properties including long-term self-
renewal with the capacity to generate phenotypically diverse
hierarchical neoplastic progeny and stromal cells referred as
glioma stem cells (GSCs).5 GSCs also can recapitulate the
essential phenotypes of the original tumor, such as tumor cell
heterogeneity, invasiveness, and vascularity promoting resist-
ance to chemotherapy and radiotherapy.6,7 Thus, neoplastic

cells displaying stem-like phenotypes are currently believed to
be the main barriers for successful treatment of GBM that
associated inexplicably in tumor growth and recurrence after
therapy.8−10

The biggest challenge in glioma is to monitor the diagnosis
and prognosis process. The typical way of disease monitoring
in patients is radiographic utilizing computed tomography,
magnetic resonance imaging, or positron emission tomog-
raphy, which is entirely dependent on the experience of the
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neurosurgeon.11 Unfortunately, the detection of anatomic
changes in the face of progressing or regressing disease is often
nonspecific and slow to change by these imaging modalities. As
a result, additional surgery is required for definitive tissue
diagnosis, or inappropriately waiting for radiographic findings
to change as the disease progresses leads to more patient
deaths.12,13 Thus, there is a dire need for more sensitive and
specific tumor biomarkers for the early detection of gliomas.
On the other hand, literature surveys demonstrate that gene
expression profiling affords an unbiased technique to classify
tumors and its correlation is more satisfactory than tumor
histology, with prognosis.14,15 Various specific tumor-related
biomarkers have been found to better understand the
molecular pathogenesis of GBM due to the development of
next-generation sequencing technology.16,17 Some molecular
signatures including IDH mutation (favorable prognoses,
secondary GBM),18 copy number variations of chromosomes
9 and 10 and of the telomerase reverse transcriptase promoter
gene (TERTp), B-Raf gene (BRAF) and H3F3A mutation,
O6-methylguanine-DNA methyltransferase (MGMT) pro-
mote r me thy l a t i on , 1 9 and 1p/19q co -de l e t i on
(chemosensitivity)11 have been clinically used for the
detection of gliomas.19,20 However, the molecular biomarkers
were limited in specific classification and precise outcomes in
the prediction of GBM.11,21 Therefore, there is an urgent need
to identify novel molecular biomarkers and new therapeutic
strategies to improve the diagnostics and prognosis of GBM
and elucidate the mechanisms of GBM or increase overall
patient survival.
Currently, many chemotherapeutic molecules have been

approved by FDA as a standard of care (SOC) for the
treatment of GBM.22 However, only five drugs and one device
including lomustine (CCNU), carmustine (BCNU), temozo-
lomide (TMZ), bevacizumab (BVZ), carmustine wafer im-
plants (BCNU wafers), and optune device (TTFields) are
mostly used to treat glioma and its symptoms. In comparison
to other SOC, only TTFields has shown a marginal increase in
the overall survival (20.5 vs 15.6 months) and progression-free
survival at 6 months (PFS6) (56% vs. 37%) in GBM
patients.23,24 However, TTFields is the latest addition to the
list of FDA-approved drugs, which has not yet been
acknowledged worldwide as a part of SOC,24 emphasizing
the significance of the emerging drug molecule.

The combined bioinformatics analysis of transcriptomic data
such as microarray and high-throughput sequencing (NGS)
data has gradually become a powerful tool for the identification
of potential candidate biomarkers and related pathways. In this
study, we strive to identify overlapping molecular biomarkers
and new therapeutic strategies for GBM and GSC and
investigate their potential clinical roles and molecular
mechanisms in the pathogenesis of GBM. To address this,
we performed an integrated analysis of GBM and GSC samples
utilizing one RNA-seq data and one microarray data from the
Gene Expression Omnibus (GEO) database and TCGA_GBM
from The Cancer Genome Atlas (TCGA) to discover novel
overlapped molecular signatures. The identified overlapped
differentially expressed genes (DEGs) from all datasets were
assimilated with a protein−protein interaction network to
ascertain hub genes primarily associated with gliomagenesis.
Further, the gene-level expression of hub genes was validated
through GEPIA2 and two microarray data sets, and protein-
level expression was predicted through “The Human Protein
Atlas”. Additionally, the impact of the expression on the overall
survival was evaluated to detect a diagnostic or prognostic
model that might be helpful for the precise diagnosis and
prognostic estimation of GBM. Finally, an miRNA−hub gene
network was constructed to explore the epigenetic regulation,
and candidate small molecular drugs were examined for GBM.

■ RESULTS AND DISCUSSION

Gene Intersection between Differentially Expressed
Genes. The distribution of the altered expression of genes in
normal and abnormal samples is often displayed in certain
diseases. The significantly deregulated genes in the glioblasto-
ma (GBM) and glioma stem cells (GSC) in comparison with
normal stem cells (NSC) were detected using a t-test of the
LIMMA package in R and applying cutoff criteria as FC (FDR
< 0.05, |log2 FC| > 1). The analysis of dataset GSE119834
between GSC and NSC revealed 596 upregulated and 1152
downregulated genes. A total of 2679 upregulated and 1751
downregulated genes were identified for the GSE119834
dataset by comparing GBM to NSC. The TCGA_GBM
dataset analysis disclosed that a total of 6599 genes were
deregulated, which included 3482 upregulated and 3117
downregulated genes. The GSE41031 dataset analysis provided
8193 overexpressed and 1110 underexpressed genes. The
volcano plot for each analysis is shown in Figure S1. Venn

Figure 1. Venn diagram represents 44 statistically significant intersecting DEGs among four different sample analyses with adjusted P < 0.05 and |
log2 FC| > 1 as the cutoff criterion for their significance. (a) Upregulated genes and (b) downregulated genes.
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diagram analysis was employed to detect common genes within
four analyses, which disclosed a total of 44 intersecting genes
including 32 markedly upregulated genes (Figure 1a) and 12
significantly downregulated genes (Figure 1b). Table 1 lists the
intersecting genes and their symbol.
Functional Annotation for 44 Intersecting DEGs

through GO and KEGG Analysis. The biological functions
of a set of genes/proteins can be extracted through the
enrichment analysis method. To acquire the biological
importance of the intersecting genes in the development of
GBM and GSC, DAVID was employed. The enriched GO and
KEGG pathway terms were considered significant when a term
possessed a p-value of less than 0.05. Top enriched GO and
KEGG pathway terms are shown in Figure 2 and listed in
Table 2 with the details of the gene count and symbols. The
biological process (BP) of the GO analysis result indicated that
32 upregulated intersecting genes were markedly enriched in
the embryonic skeletal system morphogenesis, cartilage
development involved in endochondral bone morphogenesis,
innate immune response, regulation of transcription from an
RNA polymerase II promoter, embryonic forelimb morpho-

genesis, etc. (Figure 2a); 12 downregulated genes were
involved in ureteric bud development, cell differentiation,
cellular response to heparin, and axon guidance (Figure 2b).
Variation in the molecular function (MF) revealed that 32
upregulaed genes mostly played role in sequence-specific DNA
binding (Figure 2a); downregulated genes were primarily
enriched in the structural constituent of the cytoskeleton and
laminin-1 binding (Figure 2b). Changes in the cellular
component (CC) of upregulated genes were significantly
annotated in chromatin and transcription factor complex;
downregulated genes were found in neurofilament, plasma
membrane, and cell surface (Figure 2). After deep analysis of
32 upregulated intersecting DEGs through GO and KEGG
annotation, we found that BP, CC, and MF of three genes,
namely KIAA0040, C1orf94, and ITPRIPL1, were unclear. It
has been noticed that protein binding is the MF term for
C1orf94; however, BP and CC terms were not enriched. Only
the CC term, i.e., an integral component of the membrane was
enriched for KIAA0040, while the integral component of the
membrane and protein binding was annotated for ITPRIPL1
as CC and MF, respectively (Table S2). More interestingly, we

Table 1. List of 44 Intersecting Differentially Expressed Gene (DEGs) with Cutoff Criteria as FC (FDR < 0.05, |log2 FC| > 1)

intersecting
genes gene symbol

upregulated
DEGs

ARID5A; METTL7B; PCDH12; HEY1; HOXA11; ZNF107; TNFRSF19; DENND2A; ITGB8; TRIM14; SHOX2; SOX2; STK32A;
ITPRIPL1; PDLIM3; C1orf94; TRIM47; GSC; PCDHB9; HERC5; HOXA6; KCNE4; B3GNT5; SLC27A3; HOXC8; OAS3; FREM2;
KIAA0040; TNC, HOXD9; NMD3; CXCL16

downregulated
DEGs

SORBS2; NEFM; RAB3B; PTPN3; L1CAM; INA; ST6GALNAC5; SLIT2; TMEM200A; SFRP1; NTN4; MAGI1

Figure 2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis for the intersecting significant DEGs. (a)
Enriched biological function by GO analysis for upregulated genes associated with GBM, (b) enriched biological function by GO analysis for
downregulated genes involved in GBM progression, and (c) enriched pathway by KEGG analysis for both up- and downregulated genes related to
GBM.
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found that KIAA0040 and C1orf94 were two uncharacterized
proteins whose biological function is still imprecise. Sub-
sequently, it has been observed that many of the genes were
understudied such as B3GNT5, METTL7B, PCDHB9,
ZNF107, and some others listed in Table S3 with less than
20 publications. Furthermore, the KEGG pathway analysis
uncovered that three upregulated genes such as ITGA1
(integrin subunit alpha 8), TNC (tenascin C), and FREM2
(FRAS1 related extracellular matrix 2) were prominently
involved in the ECM−receptor interaction pathway (Figures
2c and 3) and three downregulated genes, i.e., NTN4 (netrin
4), SLIT2 (slit guidance ligand 2), and L1CAM (L1 cell
adhesion molecule) significantly enriched the axon guidance
pathway (Figures 2c and 4).
The extracellular matrix (ECM) serves diverse functions in

tissue and organ morphogenesis including the establishment
and maintenance of the cell and tissue structure and
function.25 The ECM communicates with cells by specific
interactions, mediated by transmembrane molecules, primarily
integrins and also possibly proteoglycans or other cell-surface-
associated components (Figure 3).26 These interactions can
directly or indirectly regulate several cellular processes such as
adhesion, migration, differentiation, proliferation, and apopto-
sis.27 Subsequently, integrins comprise noncovalently bound

alpha- and beta-subunits that acts as mechanoreceptors to
establish a force-transmitting physical link between the ECM
and the cytoskeleton.28 Further, the remodulation of the ECM
is a crucial mechanism to monitor certain biological processes
including morphogenesis, bone remodeling, angiogenesis, and
wound repair. However, the dysregulation of ECM dynamics
contributes to pathological conditions such as osteoarthritis,
inflammatory diseases, tissue fibrosis, and invasive cancer.29

TNC, ITGB8, and FREM2 were found to be highly expressed
and involved in ECM−receptor interactions in our analysis. It
has been demonstrated in various research articles that TNC
(tenascin C), an extracellular matrix molecule, is overexpressed
in many types of cancers such as breast cancer, colorectal
cancer, lung cancer, and GBM.30 TNC acts as a driver for
tumor cell survival, proliferation, invasion, stemness, and
metastasis in different signaling pathways. In human macro-
phage cells, TNC stimulates proinflammatory factors such as
TNFα via a toll-like receptor 4 and STAT3-dependent
mechanism. In GBM, TNC plays a vital role in immunomo-
dulation by interfering in the antitumor function of brain
innate immune cells.31 ITGB8 and FREM2 are overexpressed
in some cancers including breast, ovarian, lung, prostate,
bladder cancer, and GBM and play a major role in tumor cell
metastasis, less adhesion, invasion, and growth.32 More

Table 2. GO Enrichment and KEGG Pathway Analysis of Intersecting DEGs Participating in GBM Progression with the Gene
Count and Symbol

GO_term count p-value genes

Upregulated Genes
BP:GO:0009952∼anterior/posterior pattern specification 5 1.00 × 10−5 HEY1, HOXA6, HOXD9, HOXC8, HOXA11
MF:GO:1990837∼sequence-specific double-stranded DNA binding 7 2.10 × 10−4 HEY1, GSC, SHOX2, HOXA6, HOXD9, HOXC8,

HOXA11
BP:GO:0035115∼embryonic forelimb morphogenesis 3 9.70 × 10−4 SHOX2, HOXD9, HOXA11
BP:GO:0048704∼embryonic skeletal system morphogenesis 3 0.0016 GSC, HOXA6, HOXD9
BP:GO:0000122∼negative regulation of transcription from the RNA
polymerase II promoter

7 0.0021 SOX2, HEY1, GSC, SHOX2, ARID5A, HOXD9, HOXC8

BP:GO:0006357∼regulation of transcription from the RNA polymerase II
promoter

9 0.0023 HEY1, GSC, SHOX2, ARID5A, ZNF107, HOXA6,
HOXD9, HOXC8, HOXA11

MF:GO:0000981∼RNA polymerase II transcription factor activity,
sequence-specific DNA binding

8 0.0034 SOX2, HEY1, GSC, SHOX2, HOXA6, HOXD9, HOXC8,
HOXA11

CC:GO:0000785∼chromatin 7 0.0035 SOX2, HEY1, GSC, SHOX2, HOXA6, HOXD9, HOXC8
CC:GO:0005667∼transcription factor complex 4 0.0046 SOX2, GSC, ARID5A, HOXA11
BP:GO:0007155∼cell adhesion 5 0.0077 TNC, ITGB8, PCDH12, PCDHB9, FREM2
BP:GO:0060351∼cartilage development involved in endochondral bone
morphogenesis

2 0.01 SHOX2, HOXA11

MF:GO:0000978∼RNA polymerase II core promoter proximal region
sequence-specific DNA binding

7 0.01 SOX2, HEY1, GSC, ZNF107, HOXA6, HOXD9, HOXA11

BP:GO:0001649∼osteoblast differentiation 3 0.012 SOX2, SHOX2, TNC
BP:GO:0060272∼embryonic skeletal joint morphogenesis 2 0.014 SHOX2, HOXA11
BP:GO:0009954∼proximal/distal pattern formation 2 0.036 HOXD9, HOXA11
BP:GO:0045087∼innate immune response 4 0.055 HERC5, OAS3, ARID5A, TRIM14

Downregulated Genes
MF:GO:0005200∼structural constituent of the cytoskeleton 3 0.0016 NEFM, SORBS2, INA
BP:GO:0071504∼cellular response to heparin 2 0.0025 SFRP1, SLIT2
MF:GO:0043237∼laminin-1 binding 2 0.0035 NTN4, SLIT2
CC:GO:0005883∼neurofilament 2 0.0054 NEFM, INA
BP:GO:0007411∼axon guidance 3 0.0061 NTN4, SLIT2, L1CAM
BP:GO:0001657∼ureteric bud development 2 0.018 SFRP1, SLIT2
CC:GO:0005886∼plasma membrane 7 0.031 MAGI1, RAB3B, SFRP1, NTN4, SORBS2, L1CAM, PTPN3
CC:GO:0009986∼cell surface 3 0.043 SFRP1, SLIT2, L1CAM
BP:GO:0030154∼cell differentiation 3 0.044 SFRP1, SLIT2, INA

KEGG Pathway
UP_hsa04512:ECM−receptor interaction 3 0.007 TNC, ITGB8, FREM2
DOWN_hsa04360:axon guidance 3 0.0048 NTN4, SLIT2, L1CAM
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interestingly, ITGB8 functions as a key driver of transforming
growth factor b (TGF-b) to impede the antitumor immunity
leading to the tumor growth.33

PPI Network Construction and Hub Gene Identifica-
tion. The importance of protein and biological modules can be
simplified through protein−protein interactive relationship
network analysis. Hence, the STRING database was adopted
to predict the interactive potential relationship between the
identified intersecting DEGs with a confidence score of ≥0.04
at the protein level. Subsequently, the interactive relationship
network was imported and reconstructed through the Cyto-
scape plugin. As revealed in Figure 5a, 54 nodes (genes) and
85 edges (interactions) were established in the protein
interactive network. Furthermore, the most relevant hub
genes for the progression of GBM and GSC were identified
through the cytoHubba plugin of Cytoscape. Owing to the
heterogeneity of the biological network, it makes sense to
employ many methods for capturing important proteins.34

Four different algorithms, namely degree of connectivity,
DMNC, MNC, and MCC were utilized to extract the hub
genes (Figure 5b; Figure S2). As a result, a group of 12
overlapping genes was discriminated as common DEGs from
these four methods (Figure 5c). Table 3 displays the list of 12

overlapping genes, their descriptions, and scores obtained from
different algorithms. Subsequently, functional enrichment
analysis of 12 hub genes revealed that most of the genes are
involved in various important biological processes, which
trigger tumorigenesis such as osteoblast differentiation, positive
regulation of transcription from an RNA polymerase II
promoter, positive regulation of cell proliferation, cell fate
specification, negative regulation of the apoptotic process, etc.
Cellular component terms, i.e., cell−cell adherens junction,
focal adhesion, cell surface, extracellular space, perinuclear
region of cytoplasm, and membrane raft were enriched for 12
overlapped hub genes. Molecular functions of the 12 common
hub genes were annotated as estrogen receptor binding,
cadherin binding involved in cell−cell adhesion, integrin
binding, enzyme binding, and RNA polymerase II activating
transcription factor binding. According to KEGG analysis, the
highly enriched pathways for 12 overlapping hub genes
included signaling pathways governing stem cell pluripotency,
cancer pathways, proteoglycans in cancer, Rap1 signaling
pathway, and basal cell carcinoma, among others. (Figure 5d).
All of the significant detailed information such as GO and
KEGG terms, gene counts, and names are listed in Table S4.
Overall, from GO and KEGG enrichment analyses, we

Figure 3. Extracellular matrix (ECM)−receptor interaction pathway generated using the pathview R package. The overexpressed genes in GBM are
highlighted in red color.
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collected evidence that our identified hub genes participated in

the stemness of tumor cells and various cancer progression

activities. These data signposted that these candidate genes

have a prime influence on the progression of glioma and can be

considered prognostic biomarkers.

Validation of mRNA Expression of Overlapped Hub
Genes in GBM. To explore the prognostic potential of 12
overlapped hub genes (CTNNB1, EGFR, SHH, SOX2, BMP4,
ITGB1, SRC, ISL1, HEY1, SFRP1, TNC, SHOX2), we first
visualized the expression levels of hub genes in GBM
compared with LGG and normal glial cells using GEPIA2

Figure 4. Schematic representation of the axon guidance pathway produced by the pathview R package. The lower expressed genes in GBM are
highlighted in green color.
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Figure 5. Visual representation of the protein−protein interaction (PPI) network of overlapped DEGs and the hub genes. (a) PPI network
constructed by overlapping genes. The thickness of the connection line indicates the level of betweenness within proteins. Color gradients from
cyan to pink of nodes represent the change of log FC. Green color denotes the coexpression nodes added by the STRING database. (b) Top 15
hub genes screened by cytoHubba plugin of Cytoscape based on the MNC score where a higher score is represented in red color and a lower score
in yellow color, (c) Venn diagram representing the overlapping hub genes within these four methods, and (d) GO and KEGG enrichment analyses
of 12 hub genes.
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server and two data sets, namely GSE4290 and GSE15824.
The validated result of the expression levels of 12 overlapped
hub genes from the GEPIA2 server and GSE4290 data set is
presented in Figure 6 and Figure S3. Both analyses possessed
similar results as most of the hub genes were significantly
overexpressed with a p-value of <0.05 in both GBM and LGG
except for CTNNB1 and BMP4. As shown in Figure 6a, from
the GEPIA2 server, CTNNB1 was markedly upregulated in
both GBM and LGG, while GSE4290 data sets revealed that
the expression of CTNNB1 was not significant (Figure 6b).
Similar to CTNNB1, BMP4 exhibited high expression in GBM
and LGG through the GEPIA2 server, while the GSE4290 data
set displayed downregulation. Then, we revalidated both
CTNNB1 and BMP4 gene expression levels with another data
set GSE15824 (data not shown). The result uncovered that
CTNNB1 was significantly upregulated in GBM with a p-value
of 0.00094; however, its expression in LGG was not significant
with a p-value of 0.12. The expression level of BMP4 was
shown to be downregulated in both microarray data sets, while
in TCGA_GBM-and-LGG data sets, it was found to be
overexpressed but not significant (Figure S3). Furthermore, we
noticed that sufficient data for the expression level of ISL1
were not available in TCGA_GBM-and-LGG data sets. Then,
we analyzed ISL1 expression through two data sets (GSE4290
and GSE15824) and found that ISL1 was upregulated in both
data sets but the expression level was not significant. From the
result, we concluded that HEY1, ITGB1, SOX2, TNC, EGFR,
and SHOX2 (only in GBM) were significantly overexpressed
in TCGA_GBM-and-LGG data sets, as evidenced by the
GEPIA2 server and cross-validation via GSE4290 and
GSE15824 data set analysis. Also, we hypothesized that the
expression level of CTNNB1 may differ from patient to patient
or depend on some external factors for its regulation.
After examining the expression level of 12 overlapped hub

genes, the protein levels were investigated through immuno-
histochemical analysis using the HPA database. Remarkably,
the protein levels of SOX2 (Figure 7a), ITGB1 (Figure 7b),

Table 3. List of 12 Overlapping DEG Names with Their
Four Different (Degree, DMNC, MNC, and MCC)
cytoHubba Algorithm Scores

gene
symbol gene description

degree
score

DMNC
score

MNC
score

MCC
score

CTNNB1 catenin beta 1 14 0.408739 13 445

EGFR epidermal growth factor
receptor

13 0.424202 11 382

SHH sonic hedgehog signaling
molecule

12 0.492074 11 439

SOX2 SRY-box transcription
factor 2

11 0.44117 11 412

BMP4 bone morphogenetic
protein 4

11 0.44117 11 320

ITGB1 integrin subunit beta 1 10 0.419005 10 260

SRC SRC proto-oncogene,
nonreceptor tyrosine
kinase

10 0.399052 10 148

ISL1 ISL LIM homeobox 1 8 0.408202 8 60

HEY1 Hes-related family
BHLH transcription
factor with YRPW
motif 1

6 0.453784 5 27

SFRP1 secreted frizzled-related
protein 1

5 0.648263 5 120

TNC tenascin C 4 0.473661 4 12

SHOX2 short stature
homeobox 2

4 0.378929 4 8

Figure 6. Representative box plots for the validated result of six
overlapping hub gene expression levels in GBM and LGG in
comparison with N. (a) Validation result of gene expression levels
through the GEPIA2 server. TCGA_GBM tissues (n = 163) and
TCGA_LGG tissues (n = 518) marked in red color and noncancerous
tissues marked in gray (n = 207); a red asterisk indicates a p-value
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EGFR (Figure 7c), and TNC (Figure 7d) were not expressed
in normal tissues, while medium and high expression levels of
these genes were perceived in glioma tissues (Figure 7a−d).
Additionally, the low-level protein expressions of SRC and
CTNNB1 were observed in normal glial tissues, whereas the
protein-level expressions of these genes were medium in
glioma tissues (Figure 7e,f). Furthermore, the expressions of
SFRP1, BMP4, HEY1, and ISL1 genes were not detected in
protein-level expression supporting the expressional validation
through data sets except HEY1 (Figure 7g−i). Moreover, the
gene-level expression of HEY1 was noted high in glioma
tissues, while its protein-level expression was not detected in
glioma tissues. The protein-level expression of HEY1 exhibited
a conflicting trend to gene-level expression, which needs more
investigation, or it could be postulated that post-translation
modification may be playing a major role in HEY1 protein-
level expression. The protein-level expression data were
unavailable for SHOX2 and SHH genes. Due to insufficient
data for ISL1 in TCGA_GBM-and-LGG data sets, ISL1 was
not considered for our further studies. Additionally, we were
interested in the localization and protein-level expression of all
32 genes and found that most of the genes were found to be
medium or highly expressed in glioma cells in comparison to
normal glial cells (Table 5). In summary, the transcriptional
and translational expression levels of six overlapped hub genes
were upregulated in patients with glioma. Further, these 12
genes were carried forward to revalidate the association
between their expression level and the overall survival of
glioma patients through survival analysis.
Survival Analysis of Overlapped Hub Genes. To get a

clear vision of the relationship between the overexpression of
overlapped hub genes and the overall survival of glioma
patients, Kaplan−Meier (K−M) survival analysis was per-
formed on all TCGA glioma cohorts. The result disclosed that
most of the genes were significantly correlated with the worst
survival of glioma patients with a p-value < 0.05 (Figure 8).
Additionally, the higher expression of ITGB1 (HR = 2.4; P =
7.7 × 10−6), SHOX2 (HR = 3.2; P = 8.4 × 10−10), CTNNB1
(HR = 1.9; P = 1.8 × 10−6), EGFR (HR = 1.3; P = 0.023), and
TNC (HR = 2.2; P = 2.4 × 10−5) mRNAs was markedly
associated with worse survival in GBM and LGG patients. This
suggested that higher expression levels of these five genes at
diagnosis can be considered as unfavorable prognostic genes,
which can shorten the overall survival of glioma patients. The
lower expression of BMP4, HEY1, SFRP1, SHH, SOX2, and
SRC genes was significantly correlated with worse prognosis
and lower overall survival in glioma patients. Most importantly,
significant high-level expression of SOX2 has been noticed at
both gene levels (Figure 6c) and also in protein levels (Figure
8a). In contrast, the K−M survival analysis of the TCGA data
set suggested that the lower expression of SOX2 was associated
with worse survival in glioma patients. Meanwhile, for further
confirmation, the CGGA database was also used to evaluate
the prognostic role of 11 overlapped genes. Figure S4 reveals
that the high-level ITGB1 (p < 0.0001), SHOX2 (p < 0.0001),

CTNNB1 (p < 0.01), and TNC (p < 0.0001) mRNAs in
glioma patients were significantly interrelated with shorter
overall survival, which was analogous to the TCGA data sets
except for EGFR with a p-value of 0.38 (Figure S4). The lower
expression of BMP4, HEY1, SFRP1, SHH, and SRC genes was
markedly correlated with the poorer overall survival of glioma
patients except for SOX2, which was in agreement with the
result of the TCGA data set. The expression level of SOX2
differed between TCGA and CGGA data sets but not
significantly. Overall, these outcomes validated the prognostic
value and the relationships between the 11 overlapped hub
genes in gliomagenesis.
The overall observations such as survival analysis, gene-level,

and protein-level expression analysis confirmed that over-
expression levels of ITGB1, SHOX2, CTNNB1, TNC, and
EGFR at diagnosis can be considered as unfavorable
prognostic genes, whose expression can reduce the overall
survival of glioma patients. The high level of BMP4, HEY1,
SFRP1, SHH, and SRC mRNAs at diagnosis can be reflected
as favorable prognostic genes, whose presence significantly led
to higher overall survival for the patients. For our further
studies, we have considered five unfavorable prognostic hub
genes, namely ITGB1, SHOX2, CTNNB1, TNC, and EGFR.
These five unfavorable genes mostly participated in pathways
of inhibition of apoptosis, the DNA damage repair mechanism,
activation of the cell cycle, EMT (epithelial−mesenchymal
transition), hormone AR (androgen receptor), hormone ER
(estrogen receptor), PI3K/AKT (phosphatidylinositol 3-kinase
and AKT), RTK (receptor tyrosine kinase), and TSC/mTOR
(tuberous sclerosis complex and mammalian target of
rapamycin), as shown in Figure S5.
Growing evidence also confirmed our results that integrin

subunit beta 1 (ITGB1) is widely expressed in several
malignant cancers, including breast cancers,35 colorectal
cancer,36 and lung cancer.37 The overexpression of ITGB1 in
cancer is mostly associated with tumorigenicity, tumor cell
metastasis, proliferation, invasion, and chemotherapeutic
resistance, suggesting it to be a prognostic biomarker.38

Additionally, β1 integrins govern stem cell renewal by
stimulating cell division and determining the axis of polarity
for asymmetric cell progression.39

Previous studies have demonstrated that the elevated
expression of the SRY-box transcription factor 2 (SHOX2)
gene was significantly associated with cancer pathogenesis
driving tumorigenesis, cancer cell development, metastasis,
drug resistance, and stemness and recurrence.40,41 Further-
more, SHOX2 has also been designated as a powerful
biomarker for the early diagnosis of various cancers including
gliomas,42 lung cancer,43 hepatocellular carcinoma,44 malignant
pleural effusion (MPE),45 bladder cancer,40 colorectal cancer
(CRC),46 and biliary tract carcinoma (BTC).47 The expression
of SHOX2 induces cancer stem cell-like characteristics,
migration, invasion, and recurrence of bladder cancer, and
the knockdown of SHOX2 reduced the colony formation and
tightened the cellular morphology.40 The detection of
methylated SHOX2 showed more sensitivity and specificity
in diagnosing lung cancer at an early stage rather than other
commonly used methods.48

Catenin β 1 (CTNNB1) gene encodes a beta-catenin
protein that primarily participated in cell-to-cell adhesion to
maintain tissue architecture and polarity. Beta-catenin also
plays a vital role in the Wnt signaling pathway to promote cell
growth and division, which determines the specialized

Figure 6. continued

<0.01. (b) Cross-validation of hub gene expression levels in glioma
and normal samples based on GSE4290. Two-tailed Student t-tests
were used to assess the statistical significance of differences. These
results indicate that our findings are reliable with P < .05. GBM:
glioblastoma, LGG: low-grade glioma, and N: normal.
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functions of cells.49 However, mutant CTNNB1 has been
identified in various cancers including colorectal, liver, thyroid,

ovarian, endometrial, and skin cancers, as well as brain
tumors.50,51 Studies suggested that mutation in the CTNNB1

Figure 7. Immunohistochemistry images of 10 hub genes in normal brain tissues (cerebral cortex) and glioma cancer specimens derived from the
Human Protein Atlas (HPA) database. (a) SOX2, (b) ITGB1, (c) EGFR, (d)TNC, (e) SRC, (f) CTNNB1, (g) SFRP1, (h) BMP4, (i) HEY1, and
(j) ISL1.
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gene interrupts the processing of beta-catenin, leading to the
consequent nuclear accumulation of beta-catenin, which
traffics into the nucleus and stimulates the unchecked cell
division and proliferation, permitting the development and
stemness of cancer cells.52 Additionally, the detection of
CTNNB1 circulating tumor DNA at diagnosis can severe as a
putative biomarker for assessing hepatoblastoma patient
prognosis.53 The involvement of CTNNB1 in the Wnt
signaling pathway facilitates GBM formation, and stemness
and leads to drug resistance. Targeting CTNNB1 in the Wnt
pathway can inhibit the stemness and/or malignant cellular
phenotypes of glioma considered as a therapeutic target for the
treatment of GBM.54,55

An epidermal growth factor receptor (EGFR) is a trans-
membrane tyrosine kinase that spans the cell membrane and
gets activated by different types of ligands. The activated
EGFR stimulates autophosphorylation of tyrosine residues,
eliciting the activation of downstream pathways, which leads to
cell growth, proliferation, DNA synthesis, and survival.56 The
alterations, mutations, amplification, and overexpression of
EGFR have been perceived in cancer tissues such as lung,
colon/rectum, pancreas, head and neck, gastrointestinal tract,
breast, and brain.57 The altered and elevated expression of
EGFR induces multiple aspects of tumorigenesis including
angiogenesis, cell growth, proliferation, invasiveness, and
resistance to chemo- and radiotherapy.58 Furthermore, it has
been demonstrated by Lee et al. that EGFR also regulates
CTNNB1 expression, localization, and stability and their
coactivation might be a malignancy marker of oral cancer.59

Tenascin C (TNC) is an extracellular matrix (ECM)
glycoprotein that is overexpressed during organogenesis,
particularly in the development of the central nervous system,
in migration of neural crest cells, and epithelial−mesenchymal
transition (EMT), but its distributions typically remain limited
in adult tissues.60 However, increased deposition of TNC has
been noticed in different types of malignancies, for instance,
melanoma, bladder, breast, uterus (both the cervix and body),
lung, tongue, colon, stomach, larynx, skin, and urinary tract
cancer.61,62 The elevated expression of TNC has also been
observed in high-grade gliomas that positively correlates with
the invasiveness of glioma cells and is suspected to be a
potential biomarker of earlier detection of GBM and GSC
considered as a better therapeutic target of glioblastoma.63,64

TNC promotes tumor progression by triggering cell
proliferation and differentiation, migration, and angiogenesis
and participates in the development of CSC through the HH
signaling pathway.65

Hub Gene Expression and miRNA Regulatory Net-
work. To further investigate the regulatory relationship
between the five hub genes (ITGB1, SHOX2, CTNNB1,
TNC, and EGFR) and miRNAs, the miRSystem was employed
to predict the targeted miRNAs of hub genes which assimilate
seven well-known miRNA target gene prediction programs
such as DIANA, miRanda, miRBridge, PicTar, PITA, rna22,
and TargetScan.66 The miRNAs predicted by at least three
databases were considered as the targeted miRNAs of hub
genes (Table S6). The correlation network associated with the
development of GBM was constructed by Cytoscape software.

Figure 8. Kaplan−Meier plotters and log-rank tests for the prognostic value of the hub genes in GBM and LGG generated through the GEPIEA2
server. The dashed lines are upper confidence interval and the lower confidence interval.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c01820
ACS Omega 2022, 7, 22531−22550

22541

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c01820/suppl_file/ao2c01820_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01820?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01820?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01820?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01820?fig=fig8&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c01820?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The coexpression network consists of five hub genes (ITGB1,
SHOX2, CTNNB1, TNC, and EGFR) and 92 miRNAs
(Figure 9). SHOX2, CTNNB1, and TNC were associated with
most of the miRNAs considered as hub genes. The miRNAs-
hub gene coexpression network revealed that has-miR-330-3p
and hsa-miR-578 modulate SHOX2 and CTNNB1 mRNAs
and hsa-miR-141-3p regulates the expression of CTNNB1 and
EGFR. Furthermore, hsa-miR-198 and hsa-miR-495-3p were
predicted to be involved in the expression of SHOX2 and
TNC.
A previous report stated that hsa-miR-330-3p promotes

tumor invasion proliferation, migration, epithelial−mesenchy-
mal transition (EMT), and survival in multiple cancers,
highlighting the role of hsa-miR-330-3p in carcinogenesis.67

The coexpression of hsa-miR-330-3p with CTNNB1 and
SHOX2 may be positively correlated with the tumorigenesis
promoting tumor invasion and metastasis. The activity of hsa-
miR-578 suppresses the tumor cell growth, migration,
metastasis, and glycolysis and boosted cell apoptosis by

targeting zinc finger RNA binding protein in breast cancer
and by targeting a proliferation-inducing ligand (APRIL) in
hepatocellular carcinoma.68,69 Hsa-miR-578 controls angio-
genesis by targeting significant modulators of Focal adhesion,
Vascular Endothelial Growth Factor (VEGF), and Hypoxia-
Inducible Factor-1 (HIF-1) signaling pathways.70 The previous
studies indicated that the expression of SHOX2 and CTNNB1
might be negatively regulated by hsa-miR-578. Additionally,
miR-141-3p inhibited cell growth, proliferation, and migration
by targeting EGFR and CTNNB1 in osteosarcoma, renal
interstitial fibrosis, and CRC and is considered as a key
negative regulator of EGFR and CTNNB1.71,72 In addition,
has-miR-198 suppressed cell mobility and invasion of CRC by
repressing TNC.73 This miRNA−hub gene interaction net-
work provided a basic powerful molecular mechanism to
understand the epigenetic regulation of GBM.

Hub Genes and Drug Interaction. Five hub genes were
explored for the drug−gene interaction through the DGIdb
database. A total of 174 drugs were possibly used to treat GBM

Figure 9. miRNA−hub gene regulatory network of GBM. The green parallelogram node represented the hub genes. The purple V-shape nodes
stand the miRNAs. The edge between two nodes indicates the interaction between hub genes and miRNAs.
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by targeting five hub genes, reported and screened through
DGIdb database (Figure 10). The final list consists of only
FDA-approved drugs that were compiled and selected for three
promising targets i.e., CTNNB1, ITGB1, and EGFR. The three
FDA-approved drugs such as imatinib, temsirolimus, and
trametinib were identified as common drugs regulating the
function of EGFR and CTNNB1, as displayed in Figure 10 and
Table 4. Imatinib was the first kinase inhibitor approved by the

US Food and Drug Administration (FDA) in 2001 to treat
chronic myelogenous leukemia (CML) and acute lympho-
blastic leukemia with the Philadelphia chromosome.74,75

Temsirolimus, an inhibitor of mammalian target of rapamycin
(mTOR), was used to treat nonsmall-cell lung cancer
(NSCLC),76 refractory solid tumors,77,78 and renal cell

carcinoma.79 Temsirolimus is mostly used in combination
with other inhibitors targeting EGFR to treat cancer types with
high expression of EGFR.80,81 Trametinib is used to treat lung
adenocarcinoma patients with an EGFR mutant.82,83 Table S7
highlights that most of the drugs (62/74) might target EGFR
to inhibit its function and some of the drugs, i.e., verteporfin
and rindopepimut, were in clinical trials for treating recurrent
GBM targeting EGFR.84,85 Among the listed drugs, osimertinib
was deliberated as a potential drug of EGFR to treat cancer
patients including GBM by inhibiting the MAPK pathway.86

Recently, FDA approved several drugs targeting EGFR or the
EGFR mutant, for instance, mobocertinib87 and amivantamab-
vmjw,88 to treat nonsmall-cell lung cancer (NSCLC).
Furthermore, a downstream network of EGFR was constructed
using the STITCH database to investigate possible effects
instigated by EGFR inhibition. The model disclosed that
inhibition of EGFR might have possible downstream
stimulation on ubiquitin C (UBC) and heat shock protein
90 kDa alpha (cytosolic), class A member 1 (HSP90AA1)
(Figure S6). According to the drug−EGFR interaction
network, erlotinib plays a vital role in the regulation of
EGFR and HSP90AA1. As per our best knowledge, gefitinib,89

afatinib,90 erlotinib,91 Lapatinib,92 vandetanib,93 and dacomi-
tinib94 have been taken for phase-II clinical trials against EGFR
to treat GBM, recurrent GBM, and glioma patients. Overall,
these data might provide novel insight for targeted therapy in
GBM patients.
Several worthy limitations were there in monitoring this

investigation. First, we primarily investigated the potential role
and functions of hub genes without deeply evaluating the other
DEGs and most importantly two uncharacterized genes. In the

Figure 10. Candidate drugs targeting the hub gene interaction network. The blue ellipses stand for hub genes and pink diamonds represent drug
molecules. All reported drug molecules have been utilized to draw this diagram.

Table 4. Three Common FDA-Approved Candidate Drug
Molecules Targeting EGFR and CTNNB1

no. gene drug approved scores
reference

(PubMed ID)

1 CTNNB1,
EGFR

trametinib FDA 1 26343583
28783719
26036643
26582713
27312529

2 CTNNB1,
EGFR

temsirolimus FDA 1 27016228
24470557

3 CTNNB1,
EGFR

imatinib FDA 1 26861905
28762371
22323597
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future, extensive studies are required considering these aspects.
Second, TCGA data and two microarray data sets were utilized
to validate the expression level of hub genes. As we know that
the expression of genes depends on the external and internal
environmental factors of a person, hence, for Indian patients,
further experimental studies are needed to endorse the above
findings. Lastly, the clinical information of GBM patients was
not extensively studied owing to the inaccessibility of data.
Despite this, our deep investigation provided novel finding to
treat GBM patients. Our integrated bioinformatics examination
might deliver more precise outcomes in comparison to a single
data set analysis. Furthermore, the therapeutic targets and
drugs from this exploration are significant and novel and could
be used as personalized therapy for GBM patients. Moreover,
the miRNA−hub gene interaction network might have
revealed the significance of epigenetic regulation of glioma-
genesis.

■ CONCLUSIONS

Through integrated analysis and protein−protein interaction
network analysis, five potential candidate hub genes
(CTNNB1, ITGB1, TNC, EGFR, and SHOX2) were
identified, which were positively correlated with the stemness
of GBM and negatively correlated with the overall survival of
patients. These five unfavorable genes might serve as a
potential biomarker for the precise diagnosis, prognosis, and
targeted therapy of GBM patients. Additionally, a group of
drug molecules were scrutinized which could be exploited for
the treatment of GBM patients. Consequently, we believe that
clinical validation of our findings with GBM patients would
deliver new insights toward designing more potential
therapeutic strategies and personalized therapies that may
reduce the mortality rates. In our future perspective, we are
aiming to design/discover/repurpose drug molecules targeting
SHOX2 or TNC and characterize identified uncharacterized
proteins to understand their role in gliomagenesis.

■ MATERIALS AND METHODOLOGY

Raw Transcriptomic Data Set Collection. Publicly
available mRNA expression data sets were retrieved from the
TCGA data portal95 and Gene Expression Omnibus (GEO)
database.96 From TCGA projects, level 3 RNA-seq data set
and clinical information of GBM were downloaded to ascertain
differentially expressed genes (DEGs). Three microarray data
sets such as GSE41031,97 GSE4290,98 and GSE1582499 were
obtained from the GEO database for our study, where
GSE41031 was utilized for the identification of DEGs, and
the gene expression profiles of GSE4290 and GSE15824 were
exploited for external validation and confirmation of the hub
gene expression level. Additionally, one expression profiling by
high-throughput sequencing (NGS) data set, i .e. ,
GSE119834,100 was acquired from GEO to screen DEGs.
The platform used and the sample sizes of selected data sets
are summarized in Table S1.
Data Processing and Identification of DEGs. For

microarray data sets, all probe ids were converted to the
corresponding gene symbol using platform annotation pack-
ages. Duplicate genes were removed considering the highest
expression values of all probes as representative of the final
expression level.101 For the RNA-seq data set (GSE119834),
raw reads were mapped to the reference genome GRCh38.
latest using HiSat2.2.0 (hierarchical indexing for spliced

alignment of transcripts 2),102 and SAMtools was used to
sort and remove duplicates.103 The quantification of gene
expression was performed using featureCounts.104 Meanwhile,
the linear model microarray analysis (LIMMA) R package was
applied for quantile normalization, log2 conversion, and to
screen differential expressed genes (DEGs) between GBM,
GSC, and noncancerous samples.105,106 The “Empirical Bayes”
model was computed for statistical analysis that generates the
statistical significance value (p-value) for each DE gene.107,108

The genes were filtered with log2 FC > 1.0 and FDR < 0.05
reflected as upregulated or overexpressed in GSC and GBM
samples, while those with log2 FC < −1.0 and FDR < 0.05
were considered downregulated or underexpressed.109−111 A
web-based tool “InteractiVenn” was employed to identify
intersecting up- and downregulated genes in four types of data
analysis.112

Functional Enrichment Analysis of DEGs. The enrich-
ment of gene ontology (GO) terms for overlapped DEGs was
carried out using the Database for Annotation, Visualization,
and Integrated Discovery (DAVIDv6.8).113−115 The GO
analysis mainly includes three individual modules such as
biological process (BP), cellular component (CC), and
molecular function (MF).116 The Kyoto Encyclopedia of
Genes and Genomes (KEGG) is a comprehensive database
that contains information about genomes, biological processes,
illnesses, pharmaceuticals, and chemicals.117,118 The KEGG
analysis was executed to identify the biological pathways of
DEGs. The Benjamini−Hochberg FDR < 0.05 is set as the
threshold for indicating the statistically significant genes.119,120

Protein−Protein Interaction (PPI) Network Construc-
tion, Module Analysis, and Identification of Hub Genes.
Protein−protein interaction (PPI) networks can provide novel
insights into the protein function and may assist in classifying
key genes121,122 and pivotal gene modules responsible for the
development of glioma stem cells in GBM at an interaction
level. In this study, the translated DEGs were employed to
construct a protein−protein interaction (PPI) network using
the Search Tool for the Retrieval of Interacting Genes
(STRINGv11) database.123,124 The STRING database pro-
vides an integrative and critical assessment of interactions
between proteins, including prediction and experimental
interaction data.125 The PPIs of translated DEGs with
confidence scores greater than or equal to 0.4 were retrieved
and imported to Cytoscapev3.9.0 software to reconstruct the
network.126,127 Subsequently, the hub genes were identified by
cytoHubba using four methods such as DEGREE, maximum
clique centrality (MCC), maximum neighborhood component
(MNC), and density of maximum neighborhood component
(DMNC).128−130

Validation of Hub Gene Expression. The expression
levels of hub genes were validated using the Gene Expression
Profiling Interactive Analysis 2 (GEPIA2131) server and two
microarray data sets, i.e., GSE15824 and GSE4290.132 GEPIA2
is a web-based server that analyzes the expression of tumors
and normal samples from the Cancer Genome Atlas (TCGA).
GSE4290 consists of 76 LGG samples (includes 26
astrocytomas and 50 oligodendrogliomas), 81 GBM samples,
and 23 nontumor samples.132 GSE15824 contains 30 brain
tumor samples (12 primary glioblastomas (GBM), 3 secondary
glioblastomas (GBM-2), 8 astrocytomas (Astro) and 7
oligodendrogliomas (Oligo)) and 5 normal brain tissues.99

Thus, the expression and correlation of the hub genes can be
validated in GBM tissues and normal tissues. Further, the basic
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expression level of hub genes in the cerebral cortex was
predicted using the online tool “The Human Protein
Atlas”.133−135

Overall Survival Analysis of Hub Genes. Survival
analysis of hub genes was performed using GEPIA2131 and
CGGA databases.136−139 The Chinese Glioma Genome Atlas
(CGGA) database is a user-friendly, interactive web
application for data storage and analysis, which explores over
2000 brain tumor samples from Chinese cohorts. The web
resource also can be used to validate the gene expression level
and their impact on patients’ survival time.140 Kaplan−Meier
plotter online tool in GEPIA2 was used to determine the
overall survival of identified hub genes based on the TCGA
database.141

miRNA−Hub Gene Coexpression Network. The
miRNAs targeting hub genes were predicted by the target
prediction database miRSystem,66,142 which integrates seven
well-known miRNA target gene prediction programs: DIANA,
miRanda, miRBridge, PicTar, PITA, rna22, and TargetS-
can.66,143 The miRNAs identified by at least three predictors
were considered as the targeted miRNAs of hub genes. The
correlation between miRNA and hub genes was visualized by
constructing a coexpression network using Cytoscape.143,144 In
the network, parallelogram nodes denoted the mRNAs, while
the V-shape nodes represented the miRNAs.
Drug−Hub Gene Interaction Analysis. Drugs were

identified through the Drug Gene Interaction Database
(DGIdbv3.0.2;145) for hub genes, which can serve as promising
targets for GBM.146,147 DGIdb is a user-friendly drug−gene
interaction and the druggable genome data mining database,
which mined the data from over 30 trusted sources such as
ChEMBL, DrugBank, Ensembl, NCBI Entrez, PharmGKB,
PubChem, clinical trial databases, and the literature in NCBI
PubMed.148 Drugs were selected, which are supported by more
than one database or have PUBMED references. Finally, the
identified drugs, which are only approved by FDA were
considered for further study. Further, Search Tool for
Interacting Chemicals (STITCHv5.0;149) was used to visualize
the hub genes and identify the drug interaction network.
STITCH integrated disparate data sources for over 430000
chemicals.150−152
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