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Abstract

Motivation: There is a need for rapid and easy to use, alignment free methods to cluster large groups of protein
sequence data. Commonly used phylogenetic trees based on alignments can be used to visualize only a limited
number of protein sequences. DGraph, introduced here, is a dynamic programming application developed to
generate 2D-maps based on similarity scores for sequences. The program automatically calculates and
graphically displays property distance (PD) scores based on physico-chemical property (PCP) similarities from
an unaligned list of FASTA files. Such “PD-graphs” show the interrelatedness of the sequences, whereby clusters
can reveal deeper connectivities.

Results: PD-Graphs generated for flavivirus (FV), enterovirus (EV), and coronavirus (CoV) sequences from
complete polyproteins or individual proteins are consistent with biological data on vector types, hosts, cellular
receptors and disease phenotypes. PD-graphs separate the tick- from the mosquito-borne FV, clusters viruses
that infect bats, camels, seabirds and humans separately and the clusters correlate with disease phenotype. The
PD method segregates the B-CoV spike proteins of SARS, SARS-CoV-2, and MERS sequences from other
human pathogenic CoV, with clustering consistent with cellular receptor usage. The graphs also suggest
evolutionary relationships that may be difficult to determine with conventional bootstrapping methods that require
postulating an ancestral sequence.

Availability and implementation: DGraph is written in Java, compatible with the Java 5 runtime or newer.

Source code and executable is available from the GitHub website

(https://qithub.com/bjmnbraun/DGraph/releases). Documentation for installation and use of the software

is available from the Readme.md file at (https://github.com/bjmnbraun/DGraph).

Contact: bimnbraun@gmail.com or webraun@utmb.edu
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Supplementary information: Supplementary information Table S1 and Fig. S1 are online available.

1 Introduction

While there are many methods for analyzing groups of distantly related sequences, most rely on sequence
alignments to suggest phylogenies. Phylogenetic trees based on such alignments imply linearity and a common
root, and become difficult to interpret as the number of sequences increases. The limitations of these methods
become obvious when determining relationships among the thousands of viral sequences now available. Linear
“distance trees” generated from pairwise alignments cannot reliably suggest evolutionary relationships between
distantly related species, or correlate sequences according to disease phenotype or host. Authors typically resort
to drawing 2D-plots by hand to illustrate the interrelatedness of larger virus groups.

Here, we present a rapid graphical method for analyzing large data sets of related protein sequences that does
not require pre-alignment or assumption of a common ancestor. D-graph can present conventional pairwise
alignment scores, such as those from Clustal, or simple overall identity. However, the program’s ability to
generate “property distance” PD-graphs, based on physicochemical properties (PCP) of the amino acids (1),
allows it to suggest more meaningful relationships among distantly related sequences. We have previously
validated the PD method as a way to classify allergenic proteins and detect similar IgE epitopes (2, 3). We have
shown that changes in the PCP values of key positions within flaviviral protein sequences correlate with
significant phenotypic changes (4, 5). We have previously shown how PD-graphs clarify the inter-relationships
of allergenic proteins (6) and group alphavirus and related PCP-consensus proteins (7).

In addition to describing the program, we show here its application to three diverse families of positive strand
RNA viruses, flaviviruses (FV), enteroviruses (EV) and the B-coronaviruses (3-CoV), which include SARS, MERS
and the pandemic SARS-CoV-2). The results illustrate how PD-graphs of the viral sequences correlate with

phenotype and suggest evolutionary relationships of distantly related viruses.

2 Material and Methods

2.1 The property distance (PD).

The peptide similarity search tool (2, 3, 8, 9) was initially developed to find protein sequences in the Structural

Database of Allergenic Proteins (SDAP) (10) containing user specified peptide sequences. The search tool
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uses a novel technique to find similar sequences in the proteins by comparing the physicochemical properties
(PCPs) of the amino acids in the query and the target sequence. The differences in the PCP values in the two
sequences are then measured by a property distance (PD). Briefly, five quantitative descriptors of
physicochemical properties (PCPs) are assigned to each of the 20 amino acids. The five descriptors E1 to E5
were derived by multidimensional scaling of 237 physical-chemical properties for the 20 naturally occurring
amino acids, thus the main differences of all 237 properties for the 20 amino acids are reflected by the five
descriptors E1-E5. These in turn represent groupings of PCPs such as hydrophobicity, size, or secondary
structure propensities, charge, aromaticity and size. The PD of two sequences A and B is then calculated as

the average distance between the descriptor vectors E for corresponding amino acids, i.e.:

PD(A, B) Z d(E(A;), E(B;))

, where d computes the standard Euclidean or L2 dlstance and N is the length of sequence B, assumed to be
the same as A in this equation (Section 3.1 discusses the non-equal-length case.)
Identical sequences have a PD value of 0. Small PD values up to 4 typically indicate few substitutions with
smaller values for conservative substitutions between the two sequences. Thus, the lower the PD value, the
more closely related the sequences. In a database search of over 1500 allergenic protein sequences in SDAP,
PD values of less than 8 are statistically significant for windows up to 12 amino acids and have been shown to
correlate with immune recognition (2). Additional statistical measures (z-scores) can be calculated to indicate
the significance of a PD value comparing it to the distribution of PD values over all random matches using
larger datasets.

2.2 The DGraph program

DGraph, as discussed below, can generate a 2D map based on any input value list. In default mode, if given a
list of FASTA formatted sequences in a text file as input, it calculates the pairwise PD values for the sequences
and graphically presents their similarities. The resulting “PD-graph” represents the sequences as nodes in a
2D mapping where the distances of the edges between nodes are fitted to the numerical PD values. Whether
the values come from the internally calculated PD values, or other user supplied ones, D-Graph calculates a
metric of how faithfully the distances between all pairs of nodes on the graphic match their corresponding

similarity scores or PD values.


https://doi.org/10.1101/2020.08.13.249649
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249649. this version posted August 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

2.3 Calculating PD values with a sliding window.

For comparing sequences of amino acids that are not matched one-to-one, we instead define a metric
comparing shorter fixed-length subsequences, or "windows." We define the windowed PD between two
sequences to be the PD between the least distant pair of subsequence having some length wSize (for the
window size). The windowed PD measures the sequence similarity of the most conserved portion of the two
sequences of length wSize. Note that windowed PD is 0 between two sequences having an identical string of
amino acids at a conserved region of length wSize. The occurrence of this is exponentially less likely as wSize
increases; for the results in this paper we use a wSize of 22 amino acids. Windowed PD can be computed
naively by considering each pair of wSize subsequences in turn and computing their PD. A more efficient
approach exploiting the linearity of PD is to slide a window of length wSize along and compute PD
incrementally, for each offset of the shorter sequence along the longer one, and keeping track of the smallest
PD value found.

2.4 Algorithm to find the optimal configuration of the nodes. Similarity scores from alignment programs, such as

ClustalW, MUSCLE or T-Coffee are translated into distances as:
(max{SS,Vh})?

, Wwhere SS is a similarity score and parameter h determines the minimum similarity cutoff. Similarity scores

dDGraph —

below h™0.5 are mapped to the maximum distance of 1/h in this equation, while larger similarity scores have an
inverse square law with distance. The squaring reduces distances between highly similar sequences, which
encourages visual clustering of similar sequences in the final figure DGraph produces.

The distances derived from the scores or the PD values are normalized and then used to compute a measure

U of how accurately the represented distance between nodes matches the normalized distances:

d(Z, 7)) —di i\~
U= Z (-Tdig:_l ) = Z Wi g

(2,7)€2 (2,7)€

, Where the sum is over the set Omega of pairs of distinct sequences i,j, and the terms in the numerator are the

representation distance and the normalized distance between those two, respectively. U is a sum of the
squared relative error of each pair of sequence’s representation placement vs the normalized sequence

distance, where relative error ( ui; ) is computed with an adjusted denominator of d;j + 1 to account for O-
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distance pairs.

As described, optimizing U results in a figure determined primarily by the most distant pairs of sequences. To
better represent relationships between closely related sequences, we optimize a distance-adjusted U*, as
follows: Define u*j;, equal to u;;, but divided by d(xi, X;), represent a distance only when the representation
distance is at least 0.001% of the figure diameter, and U* = sum(u*;%) . Additionally, we remove from Omega
any pair (i,j) with a PD or user-defined score-based distance larger than a configurable maximum distance
comparison cutoff (the default value is 14). Sequences with no distance below this cutoff to the rest of the
figure then become “islands” that are removed before optimization begins. These steps are both intended to
make the resulting DGraph figure more faithfully represent short distances.

Initially, DGraph creates randomly-placed nodes for each sequence. DGraph then minimizes U* using a
gradient descent approach. That is, at each step each node’s position X is shifted by an amount proportional to
-u*;; along each direction (x; — x;). In order to damp oscillations and promote convergence, we add a
momentum vector p;ito each node, and apply the contribution of each u*; to the momentum vectors rather than
the position directly. Thus, at each step the position of each node x;and its associated momentum vector p; are

updated as follows:

At
— — 5k — —
pi < (1=f)pi + P E (_U»q;,j - (T —Cﬂz))
J#i
— — —
T; <— x; + At - Di
, Where small positive coefficients time-step (delta t), mass (m), and friction (f) are parameters of the descent.

2.5. Use of the program and utility tools.

Parameters of the optimization, such as time-step, mass, friction, and maximum distance comparison cutoff,
can be user specified with default values of 0.001, 0.01, 0.008, and 14. DGraph can be run interactively in
order to fine-tune these parameters and to see a live view of the optimization. DGraph can be run with a helper
script that runs the optimization multiple times, potentially resulting in different figures. The script compares the
runs by optimization score, and normalizes the orientation of the final locations of the nodes (by rotation and
reflection) to produce a consensus graphic (this uses the Kabsch algorithm, for details see (11)). The user can
customize how sequences are labeled on the generated graphic, such as including the whole of short

sequences (when graphing peptides, see (6)) or FASTA names as labels. The user can also apply custom
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coloring to the graphic including a color gradient for the line segments between nodes based on PD-value or
user defined distance, and files of per-node colors useful for annotating sequence properties such as

phenotype.
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3. Results

3.1 DGraph converts various sequence scoring functions or PD values into 2D maps.

In previous studies we established and validated the correlation of PD values for peptide segments with IgE
binding affinities (2). We therefore expect that PD-graphs would be also useful to predict antibody cross-
reactivities of different viral species. In supplementary Fig. S1 we illustrate this feature for the PCP-consensus
sequence 7P8 of the domain 3 of the E protein of the four DENV viruses. The consensus domain 7P8 was
designed as a potential vaccine candidate against all four DENV species and was recognized by all four
species. In the PD-graph 7P8 is located near the middle of all four viruses (Fig. S1).

An alignment of 49 different FV was then used to illustrate the flexibility of the program. Figure 1 illustrates the
flexibility of the software, showing 2D-maps for three different sets of similarity data for FV sequences based
on different metrics. The first column shows a D-Graph calculated from previously calculated Clustal W
alignment scores. The other two columns show two different ways to use PD values as a metric for generating
the maps. The middle column shows the result of computing the PD value between each pair of sequences
after a multiple alignment, which causes each sequence to be the same length by inserting alignment gaps.
The last column shows results using instead a “sliding window” of 22 amino acids, by sliding every window in
the shorter sequence along the longer sequence to find a best match, i.e. the one with the lowest pairwise PD-
value, and computing the average PD-values of the matches.

The bottom frames of the figure show the results from a 60 amino acid region of the enterovirus 3B-3C protein
interface, covering the viral protein linked to the genome (VPg) and an area in 3C that contains a vestigial
additional VPg-like sequence (12, 13). For all three sets of viral sequences, the maps generated by the PD
values show more distinct groupings than the maps generated by the ClustalW scores. They illustrate that the
program can be used to rationally cluster even very long sequences (the whole viral genomes of the FV) as
well as short sequences (the VPg area of the enteroviruses).

3.2 The PD-graphs correlates with vector and host competence.

The map from the top row (middle panel) in Fig.1 is further annotated and highlighted in more detail in Fig. 2.
The PD metrics shows a clear division of the tick from the mosquito borne or no-known vector and Rio Bravo
group viruses. The map also clusters viruses that infect bats, camels (Kadam) and seabirds separately from

those infecting humans, such as the Greek goat (node 29) and Turkish sheep encephalitis viruses (node 30)
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group. This observation also holds when the analysis is based on a smaller section of the virus, the 230 amino
acid NS2a protein (middle row of Fig. 1). The PD-graph is consistent with the patterns of insertions and
deletions we previously noted within the E-protein that mark the flaviviruses FV (4) according to species and
disease specificity. With regard to the latter, hemorrhagic Yellow Fever (YF) virus (node 26) lies near the 4
DENV serotypes (nodes 19-22), which can cause hemorrhagic disease with fatal consequences in children.
Interestingly, Zika virus (node 18) falls exactly between the mosquito borne encephalitic and hemorrhagic
groups, consistent with its cross reactivity with DENV antibodies (14). An identity matrix for the E protein
domain 3 region of Zika compared to WNV, DENV strains and our 7p8 PCP-consensus protein that binds
antibodies to all four DENV serotypes (15) illustrates how this Zika indeed lies between the encephalitic and
hemorrhagic FV, with >50% identity to all (Supplementary Fig. 1). While Zika infections generally cause mild
disease, they can also result in Guillame-Barre syndrome and microcephaly if contacted by a pregnant mother.
Zika’s nearest neighbor in the plot is the encephalitic virus, Rocio (16) .

The enteroviruses (EV), a non-enveloped group of +-strand RNA viruses that includes poliovirus, coxsackie
and many other human pathogens, do not depend on arthropod vectors for transmission. The bottom part of
Fig. 1 and the annotated graph (Fig. 3) show that even a short segment of EV sequences was sufficient to
separate simian from human isolates. The separation by the two parameters (Fig. 1 g-i), Clustal or PD,
generated similar clusters of the human viruses, which are consistent with other genetic classifications done
with other areas of the sequences (17). Classifying enteroviruses according to disease type has proved very
difficult and will not be attempted here. Early attempts to distinguish distinct types according to paralysis
characteristics observed in a murine model, proved unreliable (18). Thus sequence similarity has proved to be
the best classifier for strains,

3.3 PD-graph accurately separate B-CoV according to disease type and receptor used.

SARS-CoV-2 is known to be closely related, in its sequence, structure (19), receptor binding (20) and epitopes
recognized by neutralizing antibodies isolated from survivors (21-23) to the SARS-CoV-1 virus that caused
many deaths in a brief epidemic that ended in Asia in 2003 (24). It is more distantly related to the lethal Middle
East respiratory syndrome coronavirus (MERS) (25). As an additional test of the program, 314 sequences of
the Envelope 2 protein for diverse B-CoV were downloaded from the ViPR database (in March, 2020) and a

single unaligned Fasta file used as input to the program. As Figure 4 shows, the resulting PD-graph, using the
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22 amino acid window method, cleanly separates the SARS virus from the 2002-2003 epidemic and the SARS-
CoV-2 from the current pandemic, from the MERS viruses of the 2012-2013 outbreak and from the strains
related to the less lethal CoV OC43 (which uses MHC-class 1 molecules as a fusion receptor (26) ) and bat
strains related to HKU4 and HKU5. The MERS viruses, which use a different cellular receptor, the DPP4
protein, cluster with many camel isolates. The central nodes of the graph (red arrows) are viruses from bats
that use the same DPP4 receptor as MERS (27).

The viruses closest to the SARS-CoV-2 sequences (from the current pandemic) are human SARS sequenced
in 2003, M15, an isolate from a fatal human SARS infection that was passaged in mice and sequenced in
2003 at the NIH and a bat virus isolated in 2007 in China. The graph emphasizes the similarity of the two
SARS viruses, which use the human ACE2 receptor for cell entry. It also suggests that SARS did not
disappear in 2003, but rather continued to circulate in some mammalian vector for another 16 years, before

reappearing in a much more contagious form to attack humans again.
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Discussion

Most phylogenetic analysis of viral sequences start with multiple sequence alignments. Aligning very diverse
sequences, especially those containing multiple repeats or insertions, can be quite difficult (28). D-graph, as a
flexible sequence analysis tool for protein sequences, provides a valuable first step to obtain an overview of
related viral species without the need for an alignment. DGraph is unique in that it implements the PCP
descriptors and PD calculations which were previously validated in our work in comparing allergenic proteins
and their epitopes (6, 29, 30). No hypothesis about an ancestral sequence is required to follow inter-strain
differentiation. As Fig. 1 illustrates, simply starting with a list of unaligned sequences in FASTA format, one can
rapidly determine the interrelatedness of sequence data from two different virus families, the FV and EV (12),
whereby the PD approach can give more detailed clustering than simple Clustal scores. As Figure 2-4 shows,
automatic calculation of the PD values between even large groups of viral sequences yields PD-graphs
consistent with what is known of the their vector, host range, receptor type (particularly for the B-CoV, Fig. 4)
and disease phenotypes.

There are many methods being developed to handle and interpret the large amounts of sequence data available
for viruses (31-33). A well done viral phylogeny is useful for suggesting the evolutionary relationships between
viruses, their rates of change (34), and may also alert one to tipping points where additional changes may result
in significant phenotypic variation (35) or viral outbreak (36, 37). Determining the interrelatedness of virus
sequences is perhaps most important for the design of wide spectrum vaccines and treatments for viral diseases
.

As shown here, D-graph can quantitatively present the interrelatedness of aligned sequences using established
metrics such as Clustal scores. As such, it resembles other commonly used approaches for visualization of

network connectivity, such as BioLayout (38), or Cytoscape (39, 40). However, the program’s default mode
generates PD graphs even of large numbers of unaligned sequences (such as the >300 used for Figure 4).
While other methods can graphically present protein sequences in an alignment free manner using numerical
descriptors for the amino acids, and display them as connecting vectors in a curve in a 2D space (41, 42), they
are most useful for comparing a few sequences. The D-graph program works from a list of unaligned sequences
and can also use additional data, while allowing the user to adjust the program parameters to obtain results even

for very distantly related sequences.
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PD-graphs suggest evolutionary paths between distantly related viruses. PD-graphs emphasize the non-

linearity of viral evolution that may be missed when using linear phylogenetic trees to model the evolution of
viral groups whereby there is no implied directionality in the connecting lines, which only represent the
mathematical relationship between pairs. However, the PD-graph analysis of the FV (Fig. 2) has features that
correlate with suggested paths for the divergence of the mammalian pathogens. The clustering emphasizes
the central position of YFV, relative to both mosquito and tick born viruses and the “mosquito only” viruses.
This implies that the ability to circulate within their arthropod vectors may have taken priority during evolution of
the mammalian pathogens. This may account for the relative stability of the YFV genome compared to that of
the DENV types, which must have evolved under pressure from mammalian immune responses (34). Another
interesting feature of the PD-graph is the grouping according to known host even when isolated from
geographically very distant places. Entebbe (node 23) and Yokose (node 24) viruses, which were isolated from
bats in Uganda (ENTV) (43) and Japan (YOKV) group together, but also have strong connectivity to other
mosquito borne viruses. The YOKYV sequence cross reacts with antibodies in sera from humans infected with
DENV or after vaccination with YFV (35) and, depending on the protein area chosen, is similar to many
different mosquito borne FV. Some of the early reports were not conclusive about the cross-reactivity of ENTV
with other FV (44, 45). PD-graphs could provide testable hypotheses on FV cross-recognition, by comparing
graphs made using inter-strain ELISA values and PD values.

YF in turn has connectivity to both the tick and mosquito borne viruses, which subdivide into well separated
clusters according to their disease phenotype. The close relationship of the tick born viruses to one another
suggests that their ancestry is relatively recent, or that other factors in the tick life cycle may constrain their

evolution rate (46-48). The distinct properties of the tick vs the mosquito born viruses (49, 50) illustrated by

their neatly defined clusters, reflects these influences.

Conclusion
The D-graph program can be used to plot the interrelatedness of sequences according to physicochemical
property similarity and suggest evolutionary relationships, without needing an alignment or assuming a

common ancestor. While the figures shown here illustrate the application to viral proteins, any group of
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sequences or numerical relationships of objects, including immunological metrics, can in principle be used as
input to the program. We thus anticipate that it will find numerous uses for the increasing numbers of virus

sequences, as well as those for many other areas and are herewith releasing a downloadable version of the

program.
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Fig. 1 Top row: Screen shots of the output of DGraph for the analysis of the 49 polyproteins of 49 flaviviruses

(Table S1) with the ClustalW score (left panel), and the PD values of 22_residue windows with aligned (middle
panel) and unaligned sequences (right panel)

Middle row: Screen shots from DGraph for the analysis of 86 sequences of the NS2a protein (all ~234 aa
long) of various FV, based on ClustalW scores and their pairwise PD values. The sequences were
automatically downloaded from a Blast search, identical sequences removed and the resulting FASTA files
subjected to Clustal W analysis or our PD based method with minimal involvement (except that the sequence
headers were manually shortened and the sequences inspected to remove fragments). The resulting maps,
which are similar to how PFAM B families are generated, show how PD-maps show a finer distinction among
the viruses than simple Clustal scores using an unsupervised alignment.

Bottom row: Screen shots from DGraph for the clustering of enteroviruses. A 60 amino acid sequence around
the VPg protein (22 amino acids) of human and a few animal enteroviruses was used as input. The 2D plots
clearly separate the simian viruses from the human ones.
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Figure 2 Annotated PD-graph of Flavivirus phylogeny from the polyproteins of 49 viral
species. Each number in the plot corresponds to the viruses listed in Table 1 with FlaviTrack
ID, Genbank, species name and length of amino acids. Starting from the unaligned FASTA
sequences of the polyproteins, the program calculated pairwise PD values of all corresponding
22-residue segments for the polyproteins. The average PD values of the windows was used as
a metric for the similarity of each pair. Lines in the figure indicate the degree of relatedness of
the sequences, with a color code from blue to green as indicated with the PD values on the left
of the figure. Blue thick lines indicate highly related flaviviruses. Divider lines and boxes were
drawn by hand to emphasize the phenotypic groupings of the viral species.
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FIGURE 3. Annotated 2D-map for the enteroviruses based only on a short region
encompassing their VPg sequences and part of the 3C protein. The clustering clearly separates
the simian and baboon from the human viruses. The separation of the the PV-like group (“enterovirus
type C”) from those resembling the coxsackie virus B group is based solely on sequence, as
designation according to paralysis type has not proved reliable.
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Figure 4. PD graph groups SARS-CoV-1 and -2 spike proteins and distinguishes them from other
circulating B-CoV strains. The 2020 isolates of SARS-CoV-2, which like the SARS viruses use the human
ACE?2 receptor are closest to human SARS 2003, MA-15, from a human case in 2003 passaged in mice) and a
2007 strain from a bat than they are to other circulating B-CoV strains. Annotations indicate grouping according
to receptor type, where known. Red arrows show nodes, bat viruses BY140535 (HKUS related), NL13845 and
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NL140422 strains that use the MERS receptor, DPP4, all sequenced in China in 2013/2014. Blue lines show
PD <7 (low PD= more similar), other lines are PD<14 whereby the thickness indicates the degree of
relatedness.
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