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Abstract

Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key le-
ver to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially
more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci
(QTLs) detection and the identification of positional candidate genes. To study both genomic prediction and QTL detection for drought-
related traits in grapevine, we applied several methods, interval mapping (IM) as well as univariate and multivariate penalized regression, in
a bi-parental progeny. With a dense genetic map, we simulated two traits under four QTL configurations. The penalized regression method
Elastic Net (EN) for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs.
Indeed, penalized methods were more powerful than IM for QTL detection across various genetic architectures. Multivariate prediction did
not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using 14 traits measured in semi-
controlled conditions under different watering conditions, penalized regression methods proved very efficient for intra-population predic-
tion whatever the genetic architecture of the trait, with predictive abilities reaching 0.68. Compared to a previous study on the same traits,
these methods applied on a denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate
genes. Overall, these findings provide a strong evidence base for implementing genomic prediction in grapevine breeding.
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Introduction
Viticulture is facing two major challenges, i.e., coping with cli-
mate change and decreasing inputs such as pesticides, while
maintaining high yield and quality. This requires understanding
the physiological processes that determine adaptation to climate
change, such as water use efficiency and their genetic basis
(Condon et al. 2004). Breeding schemes could then use crosses be-
tween genotypes with high water use efficiency, and others resis-
tant to downy and powdery mildews (Vezzulli et al. 2019b), to
select offspring displaying the most favorable combinations. In
crop species, the widespread use of molecular markers through
marker-assisted selection (MAS) or genomic prediction (GP) sub-
stantially accelerates genetic gains as compared to the traditional
phenotypic selection, by allowing early selection of promising
genotypes, without the corresponding phenotypic information
(Heffner et al. 2009). This is of acute interest in perennial fruit

species because of the long juvenile period during which most
traits of interest cannot be phenotyped. MAS and GP are now
widely developed in many perennial species such as pear (Kumar
et al. 2019), oil palm (Cros et al. 2015; Kwong et al. 2017), citrus
(Gois et al. 2016), apple (Muranty et al. 2015), and Coffea (Ferr~ao
et al. 2019). In grapevine, quantitative trait loci (QTL) detection in
bi-parental populations led to the identification of major genes
for traits with a simple genetic architecture such as resistance to
downy and powdery mildews, berry color, seedlessness, and
Muscat flavor (Fischer et al. 2004; Welter et al. 2007; Fournier-
Level et al. 2009; Emanuelli et al. 2010; Mejı̀a et al. 2011;
Schwander et al. 2012). Based on these results, most breeding
efforts in grapevine use MAS to improve disease resistance.
However, genetic improvement is also needed for traits with a
more complex genetic determinism, as well as for others, such as
drought-related traits, that are difficult to phenotype. Many
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minor QTLs have been found for tolerance to abiotic stresses
(Marguerit et al. 2012; Coupel-Ledru et al. 2014, 2016), yield com-
ponents (Doligez et al. 2010, 2013), and fruit quality (Huang et al.
2012), as reviewed in Vezzulli et al. (2019a). But MAS is not well
suited to traits with many underlying minor QTLs (Bernardo
2008). Genomic prediction, which relies on high-density genotyp-
ing, is a promising tool for breeding for such complex traits, espe-
cially in perennial plants (Kumar et al. 2012). Nevertheless, in
grapevine, GP has been used in three published papers, only once
on experimental data (Viana et al. 2016a; Migicovsky et al. 2017)
and once on simulated data (Fodor et al. 2014). Thus, before ap-
plying GP to this species, it has to be empirically validated by
thoroughly investigating the efficiency of different methods on
traits with various genetic architectures.

Both QTL detection and genomic prediction rely on finding
statistical associations between genotypic and phenotypic varia-
tion. So far, QTL detection in grapevine has been mainly achieved
by using interval mapping (IM) methods in bi-parental popula-
tions, or more recently genome-wide association studies (GWAS)
in diversity panels [see Vezzulli et al. (2019a) for a comprehensive
review of QTL detection studies in grapevine]. However, most
quantitative traits are explained by many minor QTLs, which are
difficult to detect either by IM methods or GWAS where each QTL
has to exceed a significance threshold. In contrast, GP methods,
by focusing on prediction, are less restrictive on the number of
useful markers, sometimes resulting in all markers being
retained as predictive with a nonzero effect. This is why GP meth-
ods are more efficient at predicting genotypic values (Goddard
and Hayes 2007) and therefore increasingly popular with breeders
(Heffner et al. 2010; Crossa et al. 2017; Kumar et al. 2020).

Widely used methods for GP are based on penalized regression
(Hastie et al. 2009), notably RR [Ridge Regression, equivalent to
Genomic BLUP, GBLUP, Habier et al. (2007)] and LASSO (Least
Absolute Shrinkage and Selection Operator). Bayesian
approaches are also commonly used (e.g., de los Campos et al.
2013; Kemper et al. 2018), see Desta and Ortiz (2014) for a classifi-
cation of GP methods. However, overall, Bayesian methods do not
achieve better predictive ability than RR or LASSO, while they
bear a heavy computational cost when fitted using Markov chain
Monte-Carlo algorithms (Ferr~ao et al. 2019). Other methods based
on nonparametric models (e.g., Support Vector Machine,
Reproducing Kernel Hilbert Space, Random Forest) have been
shown to yield lower predictive ability than parametric models
(frequentist or Bayesian) when the trait displayed an additive ge-
netic architecture (Azodi et al. 2019).

Traits are often analyzed one by one in GP, using univariate
methods. Nevertheless, breeders want to select the best geno-
types that combine good performance for many favorable traits.
Analyzing several traits jointly in GP allows taking into account
any genetic correlation between traits (Henderson and Quaas
1976). Calus and Veerkamp (2011), Jia and Jannink (2012),
Hayashi and Iwata (2013), and Guo et al. (2014) compared univari-
ate vs multivariate models’ performance. They found a slight ad-
vantage for multivariate analysis when heritability was low and
data were missing. Predictive ability was particularly improved if
the test set had been phenotyped for one trait while prediction
was applied to another correlated trait (trait-assisted prediction)
as in Thompson and Meyer (1986), Jia and Jannink (2012),
Pszczola et al. (2013), Lado et al. (2018), Velazco et al. (2019), and
Liu et al. (2020). However, this breaks independence between the
training and test sets, leading to over-optimistic prediction accu-
racy (Runcie and Cheng 2019). Multivariate methods have also
been proposed for QTL detection by Jiang and Zeng (1995), Korol

et al. (1995), Meuwissen and Goddard (2004), notably for distin-
guishing between linkage and pleiotropy when a QTL is found
common to several traits. Some methods of multivariate penal-
ized regression, such as in Chiquet et al. (2017), were designed to
allow both QTL detection and genotypic value prediction.
Multivariate GP methods are expected to perform better if traits
are genetically correlated, but this remains to be confirmed with
additional data. We also hypothesize that these methods will
have higher QTL detection power, by making better use of infor-
mation on the genetic architecture of several intertwined traits.

Methods designed for QTL detection are rarely used for geno-
typic value prediction. As they select only the largest QTLs, we
hypothesize that these methods will provide an accurate predic-
tion so long as the genetic architecture is simple, but would result
in poor prediction performance otherwise, as determined in sev-
eral studies (Heffner et al. 2011; Wang et al. 2014; Arruda et al.
2016). Conversely, some methods for GP, such as the LASSO and
its extensions, are also able to select markers with nonnull
effects, and hence to perform QTL detection. Their accuracy in
detecting QTLs has been partially investigated in an inbred spe-
cies by Li and Sillanpää (2012) on a single trait and simulated
data and by Cho et al. (2010) on human data and a binary trait.
Additional analyses are thus clearly needed.

This article aims to compare the ability of various methods to
predict genotypic values and to detect QTLs in a bi-parental
grapevine progeny, by focusing on traits related to climate
change adaptation. We first complemented the only available,
low density, SSR genetic map (Huang et al. 2012) by restriction-
assisted DNA sequencing, to construct a saturated SNP map.
Using this map, we then simulated phenotypic data to compare
several univariate and multivariate methods and assess the im-
pact of simulation parameters. Finally, we reanalyzed the pheno-
typic data on water stress from Coupel-Ledru et al. (2014, 2016),
obtained in semi-controlled conditions. The same genotyping
data and methods as those applied to simulated data were com-
pared, providing deeper insight into the genetic determinism of
key traits underlying water use efficiency, by finding new QTLs
and candidate genes.

Materials and methods
Plant material
This study was based on a pseudo-F1 progeny of 188 offspring
from a reciprocal cross made in 1995 between Vitis vinifera L. cul-
tivars Syrah and Grenache (Adam-Blondon et al. 2005).

GBS markers
Genotyping was done by sequencing was performed after geno-
mic reduction, using RAD-sequencing technology, with ApeKI re-
striction enzyme (Elshire et al. 2011), as described in Flutre et al.
(2020). Keygene N.V. owns patents and patent applications pro-
tecting its Sequence Based Genotyping technologies. This yielded
a total number of 17,298 SNPs.

Consensus genetic map
The genetic map was built with Lep-MAP3 (Rastas 2017), as de-
scribed in https://doi.org/10.15454/QEDX2V. The resulting map
had 3961 fully-informative markers (abxcd segregation) without
missing data (missing marker genotypes being automatically im-
puted in Lep-MAP3). These data were numerically recoded in
biallelic doses (0,1,2) according to the initial biallelic segregation
and phase (Supplementary Table S1).

2 | G3, 2021, Vol. 11, No. 9

https://doi.org/10.15454/QEDX2V
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab248#supplementary-data


Simulation
Phenotype simulations were carried out to (i) compare several
methods for prediction accuracy, and (ii) assess the efficacy of
these methods to select the markers most strongly associated
with trait variation.

Two traits, y1 and y2 were jointly simulated according to the
following bivariate linear regression model: Y ¼ XBþ E, where Y
is the n� k matrix of traits, X the n� p design matrix of allelic
effects, B the p� k matrix of allelic effects, and E the n� k matrix
of errors. For X, the 3961 SNP markers mapped for the SxG prog-
eny were encoded in four additives and four dominance effects.
Therefore n¼ 188, k¼ 2, and p¼ 31,688. For B, allelic effects corre-
sponding to s additive QTLs were drawn from a matrix-variate
Normal distribution, B � MVð0; I;VBÞ, with I the p� p identity ma-
trix and VB the k� k genetic variance-covariance matrix between

traits such that VB ¼
r2

B1
qBrB1 rB2

qBrB1 rB2 r2
B2

" #
, where qB is the ge-

netic correlation among traits and r2
B1

and r2
B2

are the genetic var-

iances for both traits y1 and y2. In the same way, E � MVð0; I;VEÞ,
with the k� k error variance-covariance matrix

VE ¼
r2

E1
qErE1 rE2

qErE1 rE2 r2
E2

" #
, where qE is the residual error correla-

tion between traits, and r2
E the error variance. We set qB to 0.8,

r2
B1

and r2
B2

to 0.1, qE to 0, and narrow-sense heritability to 0.1,

0.2, 0.4 or 0.8, and r2
E was deduced.

To explore different genetic architectures, we simulated s¼ 2
or 50 additive QTLs, located at s SNP markers, so that all corre-
sponding additive allelic effects had nonzero values in B. Because
all allelic effects were drawn from the same distribution, all QTLs
had “major” or “minor” effects for s¼ 2 and s¼ 50, respectively.
All dominant allelic effects were set to zero. Two QTL distribu-
tions across traits were also simulated. For the first one, called
“same,” all QTLs were at the same markers for both traits. For the
second one, called “diff,” the two traits had no QTL in common.
Thus, there was genetic correlation among traits only for the
“same” QTL distribution.

For each configuration (2 or 50 QTLs, combined with “same”
or “diff” distribution), the simulation procedure was replicated
t¼ 10 times, each with a different seed for the pseudo-random
number generator, resulting in different QTL positions and
effects.

In a first simulation set, narrow-sense heritability was as-
sumed equal for both traits and prediction was done with all
methods described below. In a second set, we simulated two
traits with different heritability values (0.1 and 0.5), for the
“same” QTL distribution with s¼ 20 and s¼ 200 QTLs, with
QTL effects drawn from a matrix-variate distribution with
r2

B¼1 and qB ¼ 0.5, in order to test the simulation parameters
from Jia and Jannink (2012) with our genotyping data. For this
second simulation set, prediction was done with a subset of
methods only. Simulation parameters are summarized in
Table 1.

Experimental design, phenotyping, and statistical
analysis
Seven phenotypes related to drought tolerance had already been
measured for 2 consecutive years on the Syrah � Grenache prog-
eny (on 186 genotypes among the existing 188), in semi-
controlled conditions on the PhenoArch platform (https://www6.
montpellier.inrae.fr/lepse_eng/M3P, last accessed on 07-21-21) in

Montpellier, France, as detailed in Coupel-Ledru et al. (2014,
2016). Briefly, of all replicates (six and five per genotype respec-
tively in 2012 and 2013), three (in 2012), or two (in 2013) were
maintained under well-watered conditions (well-watered condi-
tion, WW), whereas the other three were submitted to a moder-
ate water deficit (water deficit condition, WD). Specific
transpiration, i.e. transpiration rate per leaf area unit, was mea-
sured during daytime (TrS) and night-time (TrSnight). Midday leaf
water potential (wM, PsiM) was also measured and the difference
between soil and leaf water potential (Dw, DeltaPsi) calculated.
Soil-to-leaf hydraulic conductance on a leaf area basis (KS) was
calculated as the ratio between TrS and DeltaPsi. Growth rate
(DeltaBiomass) was estimated by image analysis. Transpiration ef-
ficiency (TE) was calculated over a period of 10 to 15 days as the
ratio between growth and total water loss through transpiration
during this period.

These seven phenotypes were studied under each watering
condition (WW and WD). We thus considered 14 traits in this
study, a trait being defined as a phenotype � watering condition
combination, and used the raw data available online (https://doi.
org/10.15454/YTRKV6). For each trait, a linear mixed model was
fitted with R/lme4 version 1.1-21 (Bates et al. 2014) using data
from both years:

y ¼ lþ Y þ Rþ xg þ yg þ xc þ yc þ Oþ Cþ D
G þ G:Y þ G:D þ e

(1)

First, model 1 with nine fixed effects (Y year, R replicate, xg, yg

coordinates in the platform within the greenhouse, xc, yc coordi-
nates in the controlled-environment chamber where PsiM and
TrS were measured, O operator for PsiM measurements, C
controlled-environment chamber and D date of measurement)
and three random effects (G genotype, G : Y genotype-year, and
G : D genotype-date interactions) was fitted with maximum likeli-
hood (ML). The R/lme4 output was given to R/lmerTest version
3.1-2 (Kuznetsova et al. 2017) to use its function “step.” Backward
elimination of random-effect terms was performed using likeli-
hood ratio test, followed by backward elimination of fixed-effect
terms using F-test for all marginal terms, i.e., terms that can be
dropped from the model while respecting the hierarchy of terms
in the model (Kuznetsova et al. 2017).

The final model after backward elimination was then fitted
with restricted maximum likelihood (ReML) to obtain unbiased
estimates of the variance components and empirical BLUPs (Best
Linear Unbiased Predictions) of the genotypic values. The accept-
ability of underlying assumptions (homoscedasticity, normality,
independence) was visually assessed by plotting residuals and
BLUPs. Broad-sense heritability on a genotype-mean basis was
computed assuming a balanced design [see the introduction of
Piepho and Möhring (2007)], as:

Table 1 Parameter values in two sets of simulation of two traits
in a bi-parental population

Simulation
parameter

Same heritability values Different
heritability values

QTL number 2–50 20–200
Heritability value 0.8/0.8–0.4/0.4–

0.2/0.2–0.1/0.1
0.1/0.5

Genetic variance 0.1/0.1 1/1
Genetic correlation 0.8 0.5
QTL distribution Same-Diff Same

C. Brault et al. | 3

https://www6.montpellier.inrae.fr/lepse_eng/M3P
https://www6.montpellier.inrae.fr/lepse_eng/M3P
https://doi.org/10.15454/YTRKV6
https://doi.org/10.15454/YTRKV6


H2 ¼ r2
G

r2
G þ

r2
G:Y

nyear
þ r2

e
nyear�nrep

; (2)

with r2
G:Y the genotype-year interaction variance, r2

e the residual
variance, nyear the arithmetic mean number of trials (years) and
nrep the mean number of replicates per trial. Its coefficient of vari-
ation was estimated by bootstrapping with R/lme4 and R/boot
packages.

Comparison of genotypic BLUPs
We first recomputed genotypic BLUPs from the raw phenotypic
data of Coupel-Ledru et al. (2014, 2016) in order to control the
model selection step in a reproducible way. These new BLUPs had
a strong linear correlation (>0.9) with those used in Coupel-Ledru
et al. (2014, 2016), as shown in Supplementary Figure S2. The esti-
mates of broad-sense heritability followed the same trend as in
Coupel-Ledru et al. (2014, 2016) (Supplementary Figure S3). They
were higher in WD condition than in WW condition for all traits
except DeltaBiomass.

Genetic correlation between traits varied widely, some abso-
lute correlation values being very high (e.g., up to 0.99 between
PsiM and DeltaPsi in both conditions) when traits derived from
others (Supplementary Figure S4).

Interval mapping methods
Two univariate IM methods were compared, using R/qtl version
1.46-2 (Broman et al. 2003). For both, the probability of each geno-
typic class was first inferred at markers and every 0.1 cM between
markers along with the genetic map, using the R/qtl::calcgeno-
prob function.

Simple interval mapping:
Simple interval mapping (SIM, Lander and Botstein 1989)
assumes that there is at most one QTL per chromosome. A LOD
score was computed every 0.1 cM with R/qtl::scanone, then 1000
permutations were performed to determine the LOD threshold so
that the family-wise (genome wide) error rate (FWER) was con-
trolled at 5%.

Multiple interval mapping:
Multiple interval mapping (MIM, Kao et al. 1999) allows the simul-
taneous detection of several QTLs. It was performed with R/
qtl::stepwiseqtl, using a forward/backward selection of Haley-
Knott regression model (Haley and Knott 1992), with a maximum
number of QTLs set to 4 (or 10 for ROC curve construction, see be-
low), replicated 10 times to overcome occasional instability
issues. Only main effects were included (no pairwise QTL � QTL
interaction). The LOD threshold was computed with permuta-
tions (1000 for QTL detection and 10 for cross-validation of GP,
see below) to determine the main penalty with R/qtl::scantwo.
QTL positions and effects were determined with R/qtl::refineqtl
and R/qtl::fitqtl, respectively. For both methods, QTL positions
were determined as those of LOD peaks above the threshold, with
LOD-1 confidence intervals (Lander and Botstein 1989).

Penalized regression methods:
Genomic prediction can be seen as a high-dimension regression
problem with more allelic effects (in B) to estimate than observa-
tions (in Y), known as the “n� p” problem. The likelihood of such
models must be regularized and various extensions, called penal-
ized regression of the Ordinary Least Squares (OLS) algorithm

were proposed. Such penalization generally induces a bias in the
estimation of allelic effects.

Univariate methods
Ridge regression:
Ridge regression (RR, Hoerl and Kennard 1970) adds to the OLS a
penalty on the effects using the L2 norm and solves the following
equation: ^bRR ¼ argminkjjY � Xbjj22 þ kjjbjj22. As a result, all esti-
mated allelic effects are shrunk toward zero, yet none is exactly
zero. The amount of shrinkage is controlled by a regularization
parameter (k). We tuned it by cross-validation using the
cv.glmnet function of the R/glmnet package version 3.0-2
(Friedman et al. 2010) with default parameters, except family
¼“gaussian” and a ¼ 0, keeping the k value that minimizes the
mean square error (MSE). Note that effects associated with corre-
lated predictors are averaged so that they are close to identical,
for a high level of regularization.

Least absolute shrinkage and selection operator:
Least absolute shrinkage and selection operator (LASSO,
Tibshirani 1996) adds to the OLS a penalty on the effects using

the L1 norm and solves the following equation: ^bLASSO ¼
argminkjjY � Xbjj22 þ kjjbjj1. As a result, some allelic effects are ex-
actly equal to zero, while others are shrunk toward zero. Hence
LASSO performs predictor selection, i.e., provides a sparse solu-
tion of predictors included in the best model, in addition to esti-
mating their allelic effect. The LASSO regularization parameter
(k) was tuned by cross-validation with cv.glmnet function (family
¼“gaussian,” a ¼ 1), as above. If n< p, LASSO selects at most n
predictors.

Extreme gradient boosting:
We first applied LASSO for dimension reduction and then
Extreme Gradient Boosting, a popular machine learning method
(Mason et al. 1999), to estimate marker effects. Hence, we called
this method LASSO.GB. As gradient boosting is a nonlinear
method, it can take into account any nonlinear interaction be-
tween markers, providing better prediction. Briefly, Extreme
Gradient Boosting iteratively updates the estimation of weak pre-
dictors, in order to reduce the loss. This method requires an opti-
mization of many parameters associated with the loss function
(MSE). This optimization was done with train function from R/
caret package version 6.0-86 (Kuhn 2008) using the “xgbTree”
method. As the optimization of numerous parameters was com-
putationally heavy, we fixed some of them (nrounds ¼ max_-
depth ¼ 2, colsample_bytree ¼ 0.7, gamma ¼ 0, min_child_weight
¼ 1 and subsample ¼ 0.5), while testing a grid of varying parame-
ters (nrounds ¼ 25, 50, 100, 150; eta ¼ 0.07, 0.1, 0.2).

Elastic net:
Elastic net (EN, Zou and Hastie 2005) adds to the OLS both L1 and
L2 penalties, the balance between them being controlled by a pa-

rameter (a); it solves the following equation: ^bEN ¼ argminkjjY �
Xbj j22 þ ð1� aÞkjjbjj22 þ akjjbjj1. Both a and k were tuned by nested
cross-validation: 20 values of a were tested between 0 and 1 and,
for each of them, we used cv.glmnet function to choose between
500 values of k. EN performs predictor selection but is less sparse
than LASSO.

Note that RR, LASSO, and EN all assume a common variance
for all allelic effects.
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Multivariate methods
Multi-task group-EN:
Multi-task group-EN (MTV_EN, Hastie and Qian 2016) is a multi-

variate extension of EN, it solves the following equation: ^BMTVEN ¼
argminkjjY � Xbjj2Fþ ð1� aÞkjjbjj2F þ akjjbjj2, F being the Frobenius
norm. It assumes that each predictor variable has either a zero or
nonzero effect across all traits, allowing nonzero effects to have
different values among traits. k and a parameters were tuned us-
ing cv.glmnet (family ¼ “mgaussian”). MTV_RR is the multivariate
extension of RR, also tuned with cv.glmnet (family ¼
“mgaussian,” a ¼ 0). MTV_LASSO is the multivariate extension of
LASSO, also tuned with cv.glmnet (family ¼ “mgaussian,” a ¼ 1).
The implementation of these three methods is identical.

The multivariate structured penalized regression:
The multivariate structured penalized regression (called SPRING
in Chiquet et al. 2017) applies a L1� penalty (k1 parameter) for con-
trolling sparsity (like LASSO) and a smooth L2� penalty (k2 param-
eter) for controlling the amount of structure among predictor
variables (L) to add in the model, i.e., the correlation between
markers according to their position on the genetic map. Both
parameters k1 and k2 were tuned by cross-validation using
cv.spring function (from R/spring package, version 0.1-0). The re-
gression equation can be written as: Y ¼ XBþ e with e � Nð0;RÞ,
R is the covariance matrix of residuals (Gaussian noise). The alle-

lic effects are: B ¼ �XXyX
�1
yy and they comprise both direct effects

XXy and indirect ones Xyy.
SPRING solves the following equation: ðX̂Xy ; X̂yy Þ ¼ argmin � 1

n

log ‘ðXXy;XyyÞ þ k2
2 trðXyXLXXyX

�1
yy Þ þ k1jjXXyjj1. Unlike multi-task

group-EN, SPRING selects specific predictors for each trait, i.e., a
selected predictor can have a nonzero effect for a subset of the
traits. Moreover, SPRING allows the distinction between direct
and indirect effects by using conditional Gaussian graphical
modeling. These effects are due to covariance of the noise such
as environmental effects affecting several traits simultaneously.
This distinction results in two kinds of estimated allelic effects:
the direct ones, re-estimated with OLS, which are best suited for
QTL detection (we called the corresponding prediction method
spring.dir.ols) and the regression ones, which involve both direct
and indirect effects and are best suited for prediction (spring.reg
method).

Robust extension for marker selection
To enhance the reliability of marker selection by penalized
methods, we used two approaches: stability selection (SS)
(Meinshausen and Buhlmann 2009) and marginal False Discovery
Rate (Breheny 2019), both of which aim at controlling the number
of false-positive QTLs. We did not use these methods for genomic
prediction, as they are not designed for this purpose.

Stability selection:
SS is a method that controls FWER, it computes the empirical se-
lection probability of each predictor by applying a high-
dimensional variable selection procedure, e.g., LASSO, to a differ-
ent subset of half the observations for all k values from a given
set, and then retains only predictors with a selection probability
above a user-chosen threshold. SS is implemented in R/stabs
package version 0.6-3 (Hofner and Hothorn 2017) and can also be
adapted to a multivariate framework. For QTL detection on ex-
perimental data, the probability threshold we applied was 0.6 for
LASSO.SS and 0.7 for MTV_LASSO.SS.

Marginal false discovery rate:
Marginal false discovery rate (mFDR) has been defined by
Breheny (2019) as a modified version of the FDR in which those
variables correlated with the causative features are not consid-
ered as false discovery. This study provided an accurate estima-
tion of mFDR for a given k when using EN or LASSO, thus
allowing the selection of a more conservative value of k in order
to remain below a given mFDR threshold. We applied mFDR with
the R/nvcreg package version 3.12.0 (Breheny 2019). For QTL de-
tection on experimental data, we set mFDR to 10% for
LASSO.mFDR and EN.mFDR. To our knowledge, this approach
had not been adapted yet to a multivariate framework.

Evaluation and comparison of methods
All methods were compared on two aspects: their ability to pre-
dict genotypic values, and their ability to select relevant markers,
i.e., to detect QTLs. To assess the prediction of genotypic values
on simulated data, we used the Pearson’s correlation coefficient
between predicted and simulated genotypic values (prediction
accuracy). On experimental data, we used the same criterion, but
the actual genotypic values being unknown, we used their empir-
ical BLUPs instead (predictive ability).

For QTL detection on simulated data, the methods were com-
pared using criteria of binary classification based on the numbers
of true positives and false negatives. On experimental data, be-
cause true QTLs are unknown, no such comparison could be per-
formed; instead, we compared the outcome of the different
methods and QTLs were deemed reliable when found with sev-
eral methods.

Genomic prediction
A nested cross-validation (CV) was applied to assess prediction
by the various methods.

• An outer k1� fold CV was performed to estimate the perfor-
mance metrics, with an inner k2� fold CV applied to the train-
ing set of each outer fold to find the optimal tuning
parameters for the method under study (Supplementary
Figure S5). Both k1 and k2 were set to 5 (see Arlot and Lerasle
(2016). The partitions of the outer CV were kept constant
among traits and methods.

• For IM methods, the optimal tuning parameter was the LOD
threshold obtained from permutations, and the effects for the
four additive genotypic classes (ac, ad, bc, and bd) were esti-
mated by fitting a multiple linear regression model with geno-
type probabilities at all QTL peak positions as predictors,
using R/stat::lm. For penalized regression methods, parame-
ters were optimized with specific functions such as cv.glmnet
and cv.spring.

• As performance metrics, we used mainly Pearson’s correla-
tion (corP) but we also calculated the root mean square pre-
dicted error (RMSPE), Spearman correlation (corS), the model
efficiency (Mayer and Butler 1993), and test statistics on bias
and slope from the linear regression of observations on pre-
dictions (Pi~neiro et al. 2008).

For experimental data, the whole nested cross-validation pro-
cess was repeated 10 times (r¼ 10), whereas for simulated data it
was performed only once, but on 10 different simulation repli-
cates (r¼ 1 and t¼ 10). The 14 traits were analyzed jointly for
MTV_RR, MTV_LASSO, and MTV_EN. But for SPRING, since ana-
lyzing all traits together was computationally too heavy, we split
traits into three groups by hierarchical clustering
(Supplementary Figure S6) performed with R/hclust applied to
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genotypic BLUPs. All traits within a given cluster were analyzed
together.

For simulated data with the same heritability values for both
traits, performance results were averaged not only over simula-
tion replicates and partitions of outer CV, but also over traits, be-
cause both traits were equivalent in terms of simulation
parameters. For simulated data with different heritability values,
performance results were averaged only over simulation repli-
cates and partitions of outer CV. For experimental data, perfor-
mance results were averaged over partitions of outer CV and
outer CV repetitions.

QTL detection
Simulated data:
The quality of a predictor selection method is usually assessed
through the relationship between statistical power (i.e., the true
positive rate, TPR) and type I error rate (i.e. the false positive rate,
FPR). To compare methods, we thus used the ROC (receiver oper-
ating characteristic) curve (Swets et al. 1979), which is the plot of
TPR as a function of FPR over a range of parameters (Table 2),
and the pAUC (partial Area Under the Curve; McClish 1989; Dodd
and Pepe 2003). Any marker selected at 62 cM of a simulated
QTL was counted as a True Positive.

For methods with two tuning parameters, one parameter
was kept constant (a at 0.7 for EN and EN.mFDR, and k2 at 10e-8
for SPRING). We tested several a values for EN but it did not
change much the results (data not shown). For MIM, the maxi-
mum number of QTLs that can be integrated into the model was
set to 10.

Experimental data:
Comparison between methods was based on the number of
detected QTLs, the magnitude of their effects, and the percentage
of variance globally explained by all detected QTLs.

For MTV_LASSO and SPRING, we split traits into three groups
as described above, for computational reasons (for SPRING) and
to test whether such splitting evidenced more reliable QTLs (for
MTV_LASSO). The parameters of penalized methods were tuned
by cross-validation, with MSE as the cost function. We compared
predictor selection between methods in terms of the number of
common selected markers per trait, i.e., the intersection between
markers selected by penalized methods and markers inside confi-
dence intervals found by IM methods. Then all markers in high
LD with those selected were considered as selected too. The
threshold was defined as the 95% quantile of LD value distribu-
tion, for all pairs of markers belonging to the same chromosome
(Supplementary Figure S7), which gave a LD threshold of 0.84.

We deemed selected markers as highly reliable if they were ei-
ther (i) selected by at least five methods, whatever the methods,
(ii) or selected by both EN.mFDR and MIM (see Results). Then, we
defined a highly reliable QTL as the interval of 6 3 cM around
each highly reliable marker (Price 2006; Viana et al. 2016b), as pre-
dicted by polynomial local regression (loess) fitting of genetic
positions to physical position. When several markers were se-
lected inside the 6 cM interval, the QTL interval was extended

accordingly. The genetic positions of this interval were then con-
verted into physical positions, by fitting loess. QTLs overlapping
for several traits on the SNP map were merged into a single QTL,
by physical intervals’ union.

Candidate genes exploration:
After merging the most highly reliable QTLs colocalized between
traits, we searched for underlying candidate genes. We retrieved
the list of genes overlapping the intervals of our QTLs from the
reference Vitis genome 12X.v2 and the VCost.v3 annotation
(Canaguier et al. 2017). We then used the correspondence be-
tween IGGP (International Grapevine Genome Program) and NCBI
RefSeq gene model identifiers provided by URGI (https://urgi.ver
sailles.inra.fr/Species/Vitis/Annotations, last accessed on 07-21-
21) to identify putative functions from NCBI, when available. For
those genes with a putative function, we then refined the analy-
sis to retrieve additional information about their function and ex-
pression. We searched UniProt (https://www.uniprot.org/, last
accessed on 07-21-21) and TAIR (https://www.arabidopsis.org/,
last accessed on 07-21-21) databases based on homologies to ac-
cess a complete description of gene function, name, and corre-
sponding locus in Arabidopsis. In addition, we used the GREAT
(GRape Expression Atlas) RNA-seq data analysis workflow
(https://great.colmar.inrae.fr/app/GREAT, last accessed on 07-21-
21), which gathers published expression data, to assess the level
of expression of our candidate genes in grapevine leaves and
shoots, relevant organs for the traits under study. RNA-seq data
are normalized as detailed in the ‘User manual’ section of the
GREAT platform: “from the raw read counts, the normalized
counts (library size normalization) and the RPKM (gene size nor-
malization) are calculated for each gene in each sample.” Data
were retrieved with all filters set to “Select All” except for the or-
gan considered that was restricted to ‘Leaves’ and ‘Shoot’.

Results
Comparison of methods with simulated data
prediction: cross-validation results
Traits with the same heritability value:
Methods were compared for prediction accuracy by applying
cross-validation on simulated data with four different configura-
tions and four heritability values.

Mean Pearson’s correlation coefficient varied from 0.16 to
0.98, with a strong effect of heritability on prediction accuracy in
all configurations, for the seven main methods (Figure 1). As
expected, MIM performed very well in the “major” configurations
across all heritability values but yielded the least accurate predic-
tion in the “minor” ones. On the opposite, RR performed very well
in the “minor” configurations, but yielded the least accurate pre-
diction in the “major” ones. EN prediction performance was al-
ways intermediate between those of RR and LASSO. QTL
distribution among traits – “same” (for QTLs at the same posi-
tions) or “diff” (for QTLs at different positions) - had very little ef-
fect on prediction accuracy. Moreover, we did not observe any
superiority of multivariate methods over univariate ones, despite

Table 2 Parameter ranges for ROC curve computation, for comparing predictor selection performance of different methods

Method SIM/MIM LASSO/MTV_LASSO Stability Selection SPRING EN mFDR

Parameter name LOD k probability threshold k1 k mFDR
Lowest constraint 0 10e-5 0.5 10e-8 10e-4 0.3
Highest constraint 14 0.25 0.9 0.25 8 0

6 | G3, 2021, Vol. 11, No. 9

academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab248#supplementary-data
https://urgi.versailles.inra.fr/Species/Vitis/Annotations
https://urgi.versailles.inra.fr/Species/Vitis/Annotations
https://urgi.versailles.inra.fr/Species/Vitis/Annotations
https://www.uniprot.org/
https://www.uniprot.org/
https://www.arabidopsis.org/
https://www.arabidopsis.org/
https://great.colmar.inrae.fr/app/GREAT
https://great.colmar.inrae.fr/app/GREAT


the strong genetic correlation simulated between traits (qB¼0.8)
and no correlation between errors.

The prediction accuracy of four additional methods is shown
in Supplementary Figure S8 and prediction accuracy values.
Other performance metrics (see Materials and Methods) are given
for all methods in Supplementary Table S9. All IM methods
yielded equivalent prediction accuracy. LASSO.GB did not im-
prove performance compared to LASSO. MTV_RR showed equiva-
lent performance to univariate RR. Prediction accuracy with
spring.dir.ols was always lower than with spring.reg, and even very
low for “minor” configurations. With 100 or 1000 simulated QTLs
(under each QTL distribution) the ranking of methods based on
prediction accuracy did not change compared to “minor” configu-
rations (Supplementary Figure S10).

Traits with different heritability values:
To further compare prediction accuracy between univariate and
multivariate methods, we simulated two correlated traits with
different heritability values, 0.1 and 0.5. MTV_LASSO performed
slightly better than univariate LASSO for the lowest heritability
trait; however, differences were not significant (Supplementary
Figure S11). On the opposite, prediction accuracy was lower with
MTV_LASSO than with univariate LASSO for the highest herita-
bility trait, reaching quite low values with 200 simulated QTLs.
The same trends were also visible for MTV_EN and EN. MTV_RR
never improved prediction over RR and spring.reg never per-
formed better than RR.

Since these results were unexpected, we also compared pre-
diction accuracy of the above methods using the simulated data
published by Jia and Jannink (2012). We obtained very similar
differences among methods to those with our own simulated
data, even though prediction accuracy was higher in all cases
(Supplementary Figure S12).

QTL detection: ROC curve results
We compared the main methods mentioned above (except RR
that does not perform marker selection), as well as some robust
extensions, for their marker selection performance, by means of
ROC curves, using the same simulated data in the four configura-
tions (Figure 2). The closer a ROC curve obtained through a given
method approaches the optimum point (i.e., FPR¼ 0 and TPR¼ 1),
the better is the method’s selection performance. As expected, IM
methods (SIM and MIM) showed low selection performance when
many minor QTLs were simulated and high selection perfor-
mance when a few major QTLs were simulated. Note that the
MIM curve was hardly visible; it roughly overlapped with the SIM
curve but stopped at a low FPR because it could not select many
QTLs by design.

The penalized regression methods always performed at least
as well as the IM methods and even much better in the case of
“minor” configurations. Among penalized methods, none was
clearly better than the others in all configurations, except for a
slight superiority of MTV_LASSO in the “same_minor” configura-
tion. These methods, and particularly spring.dir.ols, displayed
high variability in classification results with two simulated QTLs
(“major” configurations). Indeed, when one QTL was not
detected in one trait, impact on TPR was stronger than with 50
simulated QTLs.

The most interesting part of the ROC curve for QTL detection
is the left most part, i.e., that with a low FPR (e.g., below 0.1). We
thus calculated the partial Area Under the Curve (pAUC) for FPR
between 0 and 0.1 for methods reaching that value (Supplemen-
tary Figure S13). EN resulted in constantly high pAUC across
configurations and heritability values. In contrast, pAUC for SIM
was quite high at low heritability values for the “same_major”
configuration but dropped for other configurations and herita-
bility values.
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Results on experimental data
Genomic predictive ability:
Mean genomic predictive ability per trait ranged from �0.10 to
0.68 (Figure 3 and Supplementary Table S14). It decreased with
broad-sense heritability. IM methods (in blue) were always
among the three poorest methods for prediction. Based on the
mean predictive ability averaged across traits, MTV_EN yielded
the highest correlation (0.384), followed by RR (0.3721), MTV_RR
(0.3716), MTV_LASSO (0.369), EN (0.357), spring.reg (0.344), LASSO

(0.329), LASSO.GB (0.313), MIM (0.200), and SIM (0.162). However,

based on the number of traits for which each method gave the

best prediction, spring.reg had the highest score, with 6 traits out

of 14, followed by MTV_EN (3 out of 14) and EN (2 out of 14).
In a nutshell, MTV_EN and RR, tied with MTV_RR, provided

the best mean predictive ability across traits. Even though spring.-
reg outperformed them for some traits, its performance was un-
stable and especially low for DeltaBiomass.WW, DeltaBiomass.WD,
DeltaPsi.WW, and DeltaPsi.WD. For computational reasons, all
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traits could not be analyzed together with spring.reg, but were di-
vided into three groups. These four traits with low predictive abil-
ity belonged to the same group. Yet, the effect of group
membership on predictive ability was not significant at 5% (P-val-
ue¼ 0.30 and percentage of variance explained¼ 24%).

QTL detection:
To address the intersection of SNP selection by all methods, and
determine the number of reliable intervals (QTLs) and their posi-
tion, we examined in detail marker selection for each trait and
chromosome. These results are given in Supplementary Table
S15, together with genetic and physical positions and the per-
centage of variance explained. These results are plotted in Figure
4 for night-time transpiration under water deficit (TrS_night.WD)
and in Supplementary Figure S16 for all traits.

Most of the time, more markers were selected for traits under
water deficit than for traits in well-watered conditions, and they
were most often selected by several methods. Penalized methods
tended to select exactly the same markers, not only close ones;
for example, for TrSnight:WD on chromosome 4, the same marker
(at physical position 21,079,664 bp) was selected by seven differ-
ent methods (Figure 4).

We considered markers selected by both MIM and EN.mFDR
as highly reliable ones for three reasons: (1) markers selected by
both MIM and EN were considered as reliable ones, because most
markers selected by LASSO were also selected by EN, whereas
MIM marker selection was quite different; (2) simulations showed
that MIM and mFDR methods led to a very low FPR; (3) these
methods belong to different method classes (IM vs penalized re-
gression). We also considered as highly reliable those markers se-
lected by at least five methods. These criteria resulted in a set of
59 highly reliable selected markers, which were converted to ge-
netic intervals of 6 3 cM around each selected marker.
Overlapping intervals per trait were merged, resulting in 25
highly reliable QTLs.

These 25 QTLs involved nine traits, mostly under water deficit,
and were located on seven chromosomes (Supplementary Figure
S17, Supplementary Table S18). Some QTLs colocalized for differ-
ent traits, such as on chromosome 1, and had similar distribu-
tions of genotypic BLUPs according to genotypic classes
(Supplementary Figure S19).

Among these 25 QTLs, we found eight new highly reliable
QTLs compared to Coupel-Ledru et al. (2014, 2016), among which
five were not detected by MIM. In particular, a completely new
QTL for TrS_night.WD was found alone on chromosome 12. Most
other new QTLs were colocalized with QTLs previously found in
single-year analysis and/or for the other watering condition.

Notably, we observed colocalization of TrS_night.WD, TE.WD and
DeltaBiomass.WD QTLs on chromosomes 4 and 17.

In total, the percentage of variance explained (adjusted R2) per
trait was 51.3% for TrS_night.WD (36% in 2012 for Coupel-Ledru
et al. 2016), 33.9% for PsiM.WD, 31.4% for DeltaPsi.WD, 26.9% for
DeltaBiomass.WW, 19.4% for TE.WD, 18.6% for TE.WW, 17.0% for
KS.WD, 14.9% for DeltaBiomass.WD, and 8.5% for TrS.WD.

Candidate genes
After merging the QTLs colocalized between traits, we obtained
12 intervals, located on chromosomes 1, 4, 10, 12, 13, 17, and 18,
harboring a total of 3461 genes according to the VCost.v3 annota-
tion (Canaguier et al. 2017). Among them, 2379 had an NCBI
Refseq identifier and 1757 a putative function (Supplementary
Table S20). We then focused our analysis on the eight “new”
intervals, i.e., those that were not overlapping with QTL intervals
repeated over years by Coupel-Ledru et al. (2014, 2016). They
encompassed 1155 genes, half of which were annotated. We were
able to retrieve from TAIR and/or UniProt a more precise descrip-
tion of the gene function for 86% of the annotated genes
(Supplementary Table S20). The remaining ones either did not
have any homologous gene in Arabidopsis or were not described
in the above-mentioned databases. RNA-seq data was available
on the GREAT platform for 90% of the annotated genes. We fur-
ther focused on the highly reliable QTL co-localized on chromo-
some 4 for TE, TrS_night and DeltaBiomass under various
conditions. We proceeded to a functional classification of the 161
annotated genes underlying this QTL, based on the full descrip-
tion previously retrieved (Supplementary Tables S5 and S21). For
75 genes, an integrated function at the plant or organ level was
explicitly quoted in the homologous-based description. We
grouped these integrated functions into 12 major groups (Figure
5). For a substantial part of genes, functions consistently related
to traits involved: 15 genes related to hydraulics (stomata, xylem,
and trichomes), relevant for TrS_night and thus TE; 27 to growth
or development and one to photosynthesis, both relevant to
DeltaBiomass and thus TE. For the 86 genes for which no inte-
grated function was explicitly quoted, we further built a classifi-
cation based on their cellular or molecular function. Among
them, we found six genes related to carbon metabolism, one to
wall formation (both relevant for DeltaBiomass) and six to drought
stress signaling and drought-related hormones (relevant for
TrS_night).

Discussion
This study contributes to our knowledge of the complex genetic
determinism of vegetative traits under different watering

1 4 12 13 17

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

spring_corr

MTV_LASSO_corr

MTV_LASSO.SS

MTV_LASSO

EN.mFDR

LASSO.mFDR

LASSO.SS

EN

LASSO

MIM

SIM

Genetic position (in cM)

Number of selections

1

2

3

4

5

6

7

8

9

Figure 4 Marker selection by all methods for TrS_night.WD trait on chromosomes 1, 4, 12, 13, and 17. Each marker selected by a given method is
represented by a colored point, the color indicating the number of methods that have selected that specific marker. The boxes correspond to
chromosomes and the x-axis to the position along the genetic map (in cM).

C. Brault et al. | 9

academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab248#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab248#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab248#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab248#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab248#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab248#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab248#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab248#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab248#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab248#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab248#supplementary-data


conditions in three different ways. We compared by simulation
several univariate and multivariate methods for genomic predic-
tion and QTL detection, and re-analyzed grapevine phenotypes
obtained under semi-controlled conditions. In particular, we
showed that penalized methods are valuable not only for predic-
tion but also for QTL detection. Indeed, we found new QTLs using
these methods and identified relevant candidate genes.

Methodological aspects: method comparison
Handling linkage disequilibrium:
IM methods estimate genotypic probabilities between markers
according to a genetic map which is computationally costly to
build. On the other hand, most penalized methods do not require
any previous knowledge on LD.

The LASSO assumption that all predictor variables are inde-
pendent is all the more violated that there are many markers. In
the case of a group of correlated predictors (e.g., SNPs in LD), EN
selects either no or all predictors within the group with close esti-
mated effects (Zou and Hastie 2005), whereas LASSO selects a
single predictor. In that sense, EN aims at correcting the draw-
backs of LASSO when predictor variables are highly correlated. By
exploring a large number of configurations of the finite-sample
high-dimensional regression problem, Wang et al. (2020) showed
that EN is competitive for both prediction and selection in most
cases with highly correlated predictors. In agreement with these
results, we showed that EN performed well for both prediction
and selection on our simulated data, and that multivariate EN
performed best for prediction on grapevine experimental data.

It would be interesting to test whether EN still remains the
main default method when applied to a population with a shorter
LD, e.g., a diversity panel as defined in Nicolas et al. (2016).

Indeed, the ranking of methods is likely to depend not only on
linkage disequilibrium and population size, but also on the ge-
netic architecture of the traits of interest as well as the accuracy
with which phenotypic values were obtained, and all these varia-
bles can interact with each other, but studying this was out of the
scope of the current work.

Comparison between interval-mapping and penalized re-
gression methods for genomic prediction:
As expected, IM methods performed poorly to predict accurate
genotypic values when the QTL number was large. These conclu-
sions are in agreement with previous studies (Figure 1 and
Supplementary Figure S8), even though most implemented
marker selection methods other than interval-mapping
(Bernardo and Yu 2007; Lorenzana and Bernardo 2009; Mayor and
Bernardo 2009; Olatoye et al. 2019). This confirms that for com-
plex traits, genomic prediction should not be based only on QTLs
detected by IM methods.

None of the penalized univariate methods performed opti-
mally in all cases (Figures 1 and 3 and Supplementary Figure S8),
as also found in the literature (Heslot et al. 2012; Riedelsheimer
et al. 2012; Azodi et al. 2019). As shown by simulation, RR was bet-
ter adapted to highly polygenic genetic architecture, whereas
LASSO was better adapted to a few major QTLs. Moreover, in the
case of many minor QTLs, RR was the most stable method across
heritability values, as previously described for several traits and
species (Heslot et al. 2012; Azodi et al. 2019). However, RR predic-
tion accuracy dropped when the QTL number was too small,
whereas EN still predicted as well as LASSO. EN was hence well
adapted to various numbers and distributions of QTLs.

Figure 5 Functional classification of the annotated genes underlying the highly reliable QTL detected on chromosome 4 for night-time transpiration,
growth, and TE. Hierarchical classification of the 161 genes based on their functions. See Supplementary Table S21 for the details of this classification.
When an integrated function at the organ or plant level was explicitly quoted in the gene annotation, genes were classified on this basis. When no
integrated function was explicitly quoted, they were classified based on their cellular or molecular function. In both cases, functions were then
classified as “Related” if related to the traits of interest in this QTL, or “Unrelated” if not.
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Multivariate vs univariate:
When the same heritability was simulated for both trait varia-
bles, no superiority of multivariate methods was observed, even
when both traits had QTLs at the same positions (Figure 1 and
Supplementary Figure S8). When different heritability values
were simulated for the two traits, we observed a slight superiority
of MTV_LASSO (resp. MTV_EN) over LASSO (resp. EN) only in the
“same” and “major” configuration (with both traits sharing the
same two QTLs) for the trait with small heritability (Supplemen-
tary Figure S11).

Other authors who tested multivariate GP on simulated data
systematically applied different heritability values; they found a
superiority of multivariate methods over univariate ones for the
trait with the smallest heritability (Calus and Veerkamp 2011; Guo
et al. 2014; Jiang et al. 2015; Dagnachew and Meuwissen 2019).
However, all these studies were based on a smaller, more favor-
able, p/n ratio, a key component of high-dimensional models
(Verzelen 2012). For example, in Jia and Jannink (2012), their 500
observations for 2020 predictors correspond to a ratio of �4, com-
pared to our 188 observations for 3961 predictors corresponding to
a ratio of �21. Indeed, parameters n and p are involved in the sam-
ple complexity function defined in Obozinski et al. (2011), which
predicts the theoretical cases where MTV_LASSO is superior to its
univariate counterpart in terms of variable selection. Accordingly,
applying our methods to Jia and Jannink (2012) data allowed us to
evidence a larger difference between univariate and multivariate
LASSO than with our simulated data.

Unexpectedly, when reanalyzing the data simulated by Jia and
Jannink (2012), we obtained lower prediction accuracy with our
MTV_LASSO (Supplementary Figure S11) than they did with their
multivariate BayesA (their Figure 1A). A similar result in a univar-
iate setting was found by Guan and Stephens (2011), who com-
pared BSVR (comparable to BayesA) and the LASSO. They found
that BSVR had markedly higher power than LASSO. Moreover,
the parameters of both BSVR [in Guan and Stephens (2011)] and
BayesA [in Jia and Jannink (2012)] were estimated with a MCMC
algorithm. No inner cross-validation was needed, hence the sam-
ple used to train the model was larger. This difference may ex-
plain why Figure 1A from Jia and Jannink (2012) shows better
prediction accuracies for multi-trait models compared to their
single-trait counterparts, although no confidence interval was
displayed. Note that our RR prediction accuracies were close to
those of their GBLUP (univariate and multivariate). In conclusion,
prediction accuracy is affected both by the dimension of the
problem (i.e., n and p) and the method used (i.e., Bayesian with
MCMC or cross-validation).

For experimental data, we observed that MTV_LASSO (respec-
tively MTV_EN) was superior to LASSO (resp. EN) for the five traits
with the smallest heritability (Figure 3). Such this improvement
suggests that MTV_LASSO (resp. MTV_EN) was able to borrow sig-
nals from the most heritable traits to the least heritable ones,
likely because of a partially overlapping genetic architecture be-
tween these traits. This interpretation is reinforced by the fact
that a QTL for low-H2 trait, TE.WW, colocalizes on chromosome 4
with QTLs for four high-to-moderate-H2 traits (TrS_night.WD,
DeltaBiomass.WW, DeltaBiomass.WD and TE.WD). This improve-
ment was not found in Jia and Jannink (2012), who also tested
their methods on real pine data from Resende et al. (2012). These
observations suggest that the number of traits analyzed (14 in
our case and 2 in Jia and Jannink 2012 study) may also play a role
in the gain in prediction accuracy of multivariate over univariate
methods.

Furthermore, we simulated data with various levels of resid-
ual correlation among traits (0, 0.4, and 1) but this did not signifi-
cantly change prediction results (data not shown). A more
detailed methodological analysis is out of the scope of the cur-
rent work.

Comparison between interval-mapping and penalized re-
gression methods for QTL detection:
Comparison with the ROC curve between IM and penalized re-
gression methods for marker selection has not been extensively
studied before. As expected, we found that IM methods are well
adapted to detect a few major QTLs but not many minor QTLs
(Figure 2). Yi et al. (2015) similarly compared the FDR and TPR
reached by single marker analysis and different penalized regres-
sion methods, some of which being adapted to control FDR; they
found contrasting results, depending on the criteria studied
(modified version of TPR or FDR). However, they focused only on
an association panel whereas we worked on a bi-parental popula-
tion. Other authors (Cho et al. 2010; Li and Sillanpää 2012;
Waldmann et al. 2013) successfully applied LASSO or EN for per-
forming GWAS, but without comparing IM and penalized meth-
ods for QTL detection. Moreover, we found that penalized
methods could be as good at marker selection as IM methods,
and even far better when there were many minor QTLs. Among
the penalized methods we compared, none clearly outperformed
the others for marker selection in all configurations.

Multivariate vs univariate:

As MTV_LASSO selects one predictor for all traits, its superiority
over univariate LASSO depends on QTL distribution across traits,
notably on the amount of genetic basis shared by the traits
(Obozinski et al. 2011). However, as for prediction, we showed that
MTV_LASSO performance was not different whether QTLs were
at the same or at different positions across traits (Figure 2).
Nevertheless, we observed that MTV_LASSO was slightly better
than LASSO when many QTLs were simulated.

SPRING had never been evaluated before for its quality of pre-
dictor selection. As for prediction, SPRING showed unstable
results across our simulation replicates and hyper-parameter
values. However, for the ROC curve, we did not include predictor
structure in the model, which may have hampered marker selec-
tion quality.

Efficient default method for both QTL detection and genomic
prediction:
IM methods were designed for marker selection; hence they are
not expected to be optimal for prediction, as confirmed in our
study. Among penalized regression methods, some may be better
at prediction than at marker selection, and vice versa. For exam-
ple, our results showed that EN performed well across several
configurations for both aims. Some methods such as SPRING are
specially adapted to handle both purposes but this method pro-
duced too variable results for either prediction or QTL detection.
However, SPRING is a recent method that still can be improved to
correct this drawback.

New penalized regression methods are continuously being de-
veloped. In particular, graph structured sparse subset selection
(Grass) recently proved to outperform existing methods for both
prediction and predictor selection, thanks to a L0 regularization
that limits the number of nonzero coefficients in the model
(Do et al. 2020). It could be tested on our data when available.
Moreover, multivariate methods are presented as being more
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efficient at using the whole signal in the data, whether for marker
selection (Inouye et al. 2012) or prediction (Jia and Jannink
2012; Guo et al. 2014), but our results revealed no systematic ad-
vantage of multivariate methods over univariate ones for both
aims.

Using penalized methods for both marker selection and geno-
mic prediction requires adapted hyper-parameter values. For EN,
LASSO, and SPRING, the k value controls sparsity (e.g., the num-
ber of selected markers). Thus, the optimal k value might not be
the same if the aim is to limit FPR or to maximize predictive abil-
ity (Li and Sillanpää 2012). For prediction, we traditionally use
cross-validation to tune hyper-parameters by minimizing MSE.
For marker selection, there is no direct equivalence. That is why
we tested extensions of these methods (mFDR and SS) that con-
trol sparsity for robust marker selection; both proved efficient in
selecting the most relevant markers.

In order to shed light on the link between prediction accuracy
and marker selection, we plotted the prediction accuracy at each
point of the ROC curve for EN and EN.mFDR against FPR for mi-
nor configurations (with 50 simulated QTLs) (Supplementary
Figure S22). For EN, we showed that prediction accuracy reached
its maximum when FPR was below 0.05. Then, FPR increased
while prediction accuracy decreased until it reached a plateau.
This means that prediction quality is intimately linked to selec-
tion quality, especially at low heritability. For EN.mFDR, FPR al-
ways stayed below 0.015 but prediction accuracy was lower.

As a consequence, as an efficient default method, we advise at
this stage to apply EN for performing genomic prediction, and its
extension EN.mFDR for performing sparser marker selection.

Genetic determinism and prediction of grapevine response
to water deficit:
Based on experimental data on the Syrah � Grenache progeny
(new genotypic data and already published phenotypic data), we
compared the same methods as above for both prediction and
marker selection. To the best of our knowledge, grapevine GP
within a bi-parental family has only been applied to a limited
number of traits, with very few methods and never multivariate
GP. Fodor et al. (2014) studied GP in grapevine with simulated
data on a diverse structured population; they tested RR-BLUP,
Bayesian Lasso, and a combination of marker selection and RR.
Viana et al. (2016a) used an inter-specific grapevine bi-parental
population. They predicted cluster and berry phenotypes (num-
ber and length of clusters, number, and weight of berries, juice
pH, titrable acidity) with RR-BLUP and Bayesian LASSO applied to
table grape breeding. In addition to yielding further insights into
method comparison beyond those obtained by simulation, our
study brought valuable novel biological knowledge about grape-
vine water use under different watering conditions. Indeed, new
methods and the new SNP genetic map allowed us to find novel
QTLs, as compared to those previously detected with the same
phenotypic data (Coupel-Ledru et al. 2014, 2016). Our study also
provides novel results of practical interest to grapevine breeders.
We showed what predictive ability they can expect for drought-
related traits within a progeny: here, always higher than 0.3, and
up to more than 0.65 for some traits. Even though these traits are
difficult to phenotype, they correspond to crucial breeding targets
in the context of climate change. Our results may help motivate
their phenotyping in the training panels of breeding programs.

Predictive ability and genetic architecture:
Among univariate penalized methods, RR generally had equiva-
lent or better predictive ability compared to LASSO. For the traits

with the largest discrepancy between RR and LASSO, this sug-
gests that trait variability was rather due to many minor QTLs
than to a few major ones. On the other hand, for a few traits, e.g.,
PsiM.WD, DeltaPsi.WD, and TE.WW, predictive abilities with sparse
methods (s, LASSO, and IM methods) were better than with RR,
suggesting a genetic architecture with few major QTLs rather
than an infinitesimal one in those cases.

Finally, while not considered by the penalized methods
used, nonadditive genetic effects such as epistasis could be in-
volved. We, therefore, tested the superiority of LASSO.GB over
LASSO. Extreme Gradient Boosting methods are indeed among
the best machine learning methods (Chen and Guestrin 2016).
LASSO.GB did not markedly increase predictive ability on ex-
perimental data (Figure 3). However, we cannot exclude that
this might be due to a poor optimization of Extreme Gradient
Boosting parameters or to an insufficient number of observa-
tions to correctly fit the model. We also tested if coding differ-
ently the design matrix to estimate dominance genetic effects
improved predictive ability and it was not the case (data not
shown).

Candidate gene analysis:
The thorough methodology deployed for candidate genes analy-
sis allowed us not only to retrieve a list of genes potentially un-
derlying the QTLs of interest, but also to classify them based on
their function and expression to point at the most likely candi-
dates. We focused on the highly reliable QTL detected on chro-
mosome 4 for TrS_night, TE, and DeltaBiomass. TrS_night QTL was
previously described as a promising target for marker-assisted se-
lection, as alleles limiting night-time transpiration also favor
plant growth, resulting in a doubly, beneficial impact on improv-
ing TE (Coupel-Ledru et al. 2016). Moreover, this QTL was found
using seven methods. Among the plethora of integrated functions
represented within the list of annotated genes underlying this
QTL, we show here that a subset of more likely candidates can be
defined as possibly related to the traits of interest. On the one
hand, these include genes related to broad-sense hydraulics and
water loss, with a possible direct impact on TrS_night: seven genes
involved in stomatal development, nine involved in stomatal
opening—sometimes through the abscicic acid signaling path-
way—, one related to xylem development and one to trichome
development (Supplementary Table S21). One of these genes, the
trihelix transcription factor GT-2 (Vitvi04g01604), was specifically
shown to impact transpiration and TE in Arabidopsis by acting as
a negative regulator of stomatal density. On the other hand, 27
genes in the list are directly related to growth, development, or
photosynthesis, hinting to a possible direct impact on
DeltaBiomass. A histidine kinase 1 (Vitvi04g01483) may be a partic-
ularly interesting candidate for its multiple roles in Arabidopsis in
ABA signaling, stomatal development, and plant growth, hence
potentially simultaneously acting on both components of TE.
Both these likely candidates were often highly expressed in
grapevine leaves. More precise analyses of these candidate genes,
including functional genomics work and possibly gene editing,
will now be necessary to identify the causative polymorphisms
under these new QTLs.

Conclusions
Rather than decoupling genomic prediction from the identifi-
cation of major QTLs, we argue for the need to pursue both
goals jointly. Indeed, they provide complementary information
on the genetic architecture of the target traits, as well the key
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underlying functions. Our study provided encouraging findings
for further implementing genomic prediction in grapevine
breeding programs. Applied to both simulated and 14 experi-
mental traits, univariate and multivariate Elastic Net proved to
be efficient for both goals, followed by mFDR control for the ro-
bust identification of QTLs. Moreover, of interest to plant biolo-
gists seeking to understand the response to water stress, our
results highlighted several candidate genes underlying inte-
grated traits such as night-time transpiration, TE, and biomass
production. For some, their putative functions suggest causal
links with stomatal functioning, trichome development, or the
ABA pathway.
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