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Simple Summary: Batch harmonization of radiomic features extracted from magnetic resonance
images of breast lesions from two databases was applied to an artificial intelligence/machine learning
classification workflow. Training and independent test sets from the two databases, as well as the
combination of them, were used in pre-harmonization and post-harmonization forms to investigate
the generalizability of performance in the task of distinguishing between malignant and benign
lesions. Most training and independent test scenarios were statistically equivalent, demonstrating
that batch harmonization with feature selection harmonization can potentially develop generalizable
classification models.

Abstract: Radiomic features extracted from medical images may demonstrate a batch effect when
cases come from different sources. We investigated classification performance using training and
independent test sets drawn from two sources using both pre-harmonization and post-harmonization
features. In this retrospective study, a database of thirty-two radiomic features, extracted from
DCE-MR images of breast lesions after fuzzy c-means segmentation, was collected. There were
944 unique lesions in Database A (208 benign lesions, 736 cancers) and 1986 unique lesions in
Database B (481 benign lesions, 1505 cancers). The lesions from each database were divided by year
of image acquisition into training and independent test sets, separately by database and in combi-
nation. ComBat batch harmonization was conducted on the combined training set to minimize the
batch effect on eligible features by database. The empirical Bayes estimates from the feature harmo-
nization were applied to the eligible features of the combined independent test set. The training sets
(A, B, and combined) were then used in training linear discriminant analysis classifiers after stepwise
feature selection. The classifiers were then run on the A, B, and combined independent test sets.
Classification performance was compared using pre-harmonization features to post-harmonization
features, including their corresponding feature selection, evaluated using the area under the receiver
operating characteristic curve (AUC) as the figure of merit. Four out of five training and independent
test scenarios demonstrated statistically equivalent classification performance when compared pre-
and post-harmonization. These results demonstrate that translation of machine learning techniques
with batch data harmonization can potentially yield generalizable models that maintain classification
performance.

Keywords: computer-aided diagnosis; radiomics; breast cancer; harmonization; magnetic resonance
imaging; machine learning

1. Introduction

For a given medical imaging protocol, differences in the resulting medical images
and the values extracted from them can arise when they are collected in different contexts.
For example, different manufacturers can implement a protocol that is nominally the
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same but then additionally apply proprietary algorithms which may affect the exported
data, or some factors in the imaging protocol may be systematically different between
two groups, such as magnetic resonance imaging at different clinical field strengths. In
general, medical imaging conducted in different contexts may demonstrate several types of
differences, deriving from factors such as patient biology, screening protocols, and imaging
protocols [1]. Many artificial intelligence/computer-aided diagnosis (AI/CADx) models
for diagnosis and prognosis of disease make use of medical images that are acquired within
a single institution. This can potentially reduce some differences in factors, however, there
is substantial interest in combining datasets to form potentially more generalizable models
through the use of images from multiple institutions.

Harmonization is an area of investigation in AI that seeks the compatibility of data
acquired from different contexts or sources. The concept of harmonization can have several
different levels of application in medical imaging, such as at image acquisition, in which
protocols are controlled to be implemented the same way in different contexts, or in the
post-processing of acquired images to normalize them between two sources of data.

One level of combining datasets from different sources involves the batch harmoniza-
tion of extracted features. Batch harmonization methods seek to reconcile what are termed
batch effects in the field of genomics, the observation that data drawn from otherwise
identical samples measured at different times can show some differences in values [2].
Harmonization can be applied to sets of radiomic features with the underlying assumption
that the acquisition of features from images acquired with nominally similar protocols but
from different sources may demonstrate these batch effects. In the context of AI/CADx,
different databases can be considered as different batches. The harmonization method
ComBat [2] has previously been used in a single stage on all cases in each database of
radiomic features extracted from full-field digital mammography images [3], positron
emission tomography images of breast cancer [4], dynamic contrast-enhanced magnetic
resonance (DCE-MR) imaging of breast cancer [5] (Figure 1a), computed tomography
images for lung cancer and phantom imaging [6,7], MR imaging of soft tissue sarcomas [8],
measurements of diffusion tensor imaging [9] and cortical thickness [10] in the brain, and
FLAIR and T1-weighted imaging of the brain and T2-weighted imaging of the prostate [11].
The application of ComBat harmonization to radiomic features of all cases in each database
allows for the use of covariates, such that the characteristics of the batches, for example
lesion type, are retained. These works and others have demonstrated that ComBat can
potentially be useful when the goal is to harmonize, in one stage, entire datasets resulting
from combined batches. A recent work summarizes the current status of investigations
into harmonization of radiomic features [12].

A related potential application for batch harmonization is its application to an AI/CADx
workflow involving training classifiers on a training set and applying them to a completely
separate, independent test set. In such a scenario, batch harmonization would be conducted
first on the training set alone, with the parameters from the harmonization subsequently
applied to the test set, i.e., the data in the test set do not influence the harmonization
parameters. Applying harmonization in this way can have potential impacts not relevant
when batch harmonization is applied to all cases in each database. For example, batch
harmonization may affect feature selection, i.e., the features selected for combined sets
of features from different batches may be different by using pre-harmonization features
compared with those selected by using post-harmonization features. This may in turn affect
classification of cases in the independent test set. Thus, the use of batch harmonization
on a training set and then application of parameters to an independent test set requires
an additional stage of feature selection harmonization, i.e., the features used in the test set
must be the same as those selected on the training set (Figure 1b). Additionally, because
theoretically such a workflow would use unlabeled test cases, covariates (such as, which
cases are malignant or benign) cannot be used.
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Figure 1. Illustration of two stages in an AI/CADx medical imaging workflow where harmonization 
can be applied. (a) Previous work investigated the impacts of batch harmonization in a single stage 
of all features in the two databases with covariates in the context of cross-validation (Whitney et al., 
Journal of Medical Imaging 2020 [5]). (b) This present work investigates both batch harmonization of 
features and harmonization of feature selection in a training and independent test framework (i.e., 
harmonization is conducted on the features of the lesions in the training set and separately applied 
to the features of the lesions in the test set), with no covariates. 

The purpose of this study was to assess the performance of AI/CADx of breast cancer 
in lesions imaged with DCE-MR on two databases using extracted human-engineered ra-
diomic features, batch harmonization, feature selection harmonization, and classification. 
In this study, the two databases were considered to be the two batches for the purposes 
of batch harmonization. First, we investigated the effects of batch harmonization of fea-
tures in the training set that combined the two batches (i.e., the two training datasets) and 
the application of the associated batch harmonization parameters to the features in the 
independent test sets. Next, we conducted feature selection and classification using the 
training and independent test set paradigms on the two databases separately and on com-
bined versions of them, in both their pre-harmonization and post-harmonization forms. 
We hypothesized that an independent training/test AI/CADx lesion classification pipeline 
that both harmonizes features by databases and allows feature selection to change after 
batch harmonization (that is, feature selection harmonization) will result in a predictive 
model that is generalizable across the two databases, i.e., multi-stage harmonization main-
tains classification performance.  

2. Materials and Methods 
2.1. Database 

The study was performed retrospectively under IRB/HIPAA protocol, which waived 
requirement of informed consent. DCE-MR images of breast lesions from females were 

Figure 1. Illustration of two stages in an AI/CADx medical imaging workflow where harmonization can be applied.
(a) Previous work investigated the impacts of batch harmonization in a single stage of all features in the two databases
with covariates in the context of cross-validation (Whitney et al., Journal of Medical Imaging 2020 [5]). (b) This present work
investigates both batch harmonization of features and harmonization of feature selection in a training and independent test
framework (i.e., harmonization is conducted on the features of the lesions in the training set and separately applied to the
features of the lesions in the test set), with no covariates.

The purpose of this study was to assess the performance of AI/CADx of breast cancer
in lesions imaged with DCE-MR on two databases using extracted human-engineered
radiomic features, batch harmonization, feature selection harmonization, and classification.
In this study, the two databases were considered to be the two batches for the purposes of
batch harmonization. First, we investigated the effects of batch harmonization of features
in the training set that combined the two batches (i.e., the two training datasets) and
the application of the associated batch harmonization parameters to the features in the
independent test sets. Next, we conducted feature selection and classification using the
training and independent test set paradigms on the two databases separately and on
combined versions of them, in both their pre-harmonization and post-harmonization forms.
We hypothesized that an independent training/test AI/CADx lesion classification pipeline
that both harmonizes features by databases and allows feature selection to change after
batch harmonization (that is, feature selection harmonization) will result in a predictive
model that is generalizable across the two databases, i.e., multi-stage harmonization
maintains classification performance.

2. Materials and Methods
2.1. Database

The study was performed retrospectively under IRB/HIPAA protocol, which waived
requirement of informed consent. DCE-MR images of breast lesions from females were
collected from two medical centers. These databases were termed Database A and Database
B in this study. Lesions in Database A had been imaged during the period of 2005–2017
while the lesions imaged in Database B had been imaged during the period of 2015–2017.



Cancers 2021, 13, 4809 4 of 16

The lesions had been imaged using T1-weighted gradient spoiled sequences in use at
the medical centers. Most lesions in Database A had been imaged using Philips Intera
scanners, except for three benign lesions which had been imaged using GE scanners, and
five and three cancerous lesions which had been imaged using GE and Siemens scanners,
respectively. All lesions in Database B had been imaged using GE Discovery 750 scanners.
Images from Database A had been acquired in the axial plane and images from Database
B were acquired in the sagittal plane. The details of the imaging protocols are available
elsewhere [5,13–15]. Information regarding subtypes of benign lesions and cancers had
been collected from pathology and imaging reports.

The training and test sets of Database A and Database B were determined based solely
on year of image acquisition (Table 1, Figures 2 and 3). These training and independent test
sets from each database were also combined, respectively, yielding a combined training
set and a combined test set. Thus, there were three separate training sets: (a) lesions in
Database A imaged between 2005 and 2011, (b) lesions in Database B between 2015 and
2016, and (c) the combination of these. Similarly, there were three independent test sets:
(d) lesions in Database A imaged between 2012 and 2017, (e) lesions in Database B imaged
in 2017, and (f) the combination of these (Figure 4). This framework was chosen because of
the different types of potential uses of a harmonized training set.

Table 1. Description of the dataset: number of lesions, age of subjects, and size of lesions, by database. The size of lesions
is given as maximum linear size (extracted radiomic feature S4, see Table 2 below) (A: Database A; B: Database B; CI:
confidence interval; min: minimum; max: maximum; tr: training; te: test).

Training Set Test Set

Database Benign Cancer Benign Cancer

A + B (A + B)tr (A + B)te

Number (% of set) 554 (24%) 1726 (76%) 183 (22%) 660 (78%)

Age in years
(median, [95% CI])

(min, max)

44 [23, 70]
(16, 86)

49 [31, 77]
(19, 89)

44 [22, 67]
(19, 74)

50 [30, 73]
(23, 84)

Size in mm
(median, [95% CI]) 18.1 [5.6, 66.7] 28.6 [10.6, 98] 16.5 [5.7, 60.2] 28.3 [11.0, 95.2]

A Atr (2005–2011) Ate (2012–2017)

Number (% of set) 184 (22%) 646 (78%) 72 (23%) 235 (77%)

Age in years
(median, [95% CI])

(min, max)

49 [25, 74]
(24, 86)

56 [34, 82]
(23, 89)

47 [27, 67]
(27, 74)

52 [30, 74]
(23, 84)

Size in mm
(median, [95% CI]) 12.9 [5.3, 55.8] 29.5 [8.3, 105.5] 12.7 [4.7, 55.2] 35 [9.7, 115.2]

B Btr (2015–2016) Bte (2017)

Number (% of set) 370 (26%) 1080 (74%) 111 (21%) 425 (79%)

Age in years
(median, [95% CI])

(min, max)

43 [21.5, 62.5]
(16, 76)

47 [30, 70]
(19, 77)

43 [21, 59.2]
(19, 65)

48 [30, 68]
(25, 75)

Size in mm
(median, [95% CI]) 20.9 [5.9, 70.1] 28.2 [12.0, 90.5] 17.7 [7.2, 63.2] 27.3 [11.8, 85.5]

In Database A, the ages of 36 subjects with benign lesions and 63 subjects with cancers in the training set, and 10 subjects with benign
lesions and 26 subjects with cancers in the test set, were unknown.
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2.2. Lesion Segmentation and Feature Extraction

Lesions had previously been segmented on the MRIs using a computerized fuzzy
C-means method [16]. In addition, thirty-two radiomic features had already been automat-
ically extracted subsequently after lesion segmentation. The features were made up of five
phenotypic feature categories: size, shape, morphology, enhancement texture, and kinetic
curve assessment [17–19]. These techniques and performance levels had previously been
reported.

2.3. Harmonization

The batch harmonization method used in this work, Combat [3], models feature data
across two batches as (Equation (1)):

Yijg = αg + Xβg + γig + δigεijg (1)

where αg is the average value for feature g, X is a design matrix for the covariates of interest,
βg is the vector of regression coefficients corresponding to each covariate, γig is the additive
effect of group i on feature g, δig is a multiplicative group effect, and εijg is an error term
for each sample j. The data are standardized according to (Equation (2)):

Zijg =
Yijg − α̂g − Xβg

σ̂g
(2)

where α̂ and β̂ are estimators of α and β, respectively.
The variables γig and δig are then estimated using empirical Bayes estimates. Then,

each feature is transformed using the expression (Equation (3)):

YCombat
ijg =

σ̂g

δ̂∗ig

(
Zijg − γ̂∗

ig

)
+ α̂g + Xβ̂g (3)

The ComBat harmonization method was applied to radiomic features extracted from
lesions in the training set made of the combined databases, i.e., (A + B)tr. In that pro-
cess, the empirical Bayes estimates needed to shrink the batch effect parameter estimates
of mean and variance were identified. Subsequently, those parametric Bayes estimates
(γ̂∗

ig and δ̂∗ig) and the factors α̂g and σ̂g from the training set were then used to harmo-
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nize the eligible features in the independent test set made of the combined database, i.e.,
(A + B)te.

Batch harmonization determines harmonization factors from all features used in har-
monization, so ComBat harmonization was conducted by feature category on collections
of features deemed eligible for harmonization, namely, morphology, texture, and most
kinetic curve features. That is, harmonization was conducted for morphology features,
then for texture features, and then for most kinetic curve features. Kinetic curve features
with semi-categorical variables (washout rate and curve shape index) did not undergo
harmonization, nor did the kinetic curve feature of volume of most enhancing voxels
(Table 2). It is important to note that since the predictive modeling process would theoreti-
cally involve unlabeled test cases if used in a clinical workflow, no covariates were used in
the harmonization.

Table 2. Description of radiomic features.

Radiomic Features Deemed Eligible for Harmonization

Feature Abbreviation Feature Name Feature Description

M1 Margin sharpness Mean of the image gradient at the lesion margin
M2 Variance of margin sharpness Variance of the image gradient at the lesion margin

M3 Variance of radial gradient histogram Degree to which the enhancement structure extends in a radial
pattern originating from the center of the lesion

T1 Contrast Location image variations
T2 Correlation Image linearity
T3 Difference entropy Randomness of the difference of neighboring voxels’ gray-levels
T4 Difference variance Variations of difference of gray-levels between voxel-pairs
T5 Energy Image homogeneity
T6 Entropy Randomness of the gray-levels
T7 Inverse difference moment (homogeneity) Image homogeneity
T8 Information measure of correlation 1 Nonlinear gray-level dependence
T9 Information measure of correlation 2 Nonlinear gray-level dependence

T10 Maximum correlation coefficient Nonlinear gray-level dependence
T11 Sum average Overall brightness
T12 Sum entropy Randomness of the sum of gray-levels of neighboring voxels
T13 Sum variance Spread in the sum of the gray-levels of voxel-pairs distribution
T14 Sum of squares (variance) Spread in the gray-level distribution
K1 Maximum enhancement Maximum contrast enhancement
K2 Time to peak (s) Time at which the maximum enhancement occurs
K3 Uptake rate (1/s) Uptake speed of the contrast enhancement
K6 Enhancement at first postcontrast time point Enhancement at first post-contrast time point
K7 Signal enhancement ratio Ratio of initial enhancement to overall enhancement

Radiomic Features Deemed not Eligible for Harmonization

Feature Abbreviation Feature Name Feature Description

S1 Volume (mm3) Volume of lesion
S2 Effective diameter (mm) Greatest dimension of a sphere with the same volume as the lesion
S3 Surface area (mm2) Lesion surface area
S4 Maximum linear size (mm) Maximum distance between any 2 voxels in the lesion
G1 Sphericity Similarity of the lesion shape to a sphere
G2 Irregularity Deviation of the lesion surface from the surface of a sphere
G3 Surface area/volume (1/mm) Ratio of surface area to volume
K4 Washout rate (1/s) Washout speed of the contrast enhancement
K5 Curve shape index Difference between late and early enhancement
K8 Volume of most enhancing voxels (mm3) Volume of the most enhancing voxels

The complete compilation of the full feature sets included both harmonized features
and the features that did not undergo harmonization, i.e., those that remained as is in the
feature sets.

After harmonization, the training set comprised of both batches, (A + B)tr, was sepa-
rated into its pre-harmonization and post-harmonization separate database forms (Atr and
Btr). After harmonization parameters from (A + B)tr were applied to (A + B)te, (A + B)te
was separated into its pre-harmonization and post-harmonization separate database forms
(Ate and Bte).
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As an intermediate step, the visualization of feature harmonization on the training and
independent test sets was investigated using t-distributed stochastic neighbor embedding
(tSNE) [20,21].

2.4. Feature Selection

To enable classifier training, stepwise feature selection was conducted on the three
training sets in their pre-harmonization and post-harmonization forms, to yield six sets
of selected features, i.e., three with pre-harmonization selected features for Atr, Btr, and
(A + B)tr, and three with post-harmonization selected features for Atr, Btr, and (A + B)tr.

2.5. Lesion Classification

Linear discriminant analysis (LDA) was used as the classifier to yield an estimate of
the posterior probability of malignancy (PM) for each lesion. The determination of the
LDA weights was computed using the training sets for ultimate use in the independent
evaluation on the test sets (Figure 4). That is, six sets of LDA weights were calculated
corresponding to the three pre-harmonization training sets of Atr, Btr, and (A + B)tr, and to
the three post-harmonization training sets of Atr, Btr, and (A + B)tr.

The area under the receiver operating characteristic (ROC) curve (AUC) [22] for
the task of classification of lesions as benign or malignant using the proper binormal
model [23] served as the figure of merit with the PM as the input. Note that ROC analysis
was conducted on each of the training/test scenarios in Figure 4.

2.6. Classification Performance Comparison on the Test Sets

Classification performance was compared using superiority testing for each of the combinations
of training and testing shown in Figure 4 under both pre-harmonization and post-harmonization
conditions. The Bonferroni correction of p-value for multiple comparisons [24] was utilized for
each of the test sets, i.e., Ate and Bte. Thus, in these cases the difference in AUC was deemed to
be statistically significant if p < 0.025 (i.e., p < 0.05/2 comparisons). p-value correction was not
necessary for the independent test set made up of lesions from both countries (A + B)te
since it was evaluated only once, so the difference in AUC was statistically significant
if p < 0.05. Equivalence margins for conditions of similarity testing (equivalence and if
necessary, non-inferiority) were identified a posteriori when a result failed to demonstrate
significant difference [25], because the equivalence margin had not been identified for this
classification task.

3. Results
3.1. Visualization of Feature Value Harmonization

t-SNE figures demonstrate similar impact of harmonization of features in both the
training and test sets, as seen by a reduction in the separation of the lesion features across
institution, for both benign lesions and cancers, and in both the combined training and the
combined test sets (Figure 5).
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3.2. Feature Selection

Only when using the combined dataset under pre-harmonization and post-harmonization
conditions did feature selection demonstrate some differences in the selected features
(Figure 6). This contrasted with no change in selected features when using either Dataset A
or Dataset B between the pre-harmonization and post-harmonization features. Notably,
most of the features that exhibited a change in selection or non-selection were texture
features. Texture features T3, T7, T8, and T11 were not selected post-harmonization but
were selected pre-harmonization. Texture feature T9 was selected post-harmonization after
having not been selected pre-harmonization.
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3.3. Lesion Classification Performance and Comparison

As expected, within either Database A or Database B, classification performance (AUC:
median, [95% CI]) was unchanged (within numerical calculation limits) when training and
independent testing was performed on both pre-harmonization and post-harmonization
feature sets (AUCA = 0.872 [0.822, 0.915], AUCB = 0.891 [0.853, 0.925]).

Classification performance using features harmonized across the two databases
demonstrated statistically significant difference when training of a classifier was con-
ducted using lesions imaged in Database A and testing was conducted on lesions imaged
in Database B, but not vice versa (Figure 7, Table 3).

In contrast, there was no statistical evidence for difference in classification performance
when training was conducted using combinations of features from both databases and
independent testing was conducted using features from one dataset or the combination
of them (i.e., (A + B)te), when comparing using pre-harmonization features to using post-
harmonization features (Figure 8, Table 3).
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operating characteristic (ROC) curves for the training and testing using a training set comprised of lesions from both
databases. Solid lines show the ROC curve when using pre-harmonization features, while dashed lines show the ROC curve
when using post-harmonization features. AUC values are given in Table 3 (A: Database A; B: Database B).
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Table 3. Difference in area under the receiver operating characteristic curve (∆AUC), p-value for comparison, and,
when ∆AUC fails to show statistically significant difference, equivalence margin for equivalence and non-inferiority,
when using combinations of separate training and independent test sets. The difference in AUC (∆AUC) is determined
as AUCpost-harmonization-AUCpre-harmonization. An asterisk (*) indicates statistically significant difference (including after
adjusting the criteria using the Bonferroni correction for significance due to multiple comparisons, when appropriate)
(A: Database A; B: Database B; tr: training set; te: test set).

Training Set Independent Test Set p-Value for ∆AUC [95% CI of ∆AUC] Equivalence Margin (∆AUC) for
Equivalence

Using Features Selected from Database-Specific Training Set

Atr Bte
<0.0001 *

[0.034, 0.063] n/a

Btr Ate
0.5

[−0.028, 0.058] 0.058

Using Features Selected from Combined Training Set

(A + B)tr Ate
0.9

[−0.019, 0.017] 0.019

(A + B)tr Bte
0.17

[−0.003, 0.020] 0.020

(A + B)tr (A + B)te
0.4

[−0.005, 0.014] 0.014

4. Discussion

The work presented here appears to be the first to demonstrate batch harmonization
of radiomic features extracted from magnetic resonance images conducted in a training and
independent test workflow and to investigate the impact of harmonization on classification
performance in the context of both feature harmonization and feature selection harmo-
nization. Statistically significant improvement in classification compared using pre- and
post-harmonization features was observed in only one of the training and test combinations
(Atr, Bte). This may be due to the fact that feature harmonization overcomes the otherwise
limiting number of features selected in Atr. The AI/CADx framework used in this study
utilized both feature harmonization and feature selection harmonization, demonstrating
that implementing these in the training and independent test framework maintains the
generalizability of the predictive model.

Batch harmonization via the ComBat method is being extensively utilized to harmo-
nize entire databases of features in a single stage, as noted in the references mentioned
above and in other recent works [26–30], but this restricts the application of that form
of batch harmonization to cross-validation. In addition to the application of ComBat in
its original form, variations are beginning to be investigated, such as M-Combat, which
identifies one batch as the reference and harmonizes features in the second to the refer-
ence [31,32]. Our work described here is one of a few at this time that investigate the
use of harmonization across batches (i.e., not to a reference set) in a completely separate
training and test machine learning framework. Luo et al. used a separate training and
test framework for various harmonization methods, including ComBat, in their study on
microarray gene expression data [33]. The Matthews correlation coefficient (MCC) [34], a
variation on the Pearson correlation coefficient, served as the figure of merit in the study,
and a given batch harmonization method was determined to be better than no batch effect
removal method if the difference in the MCC was greater than a pre-determined thresh-
old. In that study, the ComBat method demonstrated utility in batch harmonization, but
the conclusions were limited by the lack of statistical method to determine significance.
Pszczolkowski et al. [35] used ComBat on separate training and test sets for a study that
compared the use of radiomic features extracted from computed tomography images of the
brain to using radiological signs (the blend sign, black hole sign, hypodensities, and island
signs) and clinical factors to predict hematoma expansion and functional outcome with
acute intracerebral hemorrhage. The authors demonstrated the effect of harmonization
on feature distributions using t-SNE figures, resulting in a similar reduction in clustering
across batches as presented here, but they did not report investigating the impact of Com-



Cancers 2021, 13, 4809 12 of 16

Bat in this way on classification using radiomic features alone, compared with not using
ComBat. Radua et al. reported preparing software for the separate training and test frame-
work [36] but their study did not implement it. Da-ano et al. [37] applied four variations
of ComBat harmonization—the original version, M-Combat, B-Combat (a version that
implements bootstrapping) and BM-Combat (a version that combines single reference and
bootstrapping)—to radiomic features extracted from multiparametric magnetic resonance
images (T2-weighted, apparent diffusion coefficient, DCE) and from positron emission
tomography images of locally advanced cervical cancer for the prediction of local failure in
189 subjects. Their study compared the effect of harmonization on the entire set of features
to harmonizing on a training set and applying it to a separate test set. Their results did not
demonstrate statistically significant different performance in classification between these
two scenarios, a finding which they believed to be favorable for the use of ComBat in a
separate training and test framework. That study used only γig and δig as the parameters
determined by the training set and applied to the test set. The two other previous studies
which describe using ComBat harmonization in completely separate training and test
frameworks [33,35] do not specify which parameters they applied to the test set. In our
study, we applied four parameters (γig and δig as well as α̂g and σ̂g) to the test set. We
also studied applying γig and δig alone to the test set and found no statistical change in
classification performance. This may be due to the relatively homogeneous nature of our
database across the training and test sets, but it may be important to apply harmonization
using the four parameters so that the determination of the harmonization parameters is
completely separate from the test set, including those used for the standardization of test
set features (as described in Equation (2)).

AI methods in MRI have been used to support decision making in breast cancer
diagnosis and prognosis for several decades [38,39]. As the scope and sophistication of
AI in medical imaging grows, some have noted that it would be beneficial to implement
specific data science curriculum for radiology trainees [40,41]. Education in harmonization
of data or feature selection could potentially be one element of such training, but at this
time, the harmonization methods described here are in development and have not yet been
approved for clinical use.

There were several limitations to this study. For example, we did not investigate
correlation with imaging protocol (such as field strength of imaging or image resolution)
or patient biology. Note that our results are limited to the clinical task of classification of
breast lesions as malignant or benign. Other studies have described statistically significant
improvement in classification when using harmonization on entire databases and covariates
(e.g., [4,5]), but our study did not include covariates due to its training and independent
test design. Additionally, these results may be specific to the types of features used in this
study, especially since some features were determined to not be eligible for harmonization.
We elected to investigate these features for classification since they have been utilized in
several studies for this particular classification question [42,43].

MRI is being investigated as a screening method for patients with increased lifetime
risk of breast cancer, history of chest or mantle radiation therapy, history of breast cancer
diagnosis and dense breasts, and previous diagnosis of breast cancer before age 50 [44].
However, our work did not study correlations across different screening protocols. Note
that the primary goal of our method in eventual clinical use would be to provide decision-
making support to radiologists. However, further validation and regulatory clearance
are necessary prior to clinical implementation. In addition, our databases did not include
male subjects. The incidence of breast cancer in males is approximately 1% in the United
States [45]. Some case reports have indicated that MR imaging of breast cancers in males can
provide decision-making support when initial imaging by mammography and ultrasound
imaging is equivocal [46,47]. Future studies will investigate the inclusion of male breast
cancer cases in training and/or test sets.

Our study did not investigate the performance of batch harmonization on lesion
classification when more than two batches were used. It would be interesting to investigate
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the classification performance of a third batch of lesions in the testing capacity when they,
as was true for our test sets, have no influence on the determination of the harmonization
parameters, but they are also not present in the training sets. However, the choices of study
design in this work may helpfully demonstrate classification performance in the context of
limited scope of training and independent testing frameworks and provide a foundation
for further studies.

Finally, while the classification performances in the test sets were maintained when
compared pre- and post-harmonization, the ranking of individual cases within the test set
could have changed (i.e., the posterior probability of malignancy of individual cases
changed). This may have implications for the case-based repeatability of individual
cases [48–52] and will be a topic of study in the future.

5. Conclusions

Classification performance using pre- and post-harmonization radiomic features
extracted from DCE-MR images of the breast, in the task of classification of lesions as
malignant or benign, has been demonstrated in computer-aided diagnosis using two
training and independent test sets. The results suggest that both batch harmonization and
its impact on feature selection may not provide statistically significant improvement in
classification in training and independent test AI/ML workflows, but rather serve best to
preserve classification performance for fixed feature selection. These findings demonstrate
relevant considerations when designing methods of classification using machine learning
for predictive models applied to differently acquired test sets, especially when attempting
to combine datasets collected from two different sources.
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