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Abstract
Background: Despite the recent development of technologies giving detailed images of tumours
in vivo, direct or indirect ways to measure how many cells are actually killed by a treatment or are
resistant to it are still beyond our reach.

Methods: We designed a simple model of tumour progression during treatment, based on
descriptions of the key phenomena of proliferation, quiescence, cell killing and resistance, and giving
as output the macroscopically measurable tumour volume and growth fraction. The model was
applied to a database of the time course of volumes of breast cancer in patients undergoing pre-
operative chemotherapy, for which the initial estimate of proliferating cells by the measure of the
percentage of Ki67-positive cells was available.

Results: The analysis recognises different patterns of response to treatment. In one subgroup of
patients the fitting implied drug resistance. In another subgroup there was a shift to higher
sensitivity during the therapy. In the subgroup of patients where killing of cycling cells had the
highest score, the drugs showed variable efficacy against quiescent cells.

Conclusion: The approach was feasible, providing items of information not otherwise available.
Additional data, particularly sequential Ki67 measures, could be added to the system, potentially
reducing uncertainty in estimates of parameter values.

Background
Mathematical modelling of cancer and cancer therapy has
been attempted on all scales. There have been interesting
examples ranging from the microscopic levels of single
molecular interactions and protein network modelling of
specific cellular functions [1], to cell cycle and in vitro cell
proliferation, simulating the time course of cytostatic and
cytotoxic effects of drugs [2-4], up to the macroscopic
level considering tumour growth in vivo [5-13].

Mathematical models differ also in the way they use
experimental data, some being more theoretical, trying to
explain the general behaviour of a biological system, and
others aiming to fit specific data sets.

At the level of in vivo tumour growth, a typical datum is
the time course of tumour volumes, measured (by calli-
pers or in vivo imaging) in animals in the pre-clinical stage
of drug development or in humans. Because these are rel-
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atively simple datasets, simple descriptive models of
tumour growth have been used. For instance Skipper
adopted a model of exponential growth, defined by the
number of tumour cells at the start of the observation
period and by the doubling time [14]. This model was
appropriate to describe leukaemia developing in mice.
The effect of a cytotoxic drug was described by the fraction
of cells killed at each administration, so the complete
model (tumour growth + treatment) had only three
parameters.

Norton and Simon improved Skipper's model and used
the Gompertz function to describe a continued decline of
the growth rate as the tumour mass increases [15]. This
shape fits many experimental time courses of solid
tumours, particularly in animals, where the whole natural
history of the tumour can be followed. Reduction of drug
efficacy in massive tumours was described by a simple
link between the fraction of surviving cells at each treat-
ment and the growth rate. Similarly, Goldie and Coldman
[16] and others [8,10] tackled the issue of drug resistance
using the probability to spontaneous mutation(s)
towards a resistant phenotype (i.e. with a single parame-
ter).

Of course all these authors were aware that tumour
growth and response to a drug are very complex phenom-
ena, with many interacting factors, from molecules to
environmental constraints. For instance, the dynamics of
the response to a drug challenge was recently modelled
using no fewer than six time-dependent parameters, asso-
ciated with cell cycle block and cell killing in each phase
of the cell cycle [2]. In that work, considering a single pop-
ulation of tumour cells growing in vitro in the best envi-
ronmental conditions, a less rich model was unable to fit
all available data (a dataset including measures with dif-
ferent techniques). Thus, in a certain sense, the success of
simple models at the higher in vivo level is probably a con-
sequence of the scanty datasets currently available. On the
other hand, using complex models with many parameters
to describe tumour growth seems a purely theoretical
exercise, not giving any useful additional clinical insights
if – as is often the case-those same experimental time
courses are satisfactorily fitted (taking into account the
poor precision of the data) by simple polynomial or expo-
nential functions.

In this paper we propose an intermediate approach. We
adopt a richer data set from patients with breast cancer
receiving pre-operative chemotherapy, including a meas-
ure of proliferation (Ki67 staining), and use an interpreta-
tive (phenomenological) model to fit the data. This new
model is basically different from the previously reported
model [17,18] of breast cancer response to therapy. The
"old" model attempted to estimate the values of cell kill

and resistance parameters that were consistent with the
overall decrease in volume of individual tumours, simpli-
fying with a single growth equation the net result of the
interplay between cell cycle, quiescence and loss.

Differently from models based on simple descriptive func-
tions (like exponential and Gompertz), the new model
was based on that underlying interplay. Because of the
nature of breast cancer, where only a fraction of the cells
are actually cycling (the fraction estimated by the measure
of Ki67), an essential feature in the new model is the con-
sideration of quiescence [9,19,20], together with prolifer-
ation and cell loss, exploiting the results of the
mathematical theory of age-structured cell populations
with a quiescent compartment [21,22]. As a consequence,
the response to treatment was modelled taking into
account of the different effects against cycling and quies-
cent cells. In addition, variants of the basic model with
increasing complexity were considered, starting from a
model neglecting the resistance up to a model including
resistance and the shift of treatment efficacy during the
course of treatment. We adopted the principle of parsi-
mony, accepting the simplest model when the inclusion
of additional parameters did not significantly improve the
fit. We investigated not only how well this model fitted
the data of several patients, but also the precision of the
estimates of parameters. Taking that precision into
account, the values of parameters characterising treatment
efficacy (killing of cycling and of quiescent cells, drug-
resistant fraction) were categorized and further analysed
for association and correlation with common biological
markers. Eventually, we will discuss which additional data
would be useful to improve the precision of parameters
estimate.

Methods
Patients and histology
Thirty-five patients with large operable breast cancers
(stages T2 or T3) received preoperative chemotherapy
based on cyclophosphamide 1 g m-2 and doxorubicin 50
mg m-2 every three weeks. Eleven patients already had hor-
mone therapy for up to three months which had not
induced any tumour shrinkage.

Histological confirmation of invasive breast cancer was
obtained by wedge biopsy of the primary tumour or a pal-
pable axillary node, from which material was also made
available for determination of the estrogen receptor (ER)
concentration and Ki67 as a measure of tumour cell pro-
liferation. ER concentration was measured by the dextran-
coated charcoal (DCC) method. Ki67 antigen was
revealed by immunohistochemical staining with antibody
MIB1 (Europath Ltd, Cornwall, UK) diluted x50. Reactiv-
ity was detected by an ABC-peroxidase-antiperoxidase
(PAP) method providing the percentage of Ki67-positive
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cells (%Ki67+) at the start of treatment. Mean %Ki67+
measured in this set of tumours was 37% (standard devi-
ation: 24%).

Tumour volume was estimated weekly for at least six
weeks, by measuring two orthogonal diameters with calli-
pers and applying the ellipsoid volume formula, assum-
ing the third dimension as the average of the other two.
The tumour volumes measured on day 0 ranged from 22
cm3 to 204 cm3, mean 70 cm3, median 58 cm3; the detec-
tion limit was 0.1 cm3. The number of positive axillary
nodes (NOD) and the clinical and pathological response
were assessed at the time of surgery.

Clinical response was classified according to the UICC cri-
teria [23]. Clinical complete remission (CR) was defined
as the disappearance of all palpable tumour deposits and
partial remission (PR) as a more than 50% reduction of
tumour volume. Tumour reduction less than 50% or an
increase up to 25% was scored as stable disease (SD). An
increase of more than 25% was designated as progressive
disease (PD).

Pathological complete remission (pCR) was defined as a
tumour with no residual microscopic disease in either the
breast or ipsilateral axillary lymph nodes.

All patients in this study were treated within the context of
a clinical trial which had been approved by the regional
ethics committee, and for which patients gave informed
consent. Subsequently further ethics approval was
obtained from the same committee to cover a broad range
of research projects, including that reported herein on the
tumour tissues, which did not require patients to be
explicitly re-consented.

Model
The program combined the three models of tumour
growth, treatment and resistance. The underlying mathe-
matics is reported in Appendix 1.

Tumour growth model
The model included a compartment of quiescent cells,
and a compartment of cycling cells with age structure (Fig-
ure 1). Cycling cells spent a time Tc in the cell cycle before
division. After division, newborn cells either re-start the
cycle, with probability θ, or enter the quiescent compart-
ment, with probability 1-θ. Quiescent cells may die (with
rate μq, so that μqdt is the probability to die in the time
interval dt) or re-enter the cycle, with rate γ. We assumed
that most cells become quiescent before dying, and the
probability of "natural" death (in the sense of "not
induced by a treatment") was applied only to quiescent
cells

Within this model, in order to identify univocally the
tumour growth characteristics we need to specify four
measurable (at least in principle) macroscopic quantities:
the doubling time (Td), Tc (or Tpot, the potential doubling
time), the growth fraction (GF) and γ. The other parame-
ters (θ and μq) rare dependent on these four quantities
(see Appendix 2).

Treatment model
The main feature of the model is the drug's different
effects on cycling and quiescent cells. The basic parame-
ters are:

Sp: the fraction of cycling cells surviving a single drug
administration.

Sq: the fraction of quiescent cells surviving a single drug
administration.

To reproduce the (slow) process of disruption/elimina-
tion of killed cells, we adopted the method described by
Simeoni et al. [11], successfully applied to experimental
tumours. In brief, dying cells stop proliferating and pass
through three stages, with progressive degrees of damage,
before they are definitively lost. The passage from one
stage to the next is mathematically described by a rate con-
stant k, which thus adds to the parameters of the model
(see Appendix 1).

Resistance model
Two distinct modalities of resistance were compared: 1)
"Initial Resistance", when a fraction of the cells was
already resistant to a drug at the start of treatment; 2)
"Induced Resistance", when a fraction of sensitive cells
surviving treatment became resistant. Each modality was
modelled by a single parameter, either:

The model of tumour growthFigure 1
The model of tumour growth.
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IniR: the fraction of cells initially resistant to the drugs, or

Rind: the fraction of sensitive cells becoming resistant after
a single treatment.

Fitting procedure and sensitivity analysis
Eventually, merging the three models of tumour growth,
treatment and resistance and including the tumour vol-
ume at the beginning of treatment (V0), we have a model
with nine independent parameters: V0, Td, Tc, GF, γ, Sp,
Sq, k, IniR (or Rind).

In order to reduce the number of parameters for fitting, we
assumed a specific type of tumour growth, exploiting the
measure of Ki67 as an estimate of the growth fraction, and
found the parameters of cell kill and resistance by an opti-
misation procedure. A constrained, non-linear fitting pro-
cedure was used, maximising the likelihood function of
the logs of tumour volumes, with Gaussian distribution of
data errors, taking their standard deviation as a parameter.
The following constraints were used:

0.7·V0measured <V0 < 1.3·V0measured: this assumes that the
measure of volume at t = 0 had 30% precision;

0 ≤ IniR (or Rind) < 1: these are probabilities;

Sp <Sq: this assumes that cycling cells are more sensitive to
treatment than quiescent cells;

Sp > 0.001: this assumes that no single treatment will kill
more than 99.9% of sensitive cycling cells;

Sq ≤ 0.98: this assumes that no single treatment will kill
less than 2% of sensitive cells (otherwise cells are defined
as "resistant");

0.5 ≤ k < 1: the minimum value of k (0.5) produced a
delay in the loss of dead cell such that 14 days are needed
to lose 99% of the dying cells. When k approaches 1
almost all dead cells are lost in three days.

This procedure was repeated assuming other types of
tumour growth, covering all possible combinations of
doubling time (either short – 30 days-, intermediate – 150
days-, or long – 10000 days), cell cycle durations (2, 5 or
8 days) and recycling rate (0 or 0.01), consistent with the
value of the growth fraction (see Appendix 2). The maxi-
mum-likelihood of the fits obtained with all growth types
were compared and the one with highest likelihood (Lbest)
was assumed as best fit for the patient's tumour time-
course. The likelihood ratio test statistics (LRTS) was used
to compare a fit with a given set of parameters "X" with
the best one (LRTS = 2(log(Lbest) - log(LX)). As LRTS fol-
lows a chi-square distribution, X was considered equiva-

lent to the best when LRTS < χ2
0.05,1. Similarly, likelihood-

based 95% confidence intervals for each parameter were
obtained by raising or lowering its value until L was
reduced to the value of log(L) = log(Lbest) - χ2

0.05,1/2
[24,25]. The overall range of variability of a parameter was
calculated by joining up the confidence intervals obtained
with all tumour growth models equivalent to the best.

The whole procedure was repeated using three models of
treatment and resistance, at increasing levels of complex-
ity. The lowest level (Level I) considered no resistant cells
and the same cell survival at each drug administration,
with a difference in sensitivity between cycling and quies-
cent cells (parameters: Sp and Sq). Level II included a
parameter measuring drug resistance, in two variants
describing either initial or drug-induced resistance
(parameters: Sp, Sq, IniR (Rind). Level III included a sen-
sitivity shift after some chemotherapy cycles (parameters
Sp, Sq, Sp2, Sq2, describing the fractions of surviving cells
respectively in the first and second period).

Implementation
All analyses were done with a computer program using
Microsoft Excel with its standard features (Visual Basic
and Solver). With a user-friendly interface, an automatic
graphic output of the simulation curve with data is pro-
vided at each change of parameter values. The program
("PAOTHERAPYA") is available for non-commercial pur-
poses in Additional file 1.

Results
Adequacy of the models
Data were fitted using the principle of parsimony, adopt-
ing a lower-level model when a higher level did not signif-
icantly improve the fit. About half of time-courses had a
regular decreasing trend and were fitted simply by apply-
ing the same fraction of surviving cells (Sp, Sq) at each
therapy cycle (Level I). In 25% of cases the efficacy
declined during therapy, and the data were fitted assum-
ing a fraction of cells resistant to treatment (Level II). In
another 25% of cases the efficacy appeared to increase,
after 20 (5 patients) or 60 days (4 patients), and the data
were fitted with a sensitivity shift, with two phases charac-
terised by different surviving fractions (Table 1).

Representative data and fits are shown in Figure 2. Panel
A shows a time course of data (dots) together with the fit-
ting using a level I model (magenta line). The arrows indi-
cate the treatment times. The outlines of cycling and
quiescent cells predicted by the model are also reported.
In this case the model predicted almost 30% cycling and
few percent quiescent cells killed at each treatment cycle,
regularly up to the last one, with no onset of resistance
and no increase of sensitivity.
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Panel B shows an example of fitting with a level II model,
including a subpopulation of cells resistant to treatment
(dashed line). The model predicted about 95% cycling
and 10% quiescent cells killed at each treatment, but this

efficacy cannot be maintained after the fourth cycle. In
order to fit the last points of the time course, the model
predicted that 1% of the cells were initially resistant to the

Examples of fittingFigure 2
Examples of fitting. Representative examples of fitting (continuous magenta line) of experimental time courses (dots). The 
arrows indicate treatment times. Outlines of cycling (green line) and quiescent (light blue line) cells predicted by the model are 
also reported. Panel A: fitting with a level I model, with Sp = 0.68 and Sq = 0.98 (k = 0.50). Panel B: fitting with a level II model, 
including a subpopulation of cells resistant to treatment (dashed line). The fit was obtained with Sp = 0.04, Sq = 0.90 and IniR = 
0.01 (k = 0.83). Panel C: fitting with a level III model, with an increase of efficacy from the fourth cycle. The fit was obtained 
with Sp = 0.43 and Sq = 0.98 up to day 60 and Sp = 0.004 and Sq = 0.98 thereafter (k = 0.50). Panel D: an example of unsatis-
factory fit, with Sp = 0.34 and Sq = 0.98 (k = 0.50).
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Table 1: Summary of the models required for fitting.

Model type Resistance Sensitivity shift Parameters Cases

Level I NO NO Sp, Sq (1) 17/35
Level II YES NO Sp, Sq, IniR (2) 9/35
Level III NO YES Sp, Sq, Sp2, Sq2 (3) 9/35

(1) fraction of cycling (Sp) and quiescent (Sq) cells surviving a single cycle of therapy.
(2) fraction of cells resistant to treatment (calculated at time zero)
(3) fraction of cells surviving a single cycle of therapy in the first (Sp, Sq) and second (Sp2, Sq2) phase sensitivity.
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therapy and this subpopulation of cells eventually became
prevalent (more than 80% resistant cells by day 100).

Panel C shows an example of fitting with a level III model,
with an increase of efficacy from the fourth cycle. The
model predicted that about 60% of cycling cells were
killed in each of the first three cycles, but the fourth killed
more than 99%. The efficacy of treatment against quies-
cent cells remained low.

Best fits for the data of 31/35 patients had a discrepancy
between simulated tumour volume and datum below
30% (calculated as the average of all time points), and 26/
35 were below 20%. Panel D shows one of the four
instances where a less satisfactory fit was obtained. The
presence of one or two (probable) outliers in the time
course explains the poor score in these cases. They were
not excluded from subsequent analyses, because the sim-
ulation caught the general pattern of the outline in these
cases too.

The performance improves on that obtained with the pre-
viously published model [18], with no distinction
between cycling and quiescent cells. With the latter sim-
plified model the fittings were always worse, and only in
19/35 instances was the average distance from data below
30%.

The simulation program permits extrapolation of the time
course of the tumour volume up to a fixed time, in order
to compare patients at the same time-point. Assuming day
100 as end-point, the model suggested that the volume
was reduced at least 50% in all 26 non-resistant cases, and
by more than 90% in 16/26 instances.

Estimate of cell kill
Figure 3 shows the best fit estimates of drug efficacy on
cycling non-resistant cells of all tumours, in terms of the
surviving fraction Sp, with their 95% confidence intervals.
Although in some instances the confidence intervals were
very wide (in 6/35 more than 0.5), in most cases the data
were informative enough to indicate that more than 50%
of cycling cells were killed at each chemotherapy cycle. A
score was assigned to cell killing, from 1 to 5, indicating
"very low" (Sp > 0.5), "low" (0.25 < Sp ≤ 0.5), "medium"
(0.10 < Sp ≤ 0.25), "high" (0.01 < Sp ≤ 0.1) and "very
high" (Sp ≤ 0.01) drug efficacy. Taking confidence inter-
vals into account, the score was reduced by "1" when the
range exceeded the limit of the previous category. When
the confidence range was 0.001 – 0.98, Sp was considered
not detectable (ND) and no score was assigned. Sp was
not detectable in only one case.

Table 2 shows the cases in the five categories. Cell killing
was high or very high in 31.3% detectable patients,

medium in 35.3%, low or very low in the remaining
32.3%.

The survival of quiescent cells (Sq) was estimated with
lower precision than Sp (Figure 4) and in ten cases
(28.6%) confidence intervals were > 0.5. Three cases were
not detectable (confidence range: 0.001 – 0.98).

Although best fits suggested values above 0.9 (90% quies-
cent cells surviving a single treatment) in 18/32 detectable
patients, Sq was below 0.5 in six cases and in another six
cases the best fit was above but the lower limit of the con-
fidence interval was below 0.5. Thus, the results suggest
that killing of quiescent cells was important at least in
some – not rare-instances.

Comparing the model results with the clinical/pathologi-
cal response, 8/10 cases identified as responders (pCR or
CR) were coherently classified using the cycling cell killing
scores 4 or 5, the other two with score 3. Three cases
scored by the model with high cell killing were only PR:
two had a late sensitivity shift and the third experienced a
2-log mass reduction.

Table 2: Frequency of the scores of killing of cycling cells per 
treatment in the dataset.

Score Sp freq %

1 5 14.7
2 6 17.6
3 12 35.3
4 6 17.6
5 5 14.7

ND 1

Drug efficacy on cycling non-resistant cells of all tumoursFigure 3
Drug efficacy on cycling non-resistant cells of all 
tumours. Abscissa: patient ID numbers; Ordinate: surviving 
fraction (Sp) in the best fits, with 95% confidence intervals.
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Resistance
A subpopulation of resistant cells was found in 9/35
instances, with confidence intervals all above zero and fit-
ted using a level II model (Figure 5). However, in eight
other cases resistance could not be precisely evaluated and
data were compatible with no resistance as well with the
presence of more than 10% resistant cells. This reflects the
difficulty of distinguishing "low sensitivity" from "resist-
ance" with the available data. Skipping the ambiguous
cases, it resulted that resistance was present and reduced
treatment efficacy in 9/27 i.e. 33.3% cases. For conven-
ience, therefore we will consider three groups of resist-
ance:

group 1, 18 cases where a resistant subpopulation was
excluded (formally: best fit with IniR = 0 (model type I)
and maximum IniR < 0.1 at the 95% confidence interval);

group 2, "undetermined resistance", comprising the eight
ambiguous cases above;

group 3, nine cases where the presence of resistant cells
was demonstrated by a significantly better fit.

The nine cases in group 3 were further analysed with an
alternative model where no resistant cells were initially
present but resistance was induced by treatment. This ena-
bled us to fit the data with similar precision (not shown).
Table 3 shows the range of values of the resistance param-
eters IniR (the fraction of cells initially resistant, used in
the standard model) and Rind (the fraction of sensitive
cells becoming resistant after a single treatment, used in
the alternative model). With the first assumption, resist-
ant cells amounted, on average, to 19% of the tumour at
the beginning of therapy. However, assuming resistance
induced by treatment, 33% of surviving cells, on average,
must become resistant as a consequence of a single drug
challenge, which is probably unrealistically high.

Resistance and cell kill related to estrogen receptor 
content and number of positive nodes
Figure 6 shows ER values in the three groups of patients
based on the resistance parameter. Average ER value in
group 1 (no detectable resistance) was 4 fmol/mg (maxi-
mum 15), compared to 80 in group 3 (detectable resist-
ance), with ER > 15 in 6 out of 9 instances. In group 2, i.e.
the 8 patients with "undetermined" resistance, average ER
was 14 fmol/mg (≤ 15 fmol/mg in 7/8 patients).

Figure 7 reports ER values in relation to treatment efficacy
on non-resistant cells, as measured by the score of the
parameter Sp. ER was unrelated to the strength of cell kill-
ing. Dividing the cases according to the type of model
required for fitting showed that the cases fitted with each
model clustered in different regions of the plot. Cases fit-
ted with model type III, including biphasic efficacy, clus-
tered in the region of highest cell kill (scores 4–5) and low
(<15) ER; model type II, including resistance, clustered in

Table 3: Resistance parameters.

IniR Rind

Average 0.19 0.33
Minimum 0.01 0.02
Maximum 0.53 0.85

Statistic of best fit resistance parameters in a model where cells are 
initially resistant to therapy (IniR) and in an alternative model where 
resistance is induced by treatment (Rind), in the subset of tumours 
where the presence of resistant cells was demonstrated.

Evaluation of resistanceFigure 5
Evaluation of resistance. Abscissa: patient ID numbers; 
Ordinate: resistant cells, as a fraction of the initial cell 
number (IniR) in the best fits, with 95% confidence intervals.
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Drug efficacy on quiescent non-resistant cells of all tumoursFigure 4
Drug efficacy on quiescent non-resistant cells of all 
tumours. Abscissa: patient ID numbers; Ordinate: surviving 
fraction (Sq) in the best fits, with 95% confidence intervals.
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a region of intermediate efficacy (scores 2–3) and high ER
values; model type I without resistance was present in the
region of intermediate or high efficacy and low ER, while
model type I but with undetermined resistance (with the

criteria specified above) grouped in the low sensitivity
region (score 1), with a spread of ER values.

Among patients which were given chemotherapy after not
responding to conventional hormone therapy, those with
ER > 20 fmol/mg at the start of chemotherapy were classi-
fied as "resistant" (four) or "undetermined" resistance
(one), while the six patients with ER < 20 fmol/mg all
responded to chemotherapy (not shown).

Table 4 shows the relationship between resistance and the
number of positive nodes. Ten of the 18 patients with no
detectable drug resistance were node-negative and only
three had more than two positive nodes, while in group 3
two out of nine were node-negative and six had more than
two positive nodes.

Discussion
Despite the increasing knowledge of the molecular biol-
ogy of tumours and their interactions with anticancer
drugs, less is known about measuring the benefits of treat-
ments in patients in terms of percentages of tumour cells
killed and the proportion that is resistant. This study
addresses these two questions during classical neoadju-
vant chemotherapy in early breast cancer by interpreting a
series of time-course data of tumour volumes, plus the
measure of Ki67, using basic models of tumour growth,
treatment and resistance. By fitting the tumour outlines,
with sensitivity analysis, the range of cell killing and resist-
ance parameters were estimated.

The importance of proliferation markers as predictors of
treatment outcome in breast cancer management has
been previously investigated, with controversial results
[26]. A single marker, like Ki67 or apoptotic index, pro-
vides only a partial view of the underlying tumour kinet-
ics, which is based on the interplay between cell cycling,
quiescence and cell death (by apoptosis or other mecha-
nisms). Furthermore, the different effects of treatment on
quiescent and cycling cells, besides the presence of drug-
resistant subpopulations, although theoretically recog-
nised, is seldom taken into account in the analysis of out-

Table 4: Resistance vs. Number of positive nodes. Patients' 
subsets on the basis of the presence of resistant cells and of the 
number of positive nodes.

Nr. of nodes

Presence of resistant cells 0 1–2 >2 Total pts:

No (group 1) 10 5 3 18
Uncertain (group 2) 3 1 4 8

Yes (group 3) 2 1 6 9

Total pts: 15 7 13 35

ER content in the three resistance groupsFigure 6
ER content in the three resistance groups. Ordinate: 
ER content (fmol/ml); Abscissa: group 1: no resistance; group 
2: resistance undetermined (data were fitted without resist-
ance, but models including more than 10% resistant cells gave 
equivalent fits); group 3: resistance required (models includ-
ing resistance significantly improved the fit). Short horizontal 
lines represent the average value in each resistance group.
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ER content in the five efficacy groupsFigure 7
ER content in the five efficacy groups. Ordinate: ER 
content (fmol/ml); Abscissa: Sp score (score 1: lowest cell kill 
of non-resistant cycling cells score 5: highest cell kill). Col-
ours refer to the type of model of the best fit. Blue: Level I 
(without resistance. Open symbols: resistance undetermined; 
closed symbols: no resistance); Fuchsia: Level II (with resist-
ance); Green: Level III (without resistance, with biphasic effi-
cacy, Sp calculated on the more effective phase).
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come or in the design of chemotherapy regimens. This
paper takes a step towards including all these variables in
a comprehensive reconstruction of the dynamics of the
response to treatment. This mathematical reconstruction
extends the conventional assessment of clinical and path-
ological responses, which cannot recognise the details of
a partial remission, to provide clues on a patient's sensitiv-
ity which are potentially useful to decide extension or
changes of treatment.

The mathematical model used in this study performs bet-
ter in reproducing the volume decrease during treatment
than previous approaches [18] and explicitly includes cell
cycle, quiescence and loss. This made the model more
complex but also more realistic and allowed connections
with the kinetic quantities that are – at least in principle –
measurable in vivo, namely the doubling time, the poten-
tial doubling time and the growth fraction. We could then
incorporate the measure of Ki67, as an estimate of the
individual tumour growth fraction.

Because in most breast tumours only a minority of cancer
cells are actually Ki67-positive and cycling [27], it seemed
mandatory to include quiescent cells in the model [28]. As
a consequence, two parameters of killing, one for cycling
and the other for quiescent cells, were used in the fitting.
However, because the data, including the Ki67 measure,
were still not sufficient for an unequivocal assessment of
tumour growth in the absence of treatment, we adopted a
conservative strategy, examining a range of possibilities
for each patient from fast to slow tumours. We repeated
each fitting with 18 different growth models, combining
representative values for each kinetic parameter. That
choice was pursued with a conservative sensitivity analy-
sis, including all growth models, to assess the uncertainty
of estimates of parameters describing cell kill and resist-
ance.

Our analysis identified different patterns of response dur-
ing chemotherapy. A subset of patients was characterized
by unequivocal presence of resistance, as the goodness of
fit was significantly improved with the inclusion of a sub-
population of cells unaffected by the treatment. For this
group of "resistant" patients, the average ER level was
more than ten times higher than in the remaining
patients. Conversely. six out of the seven patients with ER
> 15, were in the "resistant" group, and the seventh had
"undetermined" resistance. Instead the association
between resistance and number of positive nodes was less
striking. The association of the response to treatment with
negative ER status has been reported by many others
[29,30], but the association ER with the presence of resist-
ant cells could not be directly demonstrated before.
Instead, the cell kill parameter was not associated to ER
status in our analysis, suggesting that drug efficacy on sen-

sitive cells was unrelated to ER. One possible mechanism
explaining the relationship between resistance and ER sta-
tus is the co-expression of ER and the Bcl-2 proto-onco-
gene [31], which would be expected to reduce the rate of
apoptosis.

A second subset of patients objectively identified by the
model was characterized by a sensitivity shift, tumours
becoming more drug-sensitive after the first cycle or even
later. In this subset of patients the tumour volume at the
beginning of treatment was not particularly high and the
sensitivity shift occurred after a moderate debulking (not
shown). Possibly in some instances the true cell number
reduction was not reflected in a volume decrease in the
first weeks so the drug effect was initially underestimated.
Sensitivity in this group was therefore scored on the basis
of the killing parameter estimated in the second, more
effective, phase. This was a very sensitive subset of
patients: eight out of nine had the highest cell killing
scores (4 or 5 for cycling cells), reached in only three of
the 25 patients without sensitivity shift (see Figure 7). The
observation that sensitivity can increase after up to two
months of low treatment efficacy, raises questions about
the practice of automatically changing therapy after a poor
initial response, and about the optimal number of cycles
in some patients.

Considering the subset of patients characterised by high
cell killing among cycling cells (score 4 or 5), treatment
was also effective against quiescent cells in half cases, indi-
cating the drugs were not exclusively active on cycling
cells. However in the other half quiescence limited drug
efficacy. These patients might have benefited from strate-
gies aimed at mobilising quiescent cells, or suitably
spaced cycles in order to avoid repeatedly hitting tumours
with few target cycling cells, or from some entirely differ-
ent strategy.

This study found that, by combining the time course of
tumour volumes with a measure of Ki67, the estimates of
parameter values were precise enough to permit a poten-
tially useful and informative classification of the
responses. However, that precision would be improved by
using richer datasets, including additional measures of
proliferation and cell death, not available for the present
group of patients. For instance a direct estimate of Td or
Tpot would have limited the uncertainty of the growth
model. However, Tpot, is nowadays rarely measured in
clinical routine and a measure of Td is probably even less
feasible, requiring a second volume measurement before
the start of treatment, e.g. at diagnosis, or during discon-
tinuation of treatment, when planned in particular situa-
tions.
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For what concerns cell death, apoptosis is usually meas-
ured on histopathological samples, using morphology,
caspase activation or the terminal transferase dUTP nick
end labelling (TUNEL) technique. This gives at least a
qualitative assessment of whether some cells are killed,
but unfortunately the relationship between the measured
percentage of apoptotic cells and the percentage of killed
cells remains unclear, as we do not know how long apop-
totic cells remain visible. Thus, such measures of apopto-
sis are not valid quantitative measures of cell kill.

Another way to improve the precision is with a second
evaluation of the growth fraction at the end of therapy, by
Ki67 measures on the surgical specimen, or during ther-
apy by fine-needle aspirates or core-cut biopsies. These
measures are currently taken in trials of new neoadjuvant
therapies, to detect changes in Ki67 as a marker of the
response, in the absence of other strong short-term end-
points [32,33]. The mathematical approach would allow
to interpret these data within a formal framework includ-
ing all actors in play, i.e. cycling, quiescent and resistant
cell subpopulations. In this respect, the effort made here
to assess an objective method of parameter estimate could
be exploited, and model's kill rate categories, as well as
detection of resistance, could become useful markers of
outcome, at an intermediate level between the detection
of inhibition of a target and the evaluation of survival.

Finally, new imaging techniques – CT, NMR, PET or even
optical – are potential sources of data that can be inter-
preted by the model, as these techniques give more precise
estimates of the overall tumour mass, and permit time-
course evaluations for otherwise undetectable or unmeas-
urable tumours. However, additional research and model-
ling will be required to connect specific functional
measures to the basic "phenomena" of proliferation, qui-
escence and loss which are the core of our representation
of the tumour.

Conclusion
We presented here a new approach to the evaluation of
chemotherapy using a mathematical model to interpret
the time courses of tumour mass during treatment,
including measures of the proliferative activity by Ki67.
The model gives as output objective estimates of the frac-
tion of cells killed by each cycle of treatment and of the
fraction of resistant cells. The approach was proven feasi-
ble, providing items of information not otherwise availa-
ble in pre-operative breast cancer chemotherapy.
Additional data, particularly sequential Ki67 measures,
could be added to the system, potentially reducing uncer-
tainty in estimates of parameter values.
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Appendix
Appendix 1. The models of tumour growth, cell killing and 
resistance
The equations of the model of tumour growth shown in
Figure 1 were thoroughly described by Bertuzzi, Gandolfi
et al [21], thereafter referred as BG theory, assuming bal-
anced exponential growth. From BG theory, neglecting for
simplicity the distinction between G1, S and G2M phases
and assuming "natural" cell loss only from quiescent cells,
the density of proliferating cells of age "a" at time "t" is
given by the formula

np (a, t) = C ebt e-ba (1)

where C is a suitable constant and b is the growth rate con-
stant (b = ln(2)/Td).

By integration on age over the cell cycle time Tc, we obtain
the number of proliferating cells:

Np (t) = C ebt (1-e-bTc)/b (2)

At a given time t, cells of age Tc end their cycle by division.
Considering eq 1, their density is:

g(t) = C e-bTc ebt (3)

It is useful to define the quantity u = g(t)/Np(t). In this
way, using eq. 2 and eq. 3 we have:

u = g(t)/Np(t) = b/(ebTc-1) (4)

Notice that in the BG theory the following more general
version of eq. 4 holds:

u = g(t)/Np(t) = β/(eβTC-1) (4bis)

where β = b + μ (β = α + μ in the original notation used in
[21]) and μ is the cell loss rate of proliferating cells
(assuming μG1 = μS = μG2M = μ and thus βG1 = βS = βG2M =
β). Eq. 4 bis can be readily demonstrated by combining
the BG equation giving g(t) (eq. 13 in [21]) with BG equa-
tions giving Np(t) (eqs. 20 and 21 in [21], remembering
that Np(t) = NG1(t) + NS(t) + NG2M(t)).

Eq. 4 bis reduces to eq. 4 when neglecting "natural" cell
loss in proliferating cells (μ = 0).
Page 10 of 14
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Summarizing the theory, we can say that in a small time
and age interval (dt = da):

i) u Np(t) dt cells divide originating 2·u Np(t) dt new-
born cells, where u is given by eq. 4;

ii) θ·2·u Np(t) dt newborn cell enter the proliferating sta-
tus with zero age and

iii) (1-θ)·2·u Np(t) dt newborn cell enter the quiescent
compartment.

Noticeably, the age-dependence of the theory is no more
explicit in these relationships, being conveyed by the
quantity "u", which depends only on Tc and Td.

Considering non-infinitesimal time intervals, Δ, the

number of dividing cells in the interval (t-Δ, t) is given by:

 = u·Np(t-Δ)·  = u Np(t-Δ)·z

where:

z = (ebΔ-1)/b (5)

Similarly, the number of quiescent cells becoming prolif-
erating or dying in the interval (t-Δ, t) is γ·Nq(t-Δ)·z and
μ·Nq(t-Δ)·z respectively.

The above definitions and equations allowed to simulate
tumour growth by finite differences with time step Δ (Δ =
1 day in the simulations presented in this paper), calculat-
ing the numbers of cycling (Np(t)) and quiescent (Nq(t))
cells at time t from those at time t-Δ, in the absence of
treatment. In this way it was possible to save a huge
amount of computational time and to implement the
model in a flexible and interactive spreadsheet program.
The resulting balance equations were the following:

Np(t) = (number of proliferating cells at time t-Δ) + (new-
born proliferating cells)

- (cells which had divided) + (quiescent cells entered in
the proliferative status)

= Np(t-Δ) + 2·θ·u·Np(t-Δ)·z - u·Np(t-Δ)·z + γ·Nq(t-
Δ)·z

Nq(t) = (number of quiescent cells at time t-Δ) + (new-
born quiescent cells)

- (dead quiescent cells) - (quiescent cells entered in the
proliferative status)

= Nq(t-Δ) + 2·(1 - θ)·u·Np(t-Δ)·z - μq·Nq(t-Δ)·z - 
γ·Nq(t-Δ)·z

where u is given by eq. 4 and z by eq. 5.

z is close to Δ = 1 day, as bΔ = ln(2)·Δ/Td << 1, and allows
to match exactly Td of the simulation with the theoretical
Td during unperturbed balanced growth. After a treatment
with differential efficacy (Sp ≠ Sq) the age distribution of
proliferating cells will be unbalanced by quiescent cell
entering the cycle (if γ ≠ 0). In this case both u and z were
approximated values, and some discrepancy of the simu-
lation respect to a full age-dependent model is expected,
for a short time after treatment. Because the interval
between subsequent data points was seven days or more,
this approximation can give only a small contribute to the
errors of the estimate of the parameters.

The same growth equations were applied also to resistant
cells (Nrp(t) and Nrq(t)).

Dying cells enter and exit three stages (d1, d2, d3 ) of death
before being lost as follows:

Nd1(t) = Nd1(t-Δ) - k·Nd1(t-Δ)

Nd2(t) = Nd2(t-Δ) + k·Nd1(t-Δ) - k·Nd2(t-Δ)

Nd3(t) = Nd3(t-Δ) + k·Nd2(t-Δ) - k·Nd3(t-Δ)

The overall number of dying-not-yet-lost cells is given by
the sum of the cells in the three stages:

Nd(t) = Nd1(t) + Nd2(t) + Nd3(t)

The overall number of tumour cell at a time "t" is the sum
of sensitive cycling, sensitive quiescent, resistant cycling,
resistant quiescent and dying cells, namely:

N(t) = Np(t) + Nq(t) + Nrp(t) + Nrq(t) + Nd(t)

N(t) is the quantity compared with measured tumour vol-
umes, via a proportionality constant. At the beginning of
the treatment we have:

Np(0) = N(0)·GF·(1 - IniR )

Nq(0) = N(0)·(1 - GF)·(1 - IniR )

Nrp(0) = N(0)·GF·IniR

Nrq(0) = N(0)·(1 - GF)·IniR

where GF is the growth fraction, estimated by %Ki67+,
and IniR represents the fraction of cells initially resistant
to the drugs.

u Np( ) dτ τ
t

t

−∫ Δ
e  dbτ τ

0

Δ
∫
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At the times of treatment, the situation immediately
before (t-) is considered separately from that immediately
after (t+) the treatment and the number of -surviving-
cycling and quiescent cells is reduced as follows:

Np(t+) = Np(t-)·Sp

Nq(t+) = Nq(t-)·Sq

where Sp and Sq are the fraction of cells surviving the treat-
ment, while non-surviving cells enter the first stage of
dying cells:

Nd1(t+) = Nd(t-) + Np(t-)·(1-Sp ) + Nq(t-)·(1-Sq)

When considering drug-induced resistance, the equations
of surviving cells become:

Np(t+) = Np(t-)·Sp·(1-Rind) Nrp(t+) = Nrp(t-) + Np(t-
)·Sp·Rind

Nq(t+) = Nq(t+)·Sq·(1-Rind) Nrq(t+) = Nrq(t-) + 
Rs·Nq(t+)·Sq·Rind

where Rind represents the fraction of – surviving – cells
which become resistant as a consequence of the treat-
ment.

The contribution of spontaneous mutations to a resistant
phenotype during the 100 days of treatment was consid-
ered negligible [8].

Because the drugs were given contemporaneously, the
effect of each of them cannot be evaluated separately.
Thus Sp and Sq measure the effect of the combined treat-
ment. Similarly, cells resistant to single drugs could be
identified, and a single subpopulation of cells "resistant to
treatment" was considered.

Because the same dosage was given each time to the
patients, the same Sp and Sq were repeatedly applied on
days 0, 22, 43, 64, 85, reproducing the true schedule of
this study. In few instances, a more complex model was
needed, shifting of the values of Sp and Sq to new Sp2 and
Sq2 values in the course of the treatment.

The model is about numbers of tumour cells (N), while
the data are tumour mass (V, volume), including non can-
cerous cells and tissues. Nevertheless, in the absence of
specific information about non tumour cells (at each time
and for each patient) we assumed proportionality
between N and V, through the equivalence 1 cm3 = 109

tumour cells. The specific value of the proportionality
constant does not affect the results.

Appendix 2. Selection of tumour growth types
In order to simplify the optimisation procedure, we fixed
Td, Tc, γ , to representative values. This choice was justified
by a preliminary study on our dataset, indicating that
wide changes of these parameters only slightly modified
the fits (not shown).

Representative values of the growth parameters were cho-
sen as follows:

Td. Reports of doubling time of breast cancers indicate an
average between 100 and 200 days, increasing with the
age of the patient [34]. In the statistics of Spratt [35] only
1% have Td < 30 gg. Thus we considered the values Td =
30, 150 and 10000 days, as representative of fast, average,
slow tumour, respectively.

Tc. The parameter represents the average length of the
non-G0 part of the cycle (not to be confused with esti-
mates of other reports [36] where quiescent cells were not
considered a part). Thus Tc values usually found in cell
lines in vitro (1–2 days) are a reasonable lower boundary.
However such short Tc are not consistent in tumours with
moderately high GF, unless accepting very high natural
cell loss. We considered the values Tc = 2, 5 and 8 days, as
representative of short, average, long cell cycle.

γ. The value of γ is in part automatically constrained by the
values of the other parameters of the model of tumour
growth. It is also the reciprocal of the mean residence time
in the quiescent status. We consider two extreme values: 0,
as representative of a tumour with negligible recycling
from quiescence into the cycling stage, and 0.01, i.e. 1%
quiescent cells becoming cycling per day, corresponding
to an average residence time in G0 of 100 days.

Combining the values of Td = 30, 150, 10000 days, Tc = 2,
5 , 8 days and γ = 0, 0.01 we obtained eighteen different
types (type1: Td = 30, Tc = 2, γ = 0; type2: Td = 150, Tc =
2, γ = 0; etc.) representative of tumour breast cancer
growth.

For each tumour growth type, given the value of GF pro-
vided by %Ki67+, the theory [21], with cell loss only
within quiescent cells, allowed to calculate additional
kinetics characteristics of the tumour, namely the poten-
tial doubling time and the rate of natural cell loss, using
the following formulae:

Tpot = (Td/GF)·(eln(2)Tc/Td - 1) (derived from eq. 30 in
[21])

μq = ln(2)·(1/Tpot - 1/Td )/(1 - GF ) (derived from eqs. 19
and 29 in [21])
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θ = 0.5·eln(2)Tc/Td - 0.5·γ ·(2 - eln(2)Tc/Td)/(μq + ln(2)/Td)
(derived from eq. 15 in [21])

Some combinations of Td, Tc, GF, γ were not biologically
consistent because mathematically they would require a
negative cell loss. For what concerns Tpot we referred to
the Tpot estimates obtained with BrdU in vivo in breast
cancer patients by Rew and Wilson [37]. Because in that
database the highest Tpot value was 50 days, we conserv-
atively accepted a combination of parameters as biologi-
cally consistent if Tpot < 75 days.

Thus, for each patient, only a subset of the eighteen types
was considered for fitting, those with Tpot > 75 days or μq
< 0 (if any) being excluded as biologically not consistent.

The data were in general poorly sensitive to the values
adopted for the tumour growth parameters. In 19/35
cases, we found (Table 5) a fit statistically equivalent to
the best with Td = 30, 150 and 10000 days. In six instances
only fast growing models were compatible with the data,
while in another nine fast growth was excluded.

As concerns Tc (Table 6), only in a minority of cases do
the data indicate that two days or eight days should be
preferred. In all the other cases the value remained uncer-
tain.

The recycling rate remained undetermined in 22/35
instances (not shown), while for the reminder the fit indi-
cated γ = 0.

Additional material
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Table 6: Cell cycle time compatible with data

Category Range n %

ND 2-5-8 4 11.4
Long Tc 8 9 25.7
Intermediate/Long Tc 5–8 14 40.0
Short/Intermediate Tc 2–5 2 5.7
Short Tc 2 6 17.1

Table 5: Doubling time compatible with data

Category Range n %

ND 30–150–10000 19 54.3
Slow tumour 150–10000 9 25.7
Fast/intermediate 30–150 1 2.9
Fast tumour 30 6 17.1
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