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Purpose: 3D time-of-flight MRA can accurately visualize the intracranial vascu-
lature but is limited by long acquisition times. Compressed sensing reconstruc-
tion can be used to substantially accelerate acquisitions. The quality of those
reconstructions depends on the undersampling patterns used. In this work, we
optimize sets of undersampling parameters for various acceleration factors of
Cartesian 3D time-of-flight MRA.
Methods: Fully sampled datasets, acquired at 7 Tesla, were retrospectively
undersampled using variable-density Poisson disk sampling with various
autocalibration region sizes, polynomial orders, and acceleration factors.
The accuracy of reconstructions from the different undersampled datasets
was assessed using the vessel-masked structural similarity index. Identi-
fied optimal undersampling parameters were then evaluated in additional
prospectively undersampled datasets. Compressed sensing reconstruction
parameters were chosen based on a preliminary reconstruction parameter
optimization.
Results: For all acceleration factors, using a fully sampled calibration area
of 12 × 12 k-space lines and a polynomial order of 2 resulted in the high-
est image quality. The importance of parameter optimization of the sampling
was found to increase for higher acceleration factors. The results were consis-
tent across resolutions and regions of interest with vessels of varying sizes and
tortuosity. The number of visible small vessels increased by 7.0% and 14.2%
when compared to standard parameters for acceleration factors of 7.2 and 15,
respectively.
Conclusion: The image quality of compressed sensing time-of-flight MRA can
be improved by appropriate choice of undersampling parameters. The optimized
sets of parameters are independent of the acceleration factor and enable a larger
number of vessels to be visualized.
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1 INTRODUCTION

Time-of-flight (TOF) MRA is a valuable technique for clin-
ical study of the intracranial vasculature. It visualizes the
blood in a certain region (slice or slab) by generating
bright-blood contrast between inflowing and stationary
spins. In the brain, it can be used for detection of various
types of vascular complications, such as atherosclerosis
and stenosis1 or aneurysms.2,3 Compared to other angiog-
raphy techniques, such as CT angiography, TOF-MRA has
the benefit of being a noninvasive technique without the
need for intravenous contrast agents and without exposing
subjects to ionizing radiation.

High spatial resolution MRA can visualize small
and highly tortuous vessels such as the lenticulostri-
ate arteries (LSAs),4 which are implicated in up to a
third of symptomatic strokes.5 MRA can be improved
by using ultrahigh field MRI, with static magnetic field
strengths of ≥ 7 Tesla (T).6 TOF-MRA at 7 T benefits
from longer T1 relaxation times and increased SNR, result-
ing in the potential for higher resolution acquisitions
and improved visibility of small vessels.4 However, the
achieved spatial resolution is limited by long acquisition
times, which can lead to patient discomfort, increased
patient movement, and increased clinical costs. In order
to remain within clinical scan durations, sub-Nyquist sam-
pling techniques are required, such as parallel imaging
techniques.7

Compressed sensing (CS)8 techniques have the poten-
tial to achieve high acceleration factors. CS combines
highly undersampled nonuniform acquisitions and spar-
sity in a given domain to restore image quality. Due to the
intrinsic sparsity of TOF-MRA data in both the image and
wavelet domain, and the improved MRA contrast at 7 T,
it has already been shown that acceleration factors of 7.29

or higher10,11 can be achieved with a minimal reduction
in clinical image quality12 or even with improved diagnos-
tic image quality compared to conventional acceleration
methods.11

Cartesian undersampled k-space trajectories for 3D
TOF-MRA with CS reconstruction are commonly designed
using 2D undersampling covering the 2 phase-encode
directions (ky, kz), with each sampled point in the
(ky, kz) plane representing a continuously sampled line
in the frequency-encode direction (kx). Such under-
sampling masks are often created using pseudorandom
variable-density Poisson disks13 with a fully sampled cal-
ibration region in the center of the (ky, kz) plane.9,12–17

Variable-density Poisson disk undersampling distributions
are characterized by 3 parameters: (1) the undersampling
factor (R), (2) the polynomial order of the sampling density
variation (pp), and (3) the size of the fully sampled calibra-
tion region (calib).

Although the image quality depends on those under-
sampling parameters, no conclusive information is avail-
able about their optimal values for 3D TOF-MRA at 7 T. It
also remains unclear how the optimal acquisition parame-
ters depend on the acceleration factor and resolution being
used. Earlier work on reconstruction optimization for
2D-multislice Nesterov reconstruction of 3 T TOF-MRA
found the best reconstruction results using the smallest
of 3 calibration region sizes,17 but this smallest region for
2D MRA was still substantially larger than the calibration
regions recently used for 7 T CS TOF-MRA in 3D.9 Other
work has compared the image quality from retrospectively
undersampled 3D-MRA data for various accelerations fac-
tors10,14 or for the combination of acceleration factor and
calibration region size in undersampled 2D MRI acqui-
sitions for different contrasts.18 For dynamic MRI19 and
numerical T1-weighted brain models,20 studies into the
optimization of undersampling parameters are available.
However, it is unclear how this translates to the case of 3D
TOF-MRA, which requires the visibility of smaller struc-
tures in the reconstructed images and has the potential
for higher acceleration factors due to the higher intrinsic
sparsity.

In this work, which is an extension of Ref. 21, 3D
TOF-MRA undersampling parameters were optimized by
retrospectively evaluating different calibration region sizes
and polynomial orders at 6 acceleration factors (5 to 15).
Finally, the identified undersampling patterns were eval-
uated in healthy subjects using additional prospectively
undersampled acquisitions that adopted the optimized
parameters.

2 METHODS

2.1 Data acquisition

Data were acquired using a 3D gradient-echo
noncontrast-enhanced TOF-MRA sequence on a Siemens
(Erlangen, Germany) Magnetom 7 T scanner using a
1T×x32Rx head-coil. All experiments were performed
under an institutional agreement for technical develop-
ment in accordance with International Electrotechnical
Commission and UK Health Protection Agency guide-
lines. In each subject, 4 sequential slabs22 consisting of
640× 506× 56 voxels with a resolution of (0.31 mm)3 were
acquired using a slab overlap of 19.64% and a combined
FOV of 200× 157× 60 mm3. Further sequence parameters
were: TR/TE= 14/5.61 ms (allowing for asymmetric echo),
flip angle = 20◦, and bandwidth = 118 Hz/pixel. To reduce
SAR, an increased excitation pulse duration of 1.536 ms
was used. No motion correction was used. The acquisition
time was 26:39 min for a fully sampled acquisition.
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Fully sampled datasets from 2 subjects were used for
parameter optimization through retrospective undersam-
pling (Cohort 1). Additional datasets were acquired using
a modified TOF-MRA sequence that utilized predefined
variable-density Poisson disk undersampling masks. A
fully sampled acquisition and 4 different undersampled
datasets, using both the optimized and more conventional
undersampling parameters, were acquired from 7 healthy
volunteers (Cohort 2). The reconstructed image quality for
those additional datasets was compared to assess consis-
tency of the findings.

2.2 Undersampling

Undersampling masks were generated using the SPIRiT
Toolbox v0.3,* characterized by the 3 previously described
parameters (R, pp, and calib). A polynomial order of 0 cor-
responds to homogeneous undersampling, with higher
values corresponding to denser sampling (i.e., lower Pois-
son disk radii) closer to the center of k-space. Larger cal-
ibration regions (consisting of calib × calib continuously
sampled frequency-encode lines) improve the estimation
of coil sensitivities23 but take up more scan time, thereby
reducing the available time to acquire other regions of
k-space for scan time-matched acquisitions. Undersam-
pling was performed retrospectively for the fully sampled
data acquired in Cohort 1 at acceleration factors rang-
ing from 5 to 15. The calibration region size was cho-
sen to range from the lower limit for the ESPIRiT tool
(calib = 10) to the highest value found in the literature for
3D TOF-MRA.9 In Cohort 2, prospectively undersampled
data were acquired for validation at R= 7.2 (which was pre-
viously found to be “a reasonable trade-off between scan
time and image quality”9, p. 201) and R= 15. Note that the
undersampling masks in this work were generated using
the SPIRiT Toolbox, which uses a polynomial variation for
the sampling density distribution (given by the value of
pp). Alternative ways of varying the sampling density dis-
tribution can also be used for Poisson disk undersampling,
such as the Gaussian density distribution used in Ref. 9.

2.3 Reconstruction

For all reconstructions, coil sensitivities were estimated
using ESPIRiT23 based on the fully sampled calibration
region in the center of k-space. For the reconstruction
of undersampled data, compressed sensing was imple-
mented using a Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA)24 with 𝓁1-regularization in the
wavelet domain17,25 using the pics (parallel imag-
ing and compressed sensing) tool in the Berkeley

Advanced Reconstruction Toolbox26,27 (BART; v0.4.02).
The 𝓁1-regularization seeks to find the solution to:

min
x
{|A(x) − b| + 𝜆|𝜙(x)|1} , (1)

where b represents the acquired (undersampled) k-space
data; A is the undersampled Fourier Transform opera-
tor over the reconstructed image x; 𝜆 is a regularization
parameter; and 𝜙 denotes the Daubechies wavelet trans-
form. The first term (|A(x) − b|) ensures data consistency,
whereas the second term (𝜆|𝜙(x)|1) enforces sparsity in the
wavelet domain.

Before the undersampling parameter optimization was
performed, appropriate values for 𝜆 and the number of
iterations (niter) were first established by reconstructing
2 different undersampled datasets (at R = 9 and R = 13)
for each subject using various values for niter and 𝜆, and
comparing the resulting reconstructions to the fully sam-
pled reference data. Parameter values (𝜆 = 0.007,niter =
20) that consistently returned good reconstruction results
were used for all other reconstructions; see Supporting
Information Figure S1. The initial reconstruction param-
eter optimization was performed using arbitrarily cho-
sen undersampling masks. For validation, it was repeated
at the end of the study using the established optimized
undersampling masks to ensure that the initial optimized
reconstruction parameters were still consistent.

Reconstructions were performed offline using an Intel
(Intel, Santa Clara, CA) Xeon CPU E5-2680v4 running
at 2.40 GHz with 14 cores and 28 logical processors. A
single-slab CS reconstruction took approximately 14 min.

2.4 Quantification of reconstruction
quality

Previous work found that when comparing reconstruc-
tions from retrospectively undersampled TOF-MRA data
to the corresponding fully sampled data, the vessel-masked
structural similarity index (SSIM) correlates very well with
visual evaluation by radiologists.28 The root-mean-square
error, which is also often used in the literature, was
found in Ref. 28 to result in low agreement with visual
evaluation by radiologists and is therefore not used in
this work.

The structural similarity index is a quantitative esti-
mate of the perceived visual agreement between a set of
images based on local intensity variations. Higher SSIM
indicates greater agreement between a set of images, with
a value of 1 indicating perfect agreement. Here, the SSIM is
calculated for maximum intensity projections (MIPs) nor-
malized to the 99th intensity percentile. The mean SSIM is
calculated over a vessel-masked region (Figure 1B), which
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F I G U R E 1 The 4 slabs used to test retrospective undersampling strategies (from Cohort 1). (A) MIPs of the fully sampled
reconstruction for each slab. (B) The corresponding vessel masks, which were used for computing the vessel-masked SSIM27. MIP, maximum
intensity projection; SSIM, structural similarity index

reduces the sensitivity to variations in the background
signal.

The SSIM requires spatial consistency of the infor-
mation in the 2 images being compared. This limits its
use when comparing prospectively undersampled datasets
because minor subject motion between consecutive scans
significantly influences the SSIM. Therefore, a metric
(‘number of detected peaks’) to estimate the change in
the number of visible vessels in an image9 was used to
assess the quality of prospectively undersampled data.
From MIPs, 100 cross-sectional lines in the left–right direc-
tion were taken, covering the central 50% of the FOV in
the anteroposterior direction. Along these lines, peaks in
the intensity profiles were detected using the findpeaks
function in MatLab R2019a (MathWorks, Natick, MA)
with a minimum peak prominence of 0.15.

To quantify the difference in visibility of small vessels
in prospectively undersampled acquisitions, a comparable
approach was used to estimate the visibility of the LSAs in
coronal projections.

3 RESULTS

3.1 Fully sampled data

Figure 1 shows MIPs of the fully sampled reconstruc-
tions of the central 2 (out of 4) slabs for both subjects in

Cohort 1, which were used for parameter optimization.
Those slabs were used as the ground-truth reference for
all combinations of parameters used to assess the differ-
ent retrospectively undersampled reconstructions. Only 2
slabs per subject were used to remain within a reasonable
computation time. The central slabs were found to contain
vessels of various sizes and degrees of tortuosity (Figure 1),
making it possible to compare undersampling parameter
optimization results for different parts of the vasculature.

3.2 Undersampling optimization

The mean vessel-masked SSIMs resulting from the ret-
rospective undersampling parameter optimization for 6
acceleration factors R (5 to 15) for all slabs (in Figure 1) are
presented in Figure 2. Each of the values in Figure 2 is the
mean value for 2 different undersampling masks (using
the same undersampling parameters) such that each data-
point is the average of 8 comparisons: 4 different slabs with
2 different undersampling masks each. Supporting Infor-
mation Figures S3–S6 show the results for each individual
slab.

Especially for higher acceleration factors, Figure 2 indi-
cates that for matched scan time an optimal set of under-
sampling parameters occurs for 12× 12 calibration lines
(‘calib = 12’) with a polynomial order of approximately
2.0 to 2.4. For datasets reconstructed from the Cohort 1
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F I G U R E 2 Average SSIMs for various sets of undersampling parameters. Each datapoint represents the mean vessel-masked SSIM
values of the 4 slabs shown in Figure 1. The results for each of the 4 slabs are separately shown in Supporting Information Figures S3-S6. The
scaling of the SSIM values in each individual figure runs from the maximum value (for the given acceleration factor) to 90% of that maximum
value to maximize the visibility of the relative image quality for each acceleration factor. Red boxes indicate the proposed optimized
undersampling parameters

data with a downsampled spatial resolution (0.5 mm
and 0.6 mm isotropic), optimal undersampling parame-
ters consisted of 12× 12 calibration lines and a polynomial
order of approximately 1.6 to 2.0 (data not shown).

For validation, the initial reconstruction parameter
optimization was repeated for those optimized under-
sampling parameter values; see Supporting Information
Figure S2, which confirms generally good performance of
the previously established reconstruction parameter val-
ues (𝜆 = 0.007,niter = 20).

Figures 3 and 4 show example reconstructions from
fully sampled data, prospectively undersampled data with
“literature-based” parameters,9 and prospectively under-
sampled data using “optimized” parameters (Cohort 2). In
these figures optimized undersampling masks were gen-
erated using calib = 12 and pp = 2.0, and literature-based
masks were generated using calib = 32 and pp = 2.0 with
matched scan time; see Supporting Information Figure S7.

Figure 5 shows examples of the implementation of the
‘number of detected peaks’-metric, as well as the resulting

differences between the various undersampling schemes
for the 7 volunteers in Cohort 2. Results are shown for
whole-brain axial MIPs and coronal MIPs of the lenticu-
lostriate region.

At R = 7.2, the mean relative number of detected
peaks when using 12× 12 compared to 32× 32 calibra-
tion lines increases by 1.5± 0.9 percentage points (from
−6.1% to −4.6%) for axial MIPs and by 7.0± 3.5 percent-
age points (−26.5% to −19.5%) for the LSAs. At R = 15,
the number of detected peaks increases by 7.7± 0.4 per-
centage points (−26.9% to −19.2%) for axial MIPs and
by 14.2± 1.4 percentage points (−60.9% to −46.7%) for
the LSAs.

The change in the number of detected peaks when
using optimized undersampling parameters is statistically
significant at R = 15, based on 1-sided paired-sample t
tests: p < 0.001 for both whole-brain and LSA MIPs and at
R = 7.2 for LSA MIPs (p = 0.047). At R = 7.2, statistical sig-
nificance was not reached for the whole-brain MIPs, but a
trend value of p = 0.063 was obtained.
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F I G U R E 3 Comparison of axial MIPs from optimized (calib = 12) and literature-based (calib = 32) undersampling schemes for R = 7.2
and R = 15. (A) Reconstructed images from fully sampled data and the different prospectively undersampled acquisitions. (B) Closeup of the
region marked with a blue square in (A) for all acquisitions. Green arrows indicate examples of improved vessel visibility when using
optimized undersampling parameters; white arrows indicate improved vessel sharpness. The windowing was reduced for (B) to improve the
visibility of small vessels. calib, calibration region size; R, undersampling factor

F I G U R E 4 Comparison of coronal MIPs of the LSAs from optimized and literature-based undersampling schemes. Images shown for
(A) fully sampled data; (B,C) data for R = 7.2 using literature-based (B) and optimized (C) prospectively undersampled acquisitions; and
(D,E) data for R = 15 using literature-based (D) and optimized (E) prospectively undersampled acquisitions. LSA, lenticulostriate arteries

4 DISCUSSION

Although differences in the image quality when using var-
ious autocalibration region sizes and polynomial orders
are visible for all acceleration factors in Figure 2, the rel-
ative importance of using optimized parameters increases
at higher acceleration factors. For all acceleration fac-
tors, 12× 12 calibration lines with a polynomial order of
2 to 2.4 consistently yielded the best reconstruction accu-
racy. Simulation results at reduced spatial resolutions indi-
cate the same optimal calibration region size but with
slightly lower polynomial orders (approximately 1.6 to 2.0

at 0.6 mm isotropic). For all resolutions, optimization of
the calibration region size has a bigger influence on the
image quality than optimization of the polynomial order.
This optimal calibration region size is considerably smaller
than values found in the literature. Reducing the calibra-
tion region size from 32× 32 to 12× 12 lines in k-space
corresponds to an 86% reduction in the amount of scan
time required for scanning this central k-space region.
For a fixed scan time, this makes it possible to spend
more scan time acquiring data at higher spatial frequen-
cies, explaining the observed improvement in small vessel
visibility. Asymmetric calibration regions, with reduced
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F I G U R E 5 Quantification of the change in the number of detected peaks. (A–C) Whole-brain MIPs. (A) The 100 lines along which
peaks in the intensity profiles were identified on all datasets (as shown in (B) for line 25). (C) The change in the identified number of peaks
for optimized and literature-based undersampled acquisitions, relative to fully sampled acquisitions. Each color indicates a subject from
Cohort 2. (D–F): The same as (A–C) for MIPs of lenticulostriate ROIs. Line locations were drawn manually at 5-pixel intervals. Lit.,
literature-based; Optim., optimized; ROI, region of interest

coverage in the partition direction (kz), were not included
in this work because of limitations in the used implemen-
tation of ESPIRiT.

For the prospectively undersampled data, the per-
formance of these optimized undersampling parameter
values is compared to those taken from Ref.9. Figures 3
and 4 show a clear reduction in the number of visible
vessels at high acceleration factors using both optimized
and literature-based acquisition parameters compared
to a fully sampled acquisition. However, vessel visi-
bility and sharpness noticeably improve when using
optimized undersampling parameters versus literature
parameters, especially for small vessels and at high
acceleration factors. Although accurate quantitative
comparison of different prospectively undersampled
acquisitions using SSIM is not possible due to subject
motion between scans, the reduction in signal loss when
using optimized parameters was quantitatively approx-
imated using the detection of vascular signal peaks.
The identified peak locations in reconstructions from
prospectively undersampled data are consistent with
the locations of the peaks in the corresponding fully
sampled data (not shown), indicating that the metric
gives a representative approximation of relative image
quality.

Prospectively and retrospectively undersampled data
can differ in image quality because of the possibility of
eddy-current artifacts due to larger gradient switching
in prospectively undersampled acquisitions and differ-
ent amounts of total subject motion due to the different
scan times. However, the observed improvement in image
quality when using optimized undersampling schemes
identified using the retrospectively undersampled data
(Figure 2) is consistent with the results found in Figures 3
to 5 for prospectively undersampled data. This applies
to both the improvement in image quality when using
smaller calibration regions (in particular, 12× 12 calibra-
tion lines) and to the increased importance of acquisi-
tion parameter optimization at higher acceleration factors.
This improvement when using optimized undersampling
parameters can be achieved without increasing scan time
or reconstruction time, and without additional technical
requirements. This improvement in image quality at a
given acceleration can also be interpreted as an opportu-
nity to increase acceleration factor to achieve equal image
quality (Supporting Information Figure S8). For example,
a scan duration of 2:36 min (R = 11) when using 32× 32
calibration lines provides comparable results to a scan
duration of 1:57 min (R = 15) using 12× 12 calibration
lines.
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Because a small calibration region size was observed
to improve performance, we also evaluated reconstruc-
tions from k-space data without calibration regions
using simultaneous autocalibration and k-space estima-
tion (SAKE)29 for sensitivity estimation (Supporting Infor-
mation Figure S9). This did not provide improved image
quality compared to the reconstructions using 12× 12 sam-
pled lines in k-space.

For 1 of the 7 volunteers in Cohort 2, an increase in the
number of detected peaks is visible in the undersampled
acquisitions (purple data in Figure 5). This is likely caused
by a reduction in image quality in the fully sampled dataset
due to subject motion during that scan, highlighting a
benefit of accelerated acquisitions.

The data used in this work were acquired using a rel-
atively simple protocol, which does not make use of tech-
niques such as additional (e.g., fat or venous) signal satura-
tion,9,30,31 parallel transmission,32,33 variable-rate selective
excitation (VERSE)-shimming,9,30,34 or intravenous con-
trast agents.35,36 Such techniques can enhance contrast
and increase sparsity and thereby improve the CS recon-
struction results. However, the optimal undersampling
parameters were found to be consistent for volumes with
high differences in vascular characteristics and visibility
(Figure 2) and are therefore also expected to remain con-
sistent for different contrasts. The improvement in image
quality when using 12× 12 calibration lines was also found
to be consistent for data acquired using various accelera-
tion factors and spatial resolutions. Although 32-channel
receive coils are most commonly used in 7 T MRI, it
remains unclear how the results presented here would
translate to different coil configurations.

Previous work on the optimization of acquisition
parameters for CS T1-weighted MRI in 3D found that
optimized sampling schemes require increasingly dense
sampling in the center of k-space for higher acceleration
factors,20 and that the extent of the calibration region
should be as high as possible for 2D-MRI.18 This is dif-
ferent from the results found here, with an optimized set
of acquisition parameters that appears to be consistent for
all acceleration factors and that uses a small calibration
region. This difference may be explained by the inherently
sparser image contrast of MRA compared to T1-weighted
MRI and the use of 3D instead of 2D k-space data. Because
this sparser image signal is contained in high-frequency
areas of k-space, sampling at off-center locations of k-space
remains important at higher acceleration factors for MRA.

5 CONCLUSION

Optimized undersampling parameters for 3D MRA
at 7 T using compressed sensing reconstruction were

established. For all acceleration factors, the highest image
quality was achieved by using a fully sampled calibration
area of 12× 12 lines and a polynomial order of 2. Although
the optimized undersampling parameters were the same
for all acceleration factors, the importance of using opti-
mized undersampling parameters was found to increase
for higher acceleration factors.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

FIGURE S1. Results of the initial reconstruction param-
eter optimization, used to estimate appropriate values for
the number of iterations and the regularization parame-
ter 𝜆. Reconstruction accuracy is given using (a) the mean
vessel-masked SSIM and (b) the number of detected peaks.
Results are shown for two different imaging volumes, each
undersampled using two different sets of undersampling
parameters (as indicated at the top of both columns).
Red boxes indicate the set of reconstruction parameters
(𝜆 = 0.007, 20 iterations) used for all later reconstructions
because of the consistently good results using both metrics,
within reasonable reconstruction times.
FIGURE S2. The results presented in Supporting Infor-
mation Figure S1, calculated using the “optimized” under-
sampling masks (as indicated at the top of both columns)
used for retrospective undersampling at a later stage in this
study. The parameter combinations (𝜆 = 0.007, 20 itera-
tions) indicated by the red boxes still provide consistently
good results reasonable reconstruction times.
FIGURE S3. The vessel-masked SSIM-values comparing
the fully sampled reference datasets and corresponding
reconstructed datasets for Subject 1, Slab 2.
FIGURE S4. The vessel-masked SSIM-values comparing
the fully sampled reference datasets and corresponding
reconstructed datasets for Subject 1, Slab 3.
FIGURE S5. The vessel-masked SSIM-values comparing
the fully sampled reference datasets and corresponding
reconstructed datasets for Subject 2, Slab 2.

FIGURE S6. The vessel-masked SSIM-values comparing
the fully sampled reference datasets and corresponding
reconstructed datasets for Subject 2, Slab 3.
FIGURE S7. The four undersampling masks used for
the acquisition of prospectively undersampled data
(Figures 3-5 in the main text). Masks (a) and (c) correspond
to the “Literature-based” undersampling parameters,
while (b) and (d) are generated using the “Optimized”
parameters, as specified in the figures. Since the total
amount of acquired data is fixed for a certain accelera-
tion factor, undersampling masks with smaller calibration
region sizes contain more k-space locations outside the
calibration region.
FIGURE S8. Reconstructed image quality for differ-
ent undersampling approaches, from retrospectively
undersampled data. Results are shown using (a) the
vessel-masked SSIM and (b) the error in the number of
detected peaks. Black arrows indicate the increase in accel-
eration factor when using calib = 12 (at R = 15) instead of
32, which can be achieved without loss in image quality.
FIGURE S9. Comparison of image quality in recon-
structions from retrospectively undersampled k-space data
without calibration regions, using SAKE-calibration for
sensitivity estimation, to image quality in reconstructions
using 12× 12 sampled lines in k-space for calibration.
After sensitivity estimation, both approaches were recon-
structed using the same compressed sensing pipeline.
Results are shown as the mean SSIM ± the standard devi-
ation across the 4 slabs shown in Figure 1.
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