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ABSTRACT Microbes and their metabolic products influence early-life immune and
microbiome development, yet remain understudied during pregnancy. Vaginal mi-
crobial communities are typically dominated by one or a few well-adapted microbes
which are able to survive in a narrow pH range and are adapted to live on host-
derived carbon sources, likely sourced from glycogen and mucin present in the vagi-
nal environment. We characterized the cervicovaginal microbiomes of 16 healthy
women throughout the three trimesters of pregnancy. Additionally, we analyzed sa-
liva and urine metabolomes using gas chromatography-time of flight mass spec-
trometry (GC-TOF MS) and liquid chromatography-tandem mass spectrometry (LC-
MS/MS) lipidomics approaches for samples from mothers and their infants through
the first year of life. Amplicon sequencing revealed most women had either a simple
community with one highly abundant species of Lactobacillus or a more diverse
community characterized by a high abundance of Gardnerella, as has also been pre-
viously described in several independent cohorts. Integrating GC-TOF MS and lipido-
mics data with amplicon sequencing, we found metabolites that distinctly associate
with particular communities. For example, cervicovaginal microbial communities
dominated by Lactobacillus crispatus have high mannitol levels, which is unexpected
given the characterization of L. crispatus as a homofermentative Lactobacillus spe-
cies. It may be that fluctuations in which Lactobacillus dominate a particular vaginal
microbiome are dictated by the availability of host sugars, such as fructose, which is
the most likely substrate being converted to mannitol. Overall, using a multi-“omic”
approach, we begin to address the genetic and molecular means by which a partic-
ular vaginal microbiome becomes vulnerable to large changes in composition.

IMPORTANCE Humans have a unique vaginal microbiome compared to other mam-
mals, characterized by low diversity and often dominated by Lactobacillus spp. Dra-
matic shifts in vaginal microbial communities sometimes contribute to the presence
of a polymicrobial overgrowth condition called bacterial vaginosis (BV). However,
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many healthy women lacking BV symptoms have vaginal microbiomes dominated
by microbes associated with BV, resulting in debate about the definition of a healthy
vaginal microbiome. Despite substantial evidence that the reproductive health of a
woman depends on the vaginal microbiota, future therapies that may improve re-
productive health outcomes are stalled due to limited understanding surrounding
the ecology of the vaginal microbiome. Here, we use sequencing and metabolomic
techniques to show novel associations between vaginal microbes and metabolites
during healthy pregnancy. We speculate these associations underlie microbiome dy-
namics and may contribute to a better understanding of transitions between alter-
native vaginal microbiome compositions.

KEYWORDS Lactobacillus, longitudinal, metabolome, microbiome, pregnancy, vagina

Vaginal microbes sustain important physiologies and produce metabolites that can
directly or indirectly affect maternal health and infant development during preg-

nancy. Perturbations to early-life microbiomes and associated metabolic dysfunction
have been linked with allergy and autoimmune diseases such as asthma (1–4). For
example, regular prenatal and postnatal farm exposure, i.e., contact with a diversity of
microbes during pregnancy and infancy, have been shown to reduce the incidence of
chronic health diseases such as asthma and atopy (5). Moreover, recent research has
supported the idea of fetal programming, a term describing the process by which the
maternal microbiota, as well as maternal antibodies, prepare the infant immune system
for the postnatal onslaught of colonizing microbes (6). Others have shown in mice that
vaginal dysbiosis, induced by maternal stress, has the potential to negatively affect
offspring metabolic profiles (7). Thus, maternal microbes, particularly those of the
vaginal tract, are some of the first microbes the offspring will encounter and may be
central to the study of early-life microbiome and immune development (8–12). Indeed,
a recent large-scale study of 2,582 women, over 600 of whom were pregnant (a subset
of whom were longitudinally sampled), provided evidence for vaginal microbiome
restructuring during pregnancy toward a Lactobacillus-dominated community (13). This
occurred early in gestation and was associated with a reduced vaginal microbiome
metabolic capacity. Postpartum, irrespective of the mode of delivery, the vaginal
microbiota resembled that of a gastrointestinal microbiome, likely due to microbial
mixing during the birthing process (9), suggesting that both vaginal and gastrointes-
tinal microbial seeding of the neonate occurs.

The human vaginal microbiome maintains low diversity in low-pH conditions and
depends on host sugars as carbon sources, with less access to dietary and exogenous
nutrients than the gut, skin, or oral cavity. Historically, vaginal microbial communities
have been stratified based on hierarchical clustering of the taxa composition (12).
Keystone species include Lactobacillus crispatus and Lactobacillus gasseri, which have
been associated with maintenance of a simple vaginal microbiome by their production
of bacteriostatic and bactericidal compounds (e.g., lactic acid and hydrogen peroxide)
and maintenance of a low pH (14–16) numerically and functionally dominating their
respective vaginal communities. A closely related species, Lactobacillus iners, has been
associated with health-promoting benefits; however, its genome also encodes the
capacity to promote microbiome perturbation by increasing vaginal pH and producing
species-specific virulence factors (14, 17–19). Bacterial vaginosis (BV), the most common
gynecological condition in reproductive-age women (20), is characterized by the
presence of a more diverse vaginal microbiome and associated with adverse pregnancy
outcomes, including preterm birth (21), endometritis (22, 23), and spontaneous abor-
tion (24–27). Recently, vaginal microbial transplants have been successfully imple-
mented as a treatment for intractable BV (28). Despite L. crispatus generally being
regarded as a highly beneficial and dominant microbe throughout pregnancy, healthy
women from different ethnic groups have markedly different species dominating the
vaginal microbiome (15). In fact, many healthy women who lack BV symptoms have
vaginal microbiomes dominated by microbes that are associated with BV (29), suggest-
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ing that taxonomy alone is insufficient to predict health outcomes and that microbial
activities, including metabolic productivity, may offer a more contemporary view of
microbiome function.

An untargeted, more global assessment of microbiomes and associated metabolites
during pregnancy and early life is lacking. To address this gap in knowledge, we
collected saliva, urine, and cervical vaginal fluid (CVF) from 18 mothers during each
trimester of pregnancy and saliva and urine from offspring through their first year of
life. Specifically, we were interested in how maternal CVF microbiome profiles are
associated with metabolomic assessments of the same samples. Furthermore, we had
the opportunity to examine whether maternal saliva and urine metabolome profiles
relate to those of the infant in the first year of life. Here, we present DNA sequencing
(amplicon and shotgun) and untargeted metabolomics to characterize microbial and
metabolic features of the CVF microbiome throughout pregnancy to determine the
composition of the vaginal microbiome from a cohort of healthy Caucasian and
Hispanic women, longitudinally sampled throughout a healthy pregnancy.

RESULTS
Description of the cohort and data obtained from samples. Saliva, urine, and

cervical vaginal fluid (CVF) were collected from 18 women at early, middle, and late
pregnancy with the gestational age range of the included women at each time point
(Fig. 1). At the time of enrollment into the cohort, the average woman’s age was
27.8 years old, and the average prepregnancy body mass index (BMI) was 24.8 kg/m2

(Table 1). The cohort was 39% white Hispanic and 61% non-Hispanic white; there were

FIG 1 Study outline. Eighteen women were sampled throughout pregnancy and their offspring were sampled at
birth and 6 and 12 months of age. Samples collected were urine, saliva, and cervical vaginal fluid (CVF) from the
mothers and urine and saliva from the children. CVF was sequenced using shotgun metagenomics and amplicon
sequencing. All samples were analyzed using GC-TOF MS and lipidomics.

Microbiome Composition in Healthy Pregnancy ®

July/August 2020 Volume 11 Issue 4 e01851-20 mbio.asm.org 3

https://mbio.asm.org


no significant differences in BMI (t test; P � 0.28) or age (t test; P � 0.89) between ethnic
groups. Saliva and urine were collected at indicated intervals from each infant up until
1 year of age (Fig. 1). Saliva, urine, and CVF samples were subjected to metabolomics
analysis, whereas only CVF was used for sequence analysis. Sequence analysis included
amplicon-based sequencing of the 16S rRNA gene (bacteria and archaea) and ITS2
(fungi) loci and shotgun metagenomic sequencing of the entire microbial community.

Vaginal microbiota support high abundances of Lactobacillus and Bifidobacte-
riaceae throughout pregnancy. Sixteen individuals (42 total samples) produced suf-
ficient sequence reads for taxonomic assignment using the 16S rRNA gene. Amplicon
sequencing stratified cervical samples into those where the most abundant taxon was
Lactobacillus spp. (34/42; 81%) or Gardnerella spp. (8/42; 19%) (Fig. 2A; Fig. S1A). The
bacterial taxa in samples with abundant Lactobacillus spp. were significantly less evenly
distributed (linear mixed-effects [LME] modeling; P � 0.001; Fig. 2C), with Gardnerella
vaginalis being the most abundant in seven of eight samples (88% relative abundance)
and a Shuttleworthia taxon being most abundant in one sample (at 23% relative
abundance). In samples where Lactobacillus spp. had the highest abundance, a single
taxon comprised 50% or more of the sequencing reads (27/34; 79%). L. iners was the
most abundant taxon detected in 14 samples from 7 subjects, with a median relative
abundance of 79%. In 12 samples from 7 subjects, a Lactobacillus taxon, putatively
identified as L. crispatus through metagenomic sequencing (Fig. S1B and C), had a
median relative abundance of 96% and persisted at a relative abundance greater than
90% in subjects 1088, 1120, and 1191. Altogether, the most abundant 3 taxa, L. iners
(operational taxonomic unit 1 [OTU_1]), L. crispatus (OTU_2), and G. vaginalis (OTU_3),
comprised 66% of the total bacterial sequencing reads.

Whole-genome shotgun sequencing produced, on average, 2.9 million paired-end
reads per sample, which decreased to an average of 220,355 paired-end reads per
sample following removal of reads that aligned to the human genome. Thirteen
individuals (35 total samples) produced sufficient sequence reads for taxonomic as-
signment, which was concordant with 16S rRNA gene sequence results (Fig. S1B and C).
Most of the reads classified as L. crispatus or L. iners mapped to a single metagenomic
assembled genome, with completeness of 95.7% and 97.1% and redundancy of 0% and
1.4%, respectively.

Twelve samples from seven subjects produced ITS2 sequences (Fig. 2A); we do not
have quantitative data characterizing the abundance of bacterial or fungal biomass.
Eleven samples from six subjects contained species of Candida, classified as C. albicans
(Fig. S2A), the most abundant fungal taxon in these data. Shotgun metagenomics
confirmed these results and allowed for additional identification of reads mapping to

TABLE 1 Demographics of the 18 mothers who participated in the study

Maternal ID Race and ethnicity Age (yr) BMI (prepregnancy [kg/m2])

1018 White Hispanic 35 27.4
1062 White Hispanic 23 25.3
1088 White non-Hispanic 26 25.8
1089 White non-Hispanic 22 21.8
1103 White non-Hispanic 27 24.5
1111 White Hispanic 38 27.9
1120 White non-Hispanic 34 26.9
1126 White Hispanic 19 27.8
1137 White Hispanic 31 23.5
1146 White non-Hispanic 29 23.5
1151 White non-Hispanic 30 22.4
1157 White non-Hispanic 28 18.9
1180 White non-Hispanic 29 24.9
1191 White Hispanic 31 22.7
1198 White non-Hispanic 26 24.8
1201 White non-Hispanic 30 29.9
1202 White Hispanic 20 24.7
1222 White non-Hispanic 24 24.0
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FIG 2 Taxonomy and alpha diversity of vaginal microbiomes during pregnancy. (A) Relative abundance plot of operational taxonomic units, from 16S
amplicon data, grouped together by individual. Each individual is clustered into a larger category defined by the dominating microbe. (B) Presence or

(Continued on next page)
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taxa such as Malassezia spp. (Fig. S2C). Subject 1,088 was the only participant to deviate
from this trend, with a high relative abundance of Aspergillus during the first trimester
of pregnancy (Fig. S2A).

Alpha diversity indices based on 16S rRNA and ITS2 data, when available, were
compared across trimesters. While some subjects exhibited qualitative evidence of
compositional shifts in vaginal microbiota with advancing gestation (Fig. 2A), we did
not observe a significant difference in bacterial richness (number of observed OTUs)
(LME; P � 0.17), evenness (Pielou’s evenness index) (30) (LME; P � 0.46), or phylogenetic
diversity (LME; P � 0.21) across trimesters (Fig. 2D to F).

Highly abundant bacterial taxa were significantly associated with community
composition. A nonmetric multidimensional scaling (nMDS) plot of Bray-Curtis
dissimilarities showed that vaginal communities clustered by their most abundant
bacterium (Fig. 3A). This association between the most abundant bacterial taxa and
microbial composition of the sample was significant and explained more than half
of the variance using permutational multivariate analysis of variance (PERMANOVA)
(R2 � 56%; P � 0.0001). To account for repeated measures from longitudinal samples
from the same individual, we also performed an LME, which required dimensional
reduction (LME; R2 � 69%; P � 0.0001). Communities with abundant L. crispatus were
more similar to each other, sharing more than 90% similarity, in comparison to
communities where a different bacterial species was most abundant. While some
individuals exhibited a relatively stable microbial community over time, others (6/16)
experienced shifts in composition, resulting in a statistically significant change in
Bray-Curtis dissimilarity on PC axis 1 between trimesters (Fig. 3B).

The five subjects with Candida detected in at least one of two longitudinally paired
samples displayed a significant increase in intersample Bray-Curtis dissimilarity in their
bacterial profiles over that interval (e.g., the intervals between trimester 1 to 2, 2 to 3,
or 1 to 3), suggesting the presence of Candida may be associated with greater shifts in
bacterial composition than those who had no Candida detected (Fig. S2B).

FIG 2 Legend (Continued)
absence of fungi, at the genus level, per sample. Linear mixed-effects models (LME) were done on the alpha diversity metrics to account for repeated
measures in the data. (C) Evenness between samples dominated by Lactobacillus (n � 34 samples) is significantly lower than samples dominated by
Bifidobacteriaceae (n � 7 samples). (D) No significant change in the observed OTUs between the trimesters (n � 15, 13, and 14 samples, respectively) of
pregnancy and likewise. (E and F) There was no change in evenness (E) or phylogenetic diversity (F) throughout pregnancy.

FIG 3 Ordination of vaginal microbiomes during pregnancy. (A) Nonmetric multidimensional scaling (nMDS) of Bray-Curtis dissimilarity between vaginal
microbiomes (n � 42 samples) of mothers. Color indicates the most abundant microbe within the microbial community. The most abundant microbe in the
community plays a statistically significant role in the composition of the community (LME; R2 � 69%; P � 0.0001). (B) Some participants (6/16 individuals)
experienced large, significant shifts (LME; P � 0.0219) in their microbiomes throughout the trimesters of pregnancy.

Oliver et al. ®

July/August 2020 Volume 11 Issue 4 e01851-20 mbio.asm.org 6

https://mbio.asm.org


Metabolites have strong associations with vaginal microbial community struc-
tures. Using gas chromatography-time of flight mass spectrometry (GC-TOF MS), we
detected 330 metabolites from urine, saliva, and CVF with 133 identified compounds.
In the same samples, 1,946 metabolites were also detected by liquid chromatography-
quadrupole time of flight tandem mass spectrometry (LC-QTOF MS/MS) (lipidomics;
Table S1), with an additional 353 identified compounds. The CVF metabolome as
assessed by both mass spectrometry methods did not significantly differ across trimes-
ters (LME; P � 0.6378 for GC-TOF MS; P � 0.3942 for liquid chromatography-tandem
mass spectrometry [LC-MS/MS]). This stability was even true for the subset of individ-
uals who exhibited shifts in microbiota composition over trimesters (LME; P � 0.6594
for GC-TOF MS; P � 0.2482 for LC-MS/MS). CVF samples dominated by distinct bacte-
ria exhibited significant differences in metabolic profiles (PERMANOVA; R2 � 12%;
P � 0.0195). A constrained, distance-based ordination plot recapitulated 67% of the
community variation observed in the vaginal microbiota (Fig. 4). Superimposed on the
ordination plot are GC-TOF MS predictor metabolites, calculated using the distance-
based linear models (DISTLM) program in PRIMER-e. Indole-3-lactate (ILA) accounted for
27% of the variation observed in the vaginal microbiota data and was found to be more
abundant in vaginal microbiota with abundant L. crispatus (Fig. 4B). Mannitol was also
more abundant in samples dominated by L. crispatus (Fig. 4C). In parallel, we found that
a pathway for mannitol-1-phosphate production is also more abundant in shotgun
metagenomic data sets of CVF samples dominated by L. crispatus (Fig. S3). This linear
model identified the top 10 annotated GC-TOF MS metabolites that were associated
with variation in the microbial community composition, which are shown in Fig. 4A;
these 10 metabolites together might explain almost 57% of the total variation in the
microbial community composition. A permutated random forest recapitulated what we
found in the DISTLM, identifying mannitol and indole-3-lactate as two of the top
variables of importance, specifically for distinguishing microbiomes with high abun-

FIG 4 Relationship between vaginal microbes and metabolites. (A) Distance-based linear model recapitulates the relationship between the vaginal
microbiomes of these subjects (n � 42 samples). Superimposed are vectors showing which annotated GC-TOF MS molecules are best correlated with these
microbial communities. Length and direction of vectors correspond to the strength of the association between the metabolite and the microbial communities.
Box plots show the raw abundance (n � 45 samples) of indole-3-lactate (B) and mannitol (C).
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dances of L. crispatus (Fig. S4A). To explore the ability to analyze the metabolome in
high throughput, the same sample sets were analyzed using matrix-assisted laser
desorption ionization mass spectrometry imaging (MALDI-MSI) (Table S1). Detected
ions by MALDI were compared to those identified by GC-MS and LC-MS, and we found
that �55% of the metabolites identified had corresponding ions in the MALDI analysis
(Table S1).

Metagenomics and functional potential of communities. Distinct functions were
associated with each of the vaginal microbial community clusters (PERMANOVA;
R2 � 70%; P � 0.0001; Fig. 5). LEfSe identified several pathways that differed between
L. crispatus and G. vaginalis, in particular, an enrichment of ammonia assimilation genes
in G. vaginalis (Fig. S4B). Genes involved in mannitol metabolism were enriched in
communities where L. crispatus was highly abundant (Fig. S3C and Fig. 4B). Searching
the PATRIC database of all sequenced L. crispatus (64 genomes), L. iners (22 genomes),
and G. vaginalis (127 genomes) strains revealed annotated genes for mannitol usage
and transport for L. crispatus but not for L. iners or G. vaginalis.

Mothers and infants have significantly different saliva and urine metabolomes.
Maternal and infant saliva and urine metabolomes were assessed with both GC-TOF MS
and LC-MS/MS (lipidomics) in order to study the relationship between maternal and
infant metabolomic compositions during early life (see Fig. 1). PERMANOVA analysis of
lipidomics data from saliva samples showed the largest difference between mothers
and offspring (PERMANOVA; R2 � 69%; P � 0.001; Fig. S5A). A subset of 50 lipidomics
metabolites with high mean abundance, 70% of which were unannotated, showed
distinct profiles between mother and offspring salivary metabolomes (Fig. S6A). Like-
wise, GC-TOF MS salivary metabolomes were also significantly different between
mother and offspring, but far less variation was explained (PERMANOVA; R2 � 12%;
P � 0.0001; Fig. S5B). Some metabolites, such as lactulose, were much more abundant
in infants and largely absent in mothers (Fig. S6B). Maternal metabolomics profiles

FIG 5 Ordination of functional pathways within the vaginal microbiome. An nMDS of HUMAnN2 analysis, examining the abundance
of pathways in each microbiome (n � 35 samples). Vaginal microbiomes have functions that are indicative of the most abundant
microbe present in the samples.
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(both GC-TOF MS and LC-MS/MS lipidomics) have a strong individual signature, while
infants do not (see PERMANOVAs; Table S2). The infant metabolome for saliva and urine
had little variance attributed to which subject donated the sample, but GC-TOF MS was
able to detect a significant change between the infant urine metabolome at birth
versus 6 and 12 months of age (PERMANOVA; R2 � 34%; P � 0.0007; Table S2). More-
over, from lipidomics data, the infant metabolome profile seemed to converge on
mothers’ metabolomes as they aged, though more samples would be needed to
confirm this finding (Fig. S5C). For both saliva and urine, GC-TOF MS- and lipidomics-
detected metabolites were more similar for mother-child pairs than for unrelated
individuals (Fig. S7). Mantel tests to determine if intersample relationships were similar
between chromatography methods (including both GC-TOF MS and lipidomics)
showed a strong correlation between saliva samples and weaker correlations between
urine and CVF (Table S3).

DISCUSSION

Exposure to the microbiome in early life is critical for immune and physiological
development (1–4), yet the factors that set this trajectory remain poorly understood. In
this study, we followed the vaginal microbiome through the trimesters of pregnancy for
18 women, tracking changes in the bacterial communities with longitudinal samples
and capturing their functional potential with metagenomic sequencing and multiple
platforms to assess metabolomic profiles. The resolution provided by shotgun metag-
enomic sequencing allowed us to identify species and characterize the functional gene
content of CVF microbiomes. An additional strength of this work is the strict inclusion
criteria defining healthy pregnancy (see “Subject information” in Materials and Meth-
ods). Moreover, as part of an existing sample cohort, we had the opportunity to
measure saliva and urine metabolomes from mothers and children. We aim to establish
how the metabolome develops in the first year of life and how maternal-infant saliva
and urine metabolomes relate. In our study, most healthy pregnant women exhibited
a relatively stable vaginal microbiota throughout the trimesters of pregnancy, domi-
nated by Lactobacillus or, in some cases, more diverse, Bifidobacterium-dominated
microbiota. However, a subset of women exhibited compositional shifts in their CVF
microbiota as pregnancy progressed, as has also been seen in other larger cohorts (13).
We found several strong correlations between particular vaginal communities and
metabolites, which may help us understand the physiology underlying distinct vaginal
microbiota structures that were evident in our study. Lastly, vaginal microbiota com-
position predicted which metabolites were present in the CVF samples but not urine or
saliva samples from the mothers or infants, suggesting that local microbial metabolism
may represent the dominant contributor to the metabolic milieu of the vaginal tract
during pregnancy.

Our study supports the results from several other studies that have indicated that
the vaginal microbiome is stable during pregnancy (8, 31). Specifically, in a longitudinal
study that includes 90 women, most retain a microbial community with the same
dominant member (in L. crispatus communities, 75% remain stable; in communities
with high L. iners abundance, 71% remain stable; and in more diverse communities like
those sometimes associated with BV, 58% do not shift) (13). Using metagenomic
sequencing to probe microbial community variation, our findings indicate that few
bacteria, particularly Lactobacillus species, are highly abundant in the vaginal environ-
ment. Indeed, for individuals with vaginal microbiomes numerically dominated by L.
crispatus or L. iners, the vast majority of reads mapped to contigs from one strain of L.
crispatus or L. iners (Fig. S1B). Of note, the microbiome of some individuals did differ
considerably with advancing pregnancy. For instance, the vaginal microbiota of sub-
jects 1180 and 1222 had higher abundances of L. crispatus during the first trimester, but
L. iners was more abundant in the remaining trimesters. Brooks et al. (32) demonstrated
that shifts in vaginal microbiota structures can be described probabilistically, where
shifts from L. crispatus to L. iners are the most likely to occur. This is consistent with the
observations made in two individuals from our study; however, due to the small
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number of samples exhibiting this phenomenon, qualitative assessments were more
appropriate than statistical analysis. Of note, vaginal microbiota instability throughout
pregnancy was associated with the presence of Candida, a known opportunistic
pathogen of the vaginal tract. Since inclusion criteria for this study stipulated no
antibiotic treatment, it is unlikely that Candida detection was a result of antibiotic
administration. The prevalence of Candida in our cohort is more likely to be reflective
of the fact that pregnancy is a known risk factor for candidiasis (33) and to related
differences in the vaginal environment, including microbiological colonization. Indeed,
L. crispatus has been shown to have anti-Candida activity (34), and 90% (10/11) of
samples that were Candida positive came from individuals whose vaginal microbiota
were dominated by an organism other than L. crispatus.

A few metabolites were highly indicative of the bacterial community present in each
subject and may be useful biomarkers for the type of vaginal microbiota present. The
most indicative metabolite was indole-3-lactate (ILA), a tryptophan metabolite whose
abundance was correlated with communities having abundant L. crispatus (Fig. 4B and
Fig. S4A). One potential explanation is that L. crispatus produces ILA to competitively
exclude the growth of other species (Fig. 6). At physiologically relevant concentrations,
ILA has been shown to have antimicrobial properties against both Gram-positive and
Gram-negative organisms (35, 36). Although the production of lactic acid is generally
thought of as a strategy Lactobacillus spp. use to prevent other species from colonizing
the vagina, perhaps these organisms also use ILA in a similar or supplementary
capacity. Additionally, bacteria-derived ILA (also referred to as indole-lactic acid) has
been recently shown to directly move from maternal to infant tissue (6). It has been
suggested that indoles may play an important role as a ligand for the human aryl
hydrocarbon receptor (AhR), which have diverse functions from immune regulation to
metabolism (reviewed in reference 37). Zelante et al. further showed that some
lactobacilli produce the related tryptophan catabolite, indole-3-aldehyde (IAld), which
provides protection against candidiasis by increasing interleukin-22 (IL-22) production
via AhR receptor binding (38). The study also demonstrated that vaginal specific
bacteria, such as L. acidophilus, produce IAld in the vaginal environment, which
protected against vaginal but not intestinal candidiasis. We measured indole-3-acetate
(IAA), the direct precursor to IAld, in our study, but found no difference in its abundance
between women dominated by different species of Lactobacillus (data not shown).
Because indole-3-lactate can act as a ligand for AhR, we speculate that L. crispatus may

FIG 6 Proposed vaginal microbial community model. Current hypothesized model of vaginal microbial community physiology, with gaps in
understanding (denoted by question marks) where future work is needed. Our study indicates that mannitol production is associated with a high
relative abundance of L. crispatus.
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regulate the IL-22-AhR response in the vagina, reducing the risk of vaginal candidiasis
in the same way IAld does, and potentially activating the AhR response in newborns to
prevent early-life candidiasis. Additionally, indole itself may play a role in structuring
community composition by selecting for organisms that have adapted to a high
abundance of this metabolite, repelling more transient microbes that have not been
exposed to higher indole concentrations previously (39).

Whole-genome shotgun metagenomics allowed us to begin to address the func-
tional capacities of these microbiomes. The largest differences between functional
capacity appeared to be between communities where L. crispatus or G. vaginalis were
the most abundant bacterial taxon. One pathway particularly enriched in Gardnerella
communities was the ammonia assimilation cycle (Fig. S4B). Studies have pointed out
Gardnerella’s preference for ammonia as a nitrogen source (40); moreover, this ability to
assimilate ammonia and produce amino acids has been implicated in mutualistic
interactions between species of Prevotella, in the context of BV (41). Together, these
BV-associated organisms contribute to genital inflammation, which may play a role in
the susceptibility of certain diseases, such as HIV (42).

Increased abundance of mannitol when L. crispatus was present is an important and
unexpected finding (Fig. 4). Most likely, mannitol contributes to optimizing the tonicity
of the vaginal environment, and has recently been considered for this use in develop-
ing effective therapeutics for altering the vaginal microbiota (43, 44). Even more,
mannitol may assist L. crispatus in adhering to the epithelial layer, a strategy the
organism may use to competitively inhibit other microbes from colonizing, potentially
by drawing out excess water in the mucin layer and altering the mucin structure (45).
Irrespective of the biochemistry, these genes, and mannitol in general, represent very
specific markers of a community where L. crispatus was most abundant.

Although it is known that homofermentative lactic acid bacteria (LAB) such as L.
crispatus (46) convert glucose primarily to lactic acid, it is unclear why mannitol
accumulates in this niche. Interestingly, there was no difference in the glucose abun-
dance between the four distinct vaginal communities. Further, metabolomic analysis of
our CVF samples failed to capture significant levels of the mannitol precursor fructose;
however, previous studies have indicated an appreciable amount of fructose within the
cervical mucus of humans (47) and the capability of L. crispatus to utilize fructose as a
carbon source (48, 49). We speculate that this high extracellular mannitol abundance
phenotype may underlie the cell’s need to regenerate NAD� for use in glycolysis. When
faced with a limiting amount of pyruvate (or perhaps an upstream glycolytic metabo-
lite) to convert to lactate, homofermentative LAB may be unable to produce sufficient
NAD� to allow glycolysis to continue. To this end, reducing fructose 6-phosphate to
mannitol-1-phosphate may be an alternative and vital way L. crispatus regenerates
NAD� for glycolysis (50, 51). We did find the gene mannitol-1-phosphate dehydroge-
nase, responsible for converting fructose 6-phosphate to mannitol-1-phosphate, was
highly correlated (R2 � 0.9) with the relative abundance of L. crispatus. The genes for
the conversion of mannitol-1-phosphate to mannitol (presumably an M1P phospha-
tase) and its subsequent export are currently unknown (51). This may imply that
mannitol accumulation is a marker of a cellular switch to NAD� regeneration by
fructose reduction rather than converting pyruvate to lactic acid. Consequently, the
decrease in lactic acid production may contribute to community dysbiosis due to a rise
in pH (Fig. 6). Future experiments using culturing to elucidate whether these in vivo
community data are recapitulated with axenic cultures in vitro are needed.

Furthermore, this study enabled comparison of two metabolomic methods (GC-TOF
MS and LC-MS/MS lipidomics) for analysis of the pregnancy and early-life metabolomes.
Our data showed that metabolite intensities obtained by GC-TOF MS were more tightly
correlated with microbial community composition than those obtained by lipidomics,
perhaps indicating that GC-TOF MS is more effective at detecting microbial metabolites
than lipidomics, especially during pregnancy. We also show that both the saliva and
urine metabolomes of children are more similar to their own mother than to unrelated
individuals (Fig. 6). Strikingly, the ability of lipidomics to differentiate mothers from
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children via saliva was the strongest signal in our metabolomics data (Table S1). The
oral microbiome may play a role in this, as there is a well-established community
succession in children during early life (reviewed in reference 52), where children begin
life with oral microbes that differ from those in adults. Lactulose, detected by GC-TOF
MS, was a specific metabolite with increased abundance in infant saliva, which may
reflect its use as a treatment for constipation (53) or perhaps even its presence in
heated milk (54). Finally, urine metabolomes had a distinct age profile, especially with
the lipidomics data. Our data suggest that, over the first year of life, the urine
metabolome rapidly converges on the adult metabolome. This is likely a result of the
development of the renal system in children (55), along with the development of the
gut microbiome and the related metabolites which are processed through the liver and
kidneys. Other reasons for this age-related shift include a change in diet and weaning
off breastmilk or formula (55). Expectedly, we did not see a strong influence of the
vaginal microbiome during pregnancy on the infant saliva and urine metabolome. We
suspect that if differences in the vaginal microbiome were to affect the early-life saliva
and urine metabolome, those effects would be subtle. The lack of stool samples from
the mothers and infants is a limitation of this study, as they may contain a stronger
signal of shared metabolomes across mother-infant dyads. Additionally, we explored a
high-throughput approach to characterize the metabolomes. By using acoustic depo-
sition in combination with MALDI-MSI, a throughput of �1 s per sample was reached
using only 2 �l of sample. Of the metabolites identified by GC-MS and LC-MS, �55%
had corresponding ions in the MALDI-MSI analysis (Table S1). Future work will focus on
confirming these metabolite identifications, but the initial results are promising and
indicate that rapid analysis of microbial metabolites using MALDI, an analysis platform
routinely used in clinical microbiology laboratories, is feasible (56).

Overall, we provide a broad look at the metabolome during pregnancy and early life,
detailing the utility of GC-TOF MS, lipidomics, and MALDI-MSI for saliva, urine, and CVF.

In conclusion, here, we share a high-resolution characterization of the vaginal
microbiome, longitudinally sampled throughout healthy pregnancies. We show that,
despite the generally accepted view that lactobacilli are indicative of healthy vaginal
communities, many women in our healthy pregnancy cohort had non-Lactobacillus-
dominated communities. The vaginal communities were characterized by a high abun-
dance of one or a few acid-tolerant species, which dictated the physiologic potential
and the metabolic profiles of the vaginal microbiome. Many of the metabolites that
were specific to these different organisms warrant further investigation, especially
considering the recent development of vaginal microbiota transplantation (VMT) as a
treatment for BV (28). The metabolites we found to be associated with L. crispatus may
be useful as microbiome cultivation approaches are developed to intentionally direct
the composition of the vaginal microbiome. For example, indole-3-lactate may support
L. crispatus colonization, while mannitol may indicate a shift in metabolism away from
fermentation and the production of acid, relaxing the low-pH selection pressure, which
normally gives L. crispatus an advantage.

MATERIALS AND METHODS
Subject information. Eighteen women were selected from a larger cohort recruited to address how

maternal stress affects child development (57, 58) (Table 1). Inclusion criteria for the larger cohort
included �18 years of age, singleton, intrauterine pregnancy, and nondiabetic. Additional inclusion
criteria for this study were normal prepregnancy body mass index, vaginal delivery, full-term pregnancy,
breastfeeding, and no antibiotics for mother or baby. Generally, these 18 women and their children
represented healthy subjects with the most complete sample sets.

Sample collection. Samples were collected at each trimester of pregnancy for women and through-
out the first year of life for infants. At each time point, maternal saliva, urine, and cervical vaginal fluid
were collected. For infants, urine was collected at birth, 6 months, and 12 months, whereas saliva was
sampled at 6 months and 12 months of age. Maternal saliva was collected using a Salivette collection kit,
including a small cotton roll contained in a plastic container (Salimetrics, Carlsbad, CA). Mothers were
instructed to place the cotton rolls in their mouths until saturated with saliva (approximately 1 to 3 min)
and then reseal the swabs in plastic Salivette tubes. Infant saliva was collected using Weck-Cel spears and
a swab extraction tube system. Infants were allowed to suck on the spear for 2 min, ensuring saturation.
Maternal urine was collected using a sterile collection cup. Infant urine was collected using an adhesive
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U-Bag attached to the genital region of the infant. A minimum of 2 ml of urine was collected. Cervical
vaginal fluid (CVF) was collected by placing three Dacron swabs into the cervix for 10 s to achieve
saturation. Each swab was then placed in a plastic vial with 500 �l of sterile phosphate-buffered saline
(PBS). All samples were initially stored at �20°C, and then saliva, CVF, and infant urine were subsequently
moved to �80°C storage.

Metabolomics. Prior to processing, samples were thawed from �80°C storage. Fifty microliters of
each sample were subjected to gas chromatography-time of flight mass spectrometry (GC-TOF MS) (59)
and liquid chromatography-tandem mass spectrometry (LC-MS/MS, lipidomics). Urine, saliva, and CVF
from each time point were sent to the West Coast Metabolomics Center (WCMC) for untargeted
metabolomics. GC-TOF MS metabolites were extracted with a mixture of 3:3:2 acetonitrile-isopropyl
alcohol-water according to standard operating procedures from the Fiehn Lab at the WCMC (60).
LC-MS/MS samples were extracted using a variant of the Matyash method (61). Data were acquired for
complex lipids in positive and negative electrospray mode on a Waters CSH column and an Agilent 6530
QTOF mass spectrometer (61). Metabolites were identified by retention time MS/MS matching using
MassBank of North America (http://massbank.us) and NIST 17 libraries.

High-throughput metabolomics. All urine, saliva, and CVF were analyzed using matrix-assisted laser
desorption ionization mass spectrometry imaging (MALDI-MSI) for high-throughput untargeted metabo-
lomics. Extracted samples in 3:3:2 acetonitrile-isopropyl alcohol-water were diluted 1:2 in water in
384-well plates. Next, an equal volume of MALDI matrix (20 mg/ml of 1:1 2,5-dihydroxybenzoic acid and
�-cyano-4-hydroxycinnamic acid in 1:3 [vol/vol] H2O-MeOH plus 0.2% formic acid) was added. Samples
were printed onto a stainless steel blank MALDI plate using an ATS-100 acoustic transfer system (BioSera)
with a sample deposition volume of 10 nl. Samples were printed in clusters of four replicates, with the
microarray spot pitch (center-to-center distance) set at 900 �m. MS-based imaging was performed using
an ABI/Sciex 5800 MALDI TOF/TOF mass spectrometer with a laser intensity of 3,500 (arbitrary units) over
a mass range of 50 to 3,000 Da. Each position accumulated 20 laser shots. The instrument was controlled
using the MALDI-MSI 4800 imaging tool. Surface rasterization was oversampled using a 75-�m step size.
Average ion intensity for all reported ions was determined using the OpenMSI Arrayed Analysis Toolkit
(OMAAT) software package (62).

DNA extraction. Cervical brushes were resuspended in PBS. Two negative extraction controls using
sterile PBS were prepared alongside the samples. Aliquots of 100 to 200 �l were added to lysing matrix
E tubes prealiquoted with 500 of hexadecyltrimethylammonium bromide (CTAB) DNA extraction buffer
and incubated at 65°C for 15 min. An equal volume of phenol-chloroform-isoamyl alcohol (25:24:1) was
added to each tube, and samples were homogenized in a Fast Prep-24 homogenizer at 5.5 m/s for 30 s.
Tubes were centrifuged for 5 min at 16,000 � g, and the aqueous phase was transferred to individual
wells of a 2-ml 96-well plate. An additional 500 �l of CTAB buffer was added to the lysing matrix E tubes,
the previous steps were repeated, and the aqueous phases from paired extractions were combined. An
equal volume of chloroform was mixed with each sample, followed by centrifugation at 3,000 � g for 10
min. The aqueous phase (600 �l) was transferred to a clean 2-ml 96-well plate, combined with 2 volume
equivalents of polyethylene glycol (PEG) and stored overnight at 4°C to precipitate DNA. Plates were
centrifuged for 60 min at 3,000 � g. DNA pellets were washed twice with 300 �l of 70% ethanol, air-dried
for 10 min, and resuspended in 100 �l of sterile water. DNA was quantified using the Qubit dsDNA
high-sensitivity (HS) assay kit and diluted to 10 ng/�l when possible. Although DNA was extracted from
CVF, attempts to extract DNA from saliva were unsuccessful, potentially due to the storage swabs
trapping the biomaterial.

Amplicon gene sequencing. To amplify the V4 region of the bacterial 16S rRNA gene, 10 ng of DNA
template was combined with PCR master mix (0.2 mM deoxynucleoside triphosphate [dNTP] mix,
0.56 mg/ml bovine serum albumin [BSA], 0.4 �M Illumina adapter sequence-tagged forward primer
[515F] [63], and 0.025 U/�l Taq DNA polymerase) and 0.4-�M barcode-tagged reverse primers (806R) and
then amplified in triplicate 25-�l reactions, along with a no-template control, for 30 cycles (98°C for
2 min; 98°C for 20 sec, 50°C for 30 sec, and 72°C for 45 sec; repeat steps 2 to 4 29 times; 72°C for 10 min).
PCR conditions were identical for ITS2 amplification (primer pair fITS7 [5=-GTGARTCATCGAATCTTTG-3=]
and ITS4 [5=-TCCTCCGCTTATTGATATGC-3=]) except for the annealing temperature, which was 52°C.
Triplicate reactions were combined and purified using the SequalPrep normalization plate kit (Invitrogen)
according to the manufacturer’s specifications. Purified amplicons were quantified using the Qubit
double-stranded DNA (dsDNA) HS assay kit and pooled at equimolar concentrations. The amplicon
library was concentrated using the Agencourt AMPure XP system (Beckman-Coulter), quantified using
the Kapa library quantification kit (Kapa Biosystems), and diluted to 2 nM. Equimolar PhiX was added at
40% final volume to the amplicon library; the 16S rRNA amplicon pool was sequenced on the Illumina
NextSeq 500 platform on a 153-bp by153-bp sequencing run, and the ITS2 amplicon pool was sequenced
on the Illumina MiSeq platform on a 290-bp by 290-bp run.

Shotgun metagenomics sequencing. Sequencing libraries were prepared using the Illumina Nex-
tera kit and methods described in Baym et al. (64). Briefly, DNA from each sample was diluted to 0.5 ng/�l
and tagmented with the Nextera enzyme (Illumina) for 10 min at 55°C. Following tagmentation, each
sample received 1-�l forward and 1-�l reverse barcodes, which were added via PCR using Phusion DNA
polymerase (New England BioLabs). After PCR, the libraries were cleaned of smaller DNA fragments, using
AMPure XP magnetic beads (Beckman-Coulter), and pooled by concentration. Libraries were quantified
using the Quanti-iT PicoGreen dsDNA kit (Thermo Fisher Scientific), and DNA was run on a gel to check
fragment size. These libraries were loaded onto the Illumina Next-Seq 500 at 1.8-pM concentrations and
Illumina’s midoutput kit for 75-bp paired-end sequencing.
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OTU table generation. Raw sequence data were converted from bcl to fastq format using bcl2fastq
v2.16.0.10. Paired sequencing reads with a minimum overlap of 25 bp were merged using FLASH v1.2.11.
Index sequences were extracted from successfully merged reads and demultiplexed in the absence of
quality filtering in QIIME (Quantitative Insights into Microbial Ecology, v1.9.1), and reads with more than
two expected errors were removed using USEARCH’s fastq filter (v7.0.1001). Remaining reads were
dereplicated, clustered into operational taxonomic units (OTUs) at 97% sequence identity, filtered to
remove chimeric sequences, and mapped back to OTUs using USEARCH v8.0.1623. Taxonomy was
assigned with the most current Greengenes database for bacteria (63) (May 2013) and UNITE version 6
for fungi (65). OTUs detected in negative extraction controls (NECs) were considered potential contam-
inants and filtered by subtracting the maximum NEC read count from all samples; any remaining OTU
with a total read count less than 0.001% of the total read count across all samples was removed.
Sequencing reads were rarefied to an even depth (28,972 reads for 16S; 91,232 reads for ITS2). To
maximize similarity between the raw and rarefied OTU tables, random subsampling was performed at
predefined depths 100 times, and the most representative subsampled community was selected based
on the minimum Euclidean distance to the other OTU vectors generated for each sample.

16S rRNA gene analysis. Alpha diversity indices and Bray-Curtis dissimilarity matrices were gener-
ated in QIIME (66). Linear outcomes were assessed by linear mixed-effects (LME) modeling to adjust for
repeated measures using the nlme package (67) in the R environment (68). Variables of P � 0.05 were
considered statistically significant. Data were visualized using Tableau and Adobe Illustrator unless
otherwise noted.

Metagenomic analysis. Raw sequences (mean 2,977,881 paired-end reads per sample from 35/38
successfully sequenced samples) were filtered using PRINSEQ v0.20.4 (69) to filter out sequences that had
a mean quality score of 30 or less. Human DNA was next filtered out by aligning the filtered reads to the
human genome (hg38) using Bowtie2 v2.2.7 (70) and keeping the reads that failed to align (mean
220,355 paired-end plus 33,744 singleton reads per sample or 10.9% of quality-filtered reads per sample).
To analyze functional potential, the reads were run through HUMAnN2 v0.1.9 (71) using default
parameters, and differences in pathway abundances were analyzed using LEfSe (72). These reads were
also cross-assembled using SPAdes v3.8.2 (73). Each sample was then mapped to this cross-assembly
using Bowtie2, samples from the same subject were merged together using Samtools v1.9, and the
resulting bam files and the cross-assembly were imported into Anvio4 (74). Taxonomy was assigned to
each gene call using Kaiju (75), which subsequently informed a more accurate metagenomics binning of
the most abundant microbes present.

Statistical analysis. Unless otherwise noted, statistics were done using the ecological statistics
program PRIMER-e v7 (76). Metabolic data were normalized in PRIMER-e by dividing by sum total for each
sample. The specific programs used in PRIMER-e were permutational multivariate analysis of variance
(PERMANOVA) and distance-based linear models (DISTLM), the former of which calculates the signifi-
cance and variance explained by a given factor and the latter determines which environmental variables
correlate with the biological (microbiome) data. rfPermute (77), an R package for permutated random
forests, was also performed to determine which annotated GC metabolites were indicative of microbial
composition. PERMANOVA also partitions variance based on each factor, which is done in PRIMER-e by
dividing the factor estimate by the sum total estimates of components of variation (ECoV). Traditional R2

values were also calculated by dividing the sum of squares by total sum of squares. LMEs were carried
out as described above; R2 values for linear mixed models were calculated using the MuMIn package in
R (78). Relate tests (analogous to Mantel tests) were used to compare GC-MS and LC-MS data. Bray-Curtis
distances were used for all distance-based analyses. To consider repeated measures, linear mixed-effects
modeling (nlme package in R) was used to analyze the stability of the microbiome and metabolome
through time.

Ethics approval and consent to participate. This study utilized a subset of samples from a larger,
longitudinal prospective cohort study designed to analyze the relationship between maternal stress and
infant development conducted at the University of California, Irvine (UCI) (57). The University of
California’s Institutional Review Board approved the protocol, and written, informed consent was
obtained from each participant. Research on human subjects was performed in accordance with the
Declaration of Helsinki.

Data availability. Sequence data for 16S, ITS2, and shotgun metagenomes were deposited on the
National Center for Biotechnology Information (NCBI) sequence read archive (SRA) under the BioProject
accession number PRJNA612083. Metabolomics data for all samples can be found in Table S1. R scripts
for statistical analysis are published on GitHub at https://github.com/aoliver44/Cervicovaginal-Paper.
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