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Abstract

Purpose

In dynamic contrast enhanced (DCE) MRI, separation of signal contributions from perfusion

and leakage requires robust estimation of parameters in a pharmacokinetic model. We pres-

ent and quantify the performance of a method to compute tissue hemodynamic parameters

from DCE data using established pharmacokinetic models.

Methods

We propose a Bayesian scheme to obtain perfusion metrics from DCE MRI data. Initial per-

formance is assessed through digital phantoms of the extended Tofts model (ETM) and the

two-compartment exchange model (2CXM), comparing the Bayesian scheme to the stan-

dard Levenberg-Marquardt (LM) algorithm. Digital phantoms are also invoked to identify lim-

itations in the pharmacokinetic models related to measurement conditions. Using computed

maps of the extra vascular volume (ve) from 19 glioma patients, we analyze differences in

the number of un-physiological high-intensity ve values for both ETM and 2CXM, using a

one-tailed paired t-test assuming un-equal variance.

Results

The Bayesian parameter estimation scheme demonstrated superior performance over the

LM technique in the digital phantom simulations. In addition, we identified limitations in

parameter reliability in relation to scan duration for the 2CXM. DCE data for glioma and cer-

vical cancer patients was analyzed with both algorithms and demonstrated improvement in

image readability for the Bayesian method. The Bayesian method demonstrated signifi-

cantly fewer non-physiological high-intensity ve values for the ETM (p<0.0001) and the

2CXM (p<0.0001).
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Conclusion

We have demonstrated substantial improvement of the perceptive quality of pharmacoki-

netic parameters from advanced compartment models using the Bayesian parameter esti-

mation scheme as compared to the LM technique.

Introduction

The non-invasive visualization of tissue perfusion represents a valuable tool in primary diag-

nosis and follow-up of several diseases. Imaging biomarkers that directly or indirectly address

perfusion can be obtained by for example computed tomography (CT), magnetic resonance

imaging (MRI), or positron emission tomography (PET). Of these fundamentally different

measurement techniques, MRI has received particular attention since ionizing radiation is

avoided and the soft tissue contrast is excellent. Perfusion-weighted MRI is used to character-

ize various pathologies, as for example ischemic stroke[1] or cancer diseases in both the brain

and other parts of the body[2].

T2-based MRI perfusion, termed dynamic susceptibility contrast (DSC), is widely imple-

mented in neuroimaging and has proven useful in stroke and brain tumor diagnostics. This

method is, however, hampered by its limited applicability when tracer leaks out of the vascula-

ture, as in non-brain tissue or when the blood-brain-barrier (BBB) is disrupted. In this case,

non-quantifiable T1-effects confound the conversion of signal data to tracer concentrations.

In addition, DSC MRI is not a quantitative method due to the different T2 relaxivities of blood

and tissue and the non-linear relationship between signal change and concentration in blood.

Hemodynamic parameters, such as blood flow and blood volume, are therefore only relative.

The T1-based methodology is termed dynamic contrast enhanced (DCE) and is less affected

by these limitations. First, the short echo times of about 1ms result in negligible T2-effects and

allow straightforward generation of tracer concentration curves from observed signal changes.

Hence, DCE MRI may be used in any tissue, and has been the preferred tool to quantify BBB

integrity in cerebral diseases. Second, the similar T1-relaxivities in arterial blood and tissue

and linear relationship between T1 relaxation and tracer concentration[3] better allow abso-

lute parameter quantification. DCE MRI is, however, challenged by the low blood content in

normal brain tissue resulting in minimal signal changes, which, in conjunction with stochastic

experimental noise, makes parameter estimation difficult. In addition, while it is potentially

possible to obtain quantitative measurements of blood flow and blood volume from DCE mea-

surements, these quantities must be inferred from measured data by assuming a model of the

tissue and vascular system underlying each particular voxel. Typically, these models are inter-

preted as so-called compartmental systems [4–7], which, depending on their complexity, may

yield information on overall flow, inter-compartmental flow, blood volume, accessible extra-

cellular volume fractions, etc. Indeed, models range from simple one-compartment models

such as the Patlak model [8] or the Tofts model [9] over two-compartment models [4, 7] to

generic multi-compartment models [10]. The selection of model has received much attention

[11, 12], but is only mentioned here for completeness, while referring to other works for details

[12, 13].

Furthermore, parameter reproducibility may be challenging due to complex experimental

settings, the conversion of the signal changes to concentration changes, and determining the

functional form of the feeding vessel, the so-called arterial input function (AIF), see for exam-

ple [14–16] and references therein. These reproducibility challenges are very important in the

setting of multicenter trials, where for example early treatment changes of anti-cancer drugs
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have to be assessed and where accurate quantitative measurements are crucial. This may, how-

ever, be less critical in routine clinical use, where the qualitative structure of the parameter

maps is usually in focus. The aim of this paper is to provide a characterization of the clinical

usability of two widely known models; the extended Tofts model (ETM) [5] and the two-com-

partment exchange model (2CXM) [7].

One central challenge in the model-based analysis of perfusion data is the fitting of the

model parameters to the observed data. Due to factors such as image noise, low signal, and large

parameter space compared to the number of observations, such fitting might be difficult, in par-

ticular when standard methodologies such as the well-known Levenberg-Marquardt (LM)

approach are used. Therefore, we investigate a Bayesian method (BM), with posterior parameter

and noise distributions determined through a variational Bayesian algorithm, which has previ-

ously been shown to increase the reliability of DSC parameter estimation [17]. We assess the

performance of BM and LM algorithms in the ETM and 2CXM models that are widely used in

DCE MRI. Initially, we assess the performance of the proposed algorithm for the ETM and

2CXM using digital phantom data, for which the ground truth is known, while also providing a

first assessment of possible bounds on the reliability of parameter estimation. In the second

part, we illustrate the differences of DCE parameter maps, based on LM and BM, respectively,

by providing clinical examples of patients with brain tumors and cervical cancer.

Materials and methods

Theory

As the primary focus of this work is the assessment of parameter estimation, we only provide a

short overview on DCE MRI and refer otherwise to [6, 7] for elaborate reviews. In DCE MRI,

gadolinium-based contrast agents are injected intravenously, and the resulting measured sig-

nal changes are interpreted as T1 relaxation effects. Assuming a linear relationship between

the tracer concentration and the T1 relaxation, the signal intensity curves for each voxel may

be translated into concentration-time curves (CTC), see Appendix A in S1 File.

The CTCs resulting for each of the tissue voxels are targets for further analysis. Typically,

the analysis of the CTCs takes onset in a compartmental model, where the vasculature repre-

sents one compartment and the extra-vascular extra-cellular space (EES) another. Common to

models described herein is that the CTC is represented by a convolution integral, where a

known arterial input function (AIF) is convolved with an unknown impulse response func-

tion, as

CtðtÞ ¼ Fp

R t
0
CpðtÞRðt � tjyÞdt ð1Þ

Here, we have adopted the notation from [7], defining Ct(t) as a measured tissue CTC,

Cp(t) a known plasma CTC, typically from an artery, Fp the intravascular flow, R the residue

function, and θ a set of model parameters. Traditionally, analysis of DCE MRI data proceeds

through the construction of a model for the indicator passage described by the residue func-

tion. In this work, we will consider two extensively used models, (i) the ETM(5) and (ii) the

2CXM(7), which may be written as

ETM : R tð Þ ¼ exp �
Ktranst
ve

� �

þ
vp

Ktrans
d tð Þ ¼ expð� keptÞ þ

vp
Ktrans

d tð Þ ð2Þ

2CXM : RðtÞ ¼ expð� tKþÞ þ E� ðexpð� tKþÞ � expð� tK� ÞÞ ð3Þ
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In the ETM, Ktrans, ve, vp are model parameters, while δ denotes the Dirac delta function.

Ktrans, in turn represents intra- to extravascular tracer exchange and bulk flow, while ve and vp

represent extravascular and plasma volume fractions, respectively, In the present implementa-

tions, kep is determined rather than ve due to, in our hands, better independent parameter esti-

mation. In the 2CXM, Fp, K±, and E- are model parameters, from which compartmental flows

and volumes may be obtained, including vp, ve, and an inter-compartment transfer constant

denoted K1 in the following. Note that K± and E- can be equally well represented in terms of

mean transit-times TE, TP, and TB for the extra-vascular, plasma, and combined compart-

ments, respectively [7]. The transformation between the two representations is straightfor-

ward, but in our hands, the rate-constant expression was found to be more stable, hence

making this the natural choice. For future reference, we denote the mean transit-times in the

individual compartments TE, TP, and TB for the extra-vascular, plasma, and combined com-

partments, respectively in accordance with established convention [7]. We note that recent

studies on model selection have favored the compartmental tissue uptake model (CTUM) for

cervical cancer patients [11, 18]. The CTUM is, however, a sub-model of the 2CXM and, since

the present work is focused on model fitting rather than model selection, we restrict the follow-

ing analyses to the well-known 2CXM and ETM models.

The fundamental problem addressed in this work is the estimation of parameters in a

model, which may generally be written as

yðtÞ � MðtjyÞ þ ε ð4Þ

where y is observed data, M denotes a model fitted to these data through parameters θ, and ε is

an error term, representing stochastic experimental error. The model is in this case given by a

convolution integral as those represented in Eqs (1)–(3), i.e. we elected to fit the model to the

CTC rather than including the conversion from signal to concentration in the model as well.

The common approach to solving deconvolution problems with residue functions with

closed mathematical expressions is to apply iterative minimization of the residual sum-of-

squares between the observed and estimated curves. Whereas LM is a common choice for such

problems, the non-linear character of the fitting problems in DCE MRI is, however, often diffi-

cult to handle for standard LM algorithms, resulting in un-physiological parameter estimates.

This has led to alternative formulations, of which a recently developed Bayesian approach has

shown promising results in DSC MRI [17, 19].

BM attempts to estimate model parameters by assuming that they follow a multivariate nor-

mal distribution. Hence, the parameters are described through a multivariate mean and

covariance. The problem to solve can be completely stated by assuming that the unobserved

error in Eq (4) is Gaussian with zero mean and covariance Cε. The overview of the algorithm

is as follows: First, the parameter distribution is initialized through a prior mean and covari-

ance, which is subsequently used in an adaptive scheme to maximize a log-likelihood function

through an expectation-maximization (EM) algorithm. The maximization step adaptively

determines Cε. While the details of the algorithmic framework may be found in [17], the prac-

tical details of the present implementation must be stated. To that end, we used a prior covari-

ance matrix with diagonal elements (0.1, 10, 0.1, 10) for the parameters (Fp, Fp/ve, vp, delay)

for the ETM, while the prior covariance matrix (0.1, 1, 10, 1, 10) for the parameters (Fp, TP, TE,

TB, delay) was used for the 2CXM. The prior means were obtained individually for each voxel,

under the assumption that TP was 5 seconds, TB was 10 seconds, TE was 100 seconds, and the

delay was 1 second. Fp was calculated as the blood volume (CBV) divided by TP (CBV/TP),

where CBV in turn was obtained as the area under the concentration curve. In addition, the

algorithm is run for a maximum of 32 iterations, which has been found to be sufficient in
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applications. Convergence is checked after a minimum of 15 iterations via the length of the

update step (threshold: step length less than 1.0�10−4).

In this work, we consider implementation of the Bayesian parameter estimation algorithm

as applied to ETM and 2CXM and compare it to the performance of the well-known LM

algorithm.

We note that other research groups have previously published work on Bayesian methodol-

ogy in the context of DCE hemodynamic parameter estimation [13, 20, 21], which are similar in

spirit to the one presented in this work. While similar in spirit, the algorithm presented here uti-

lizes patient specific measured AIFs rather than, which is quite common in DCE studies, a bi-

exponential fit to a measured input function or a universal input function [22]. In addition,

delay between site of measurement of the AIF and a particular tissue curve is an adaptive param-

eter in our model alongside the actual hemodynamic parameters, such as Fp and ve, which has

been included in some works [13, 23, 24], whereas it seems not to be for others [20, 21].

Simulations

We assess performance of the two algorithms through simulated AIFs and tissue signal intensity

curves, which in turn are obtained from CTCs modeled according to Eqs (1)–(3). The arterial

CTC is constructed based on the functional form by Parker et al [22], while the tissue CTCs are

obtained by convolution of the arterial CTC with residue functions from ETM or 2CXM. The

one-dimensional convolution is performed on longitudinally up-sampled discrete data and the

resulting tissue curve subsequently down-sampled to the desired temporal resolution. We

assume a linear relation between the observed R1 change and the concentration [3], i.e.

R1ðcðtÞÞ ¼ R1 þ r1cðtÞ ð5Þ

where c(t) is the tracer concentration as a function of time, R1 the tissue specific longitudinal

relaxation rate, and r1 the relaxivity. Note that R1 is inversely proportional to the T1 relaxation

time, i.e. T1 = 1/R1. Traditionally, DCE MRI has been used as a source for quantitative mea-

surement of hemodynamic parameters, given the selection of a biophysical model. One central

component in the analysis is, however, the pre-contrast T1 value of the voxel under consider-

ation. In the simulation studies, we assume an arterial T1 value of 1.66s [25, 26], while tissue

voxels are constructed based on a T1 value of, unless stated otherwise, 1 second, which is close

to observed white matter values at 3T [27].

The arterial and tissue CTCs are converted to MRI intensities through a steady-state

sequence, with parameters attaining experimentally achievable values (flip angle (FA) = 25˚,

repetition time (TR) = 3ms, echo time (TE) = 1ms, r1 = 3.6 ms/mM, and time between

dynamic acquisitions = 1.5s). Random noise is added according to

SwnðtÞ ¼ Swn¼0ðtÞ þ
Swn¼0ðt ¼ 0Þ

SNR
ðXR þ XIÞ

�
�
�
�

�
�
�
�; ð6Þ

where Swn(t) and Swn = 0(t) are the MR signals with and without noise, SNR is a signal-to-noise

level, and XR and XI are random Gaussian distributed vectors with zero mean and unit stan-

dard deviation. The |�| operator denotes the norm of the complex number, resulting in a signal

with Rician [28] noise.

Digital phantom images

MRI signal phantoms are constructed with three spatial and one temporal dimension. This

allows for three of the model parameters to be varied across the spatial dimensions, while the

fourth dimension is reserved for the temporal evolution of the signal. The spatial size of the
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digital phantom is 128x128x8, where the first slice contains realizations of AIFs and the

remaining slices reserved for tissue curves. Each of the tissue slices consists of 7x7 = 49 squares,

which in turn consists of 14x14 = 196 voxels. The squares are separated by four voxels contain-

ing zeros, while a frame of three zero voxels is used. Within one square, the underlying CTCs

are identical, while random Rician noise is added individually for each generated MRI signal

intensity curve according to Eq (6). Since the ground truth is known for the phantoms, quanti-

fication of performance through systematic (bias)–and random (standard deviation, SD) devi-

ance from the known ground truth is possible through the standard squared bias/variance

decomposition of the mean squared error [17], i.e.

Variance : s2 ¼
1

Nvoxel

XNvoxel

i¼1

ðyi � ŷiÞ
2

Bias : bias ¼
1

Nvoxel

XNvoxel

i¼1

ðyi � ŷiÞ

Averaging the absolute bias or SD over all squares enables summarizing a hemo-dynamic

parameter map obtained from a complete digital phantom by two numbers.

We construct phantoms for ETM and 2CXM, respectively, simulating signal-to-noise ratios

(SNR) of 2, 5, 10, 20, 30, 40, 50, 60, 80, and 100. The temporal resolution was 1.5 seconds. For

ETM, we vary Ktrans, kep, and vp independently across the three dimensions, whereas for

2CXM Fp, vp, and ve vary independently, while K1 is chosen as 10% of the Fp value. Table 1

presents the parameter ranges used in the simulations. The model used for generating each

phantom was also used for the estimation of the parameters.

Patient data–cerebral brain cancer

We present sample results for 6 patients (4 males, 2 females), diagnosed with glioblastoma

(GBM), following the World Health Organization (WHO) classification scheme [29]. The

patients underwent DCE MRI using a turbo fast low-angle shot (turbo-FLASH) technique [30]

as part of the clinical protocol (TR = 3.51ms, TE = 1.7ms, flip angle = 25 degrees, in-plane field-

of-view (FoV) = 220x220mm2, acquisition matrix = 128x128 voxels). A total of 15 slices were

acquired at each time-point in a 75mm slab with the tumor in the center of the slab, yielding a

voxel size of 1.72x1.72x5mm3. A total of 150 dynamic acquisitions were acquired at an interval

of 2.03s, resulting in a total DCE acquisition time of 5:04 (min:sec). The injection scheme con-

sisted of a single injection of 0.05mmol/kg gadobutrol at 2.5ml/s, flushed with 30ml saline at the

same rate. All patients were scanned on a Philips Achiva 3T MRI scanner (Philips, Best, Nether-

lands). The patient data were collected as part of a clinical study, approved by the Danish Com-

mittee on Health Research Ethics (local committee: Central Denmark Region), and written

informed consent was obtained from all subjects.

In addition, we compare the appearance of the computed ve maps through the number of

un-physiological high-values, comparing the LM and BM methods for both ETM and 2CXM

using a one-tailed paired t-test assuming unequal variance in the samples.

Table 1. Parameter ranges used in the simulations.

Model Ktrans or Fp

ml/100g/min

Kep or K1

ml/100g/min

Ve

ml/100g

Vp

ml/100g

Delay

(s)

ETM [12; 84] [0.17; 8.4] [10; 70] [1; 7] [0; 9]

2CXM [12; 84] [1.2; 8.4] [10; 70] [1; 7] [0; 9]

https://doi.org/10.1371/journal.pone.0209891.t001
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Patient data–cervical cancer

We present sample results for 5 patients diagnosed with advanced cervical cancer (stage 3

IIB/2 IIIB). DCE imaging was performed as part of the MRI protocol imaged at a 3T Philips

Achieva (Philips, Best, Netherlands). DCE was acquired using a centric sequence [18]

(TR/TE/Tsat = 2.9/1.4/25ms, flip angle = 10 degrees, in-plane FoV = 400x400 mm2, image

matrix = 176x176 voxels, 12 slices, voxel size = 2.27x2.27x6mm3, inter-slice gap = 3mm, total

coverage: 400x400x105mm3). A total of 120 dynamic acquisitions were collected at an interval

of 2.1s resulting in a total acquisition time of 4:12. After an initial 18 dynamic acquisitions

used to determine baseline signal, 0.1 mmol/kg Gd-based contrast agent (Dotarem, Guerbet)

was injected using a power injector at a rate of 4 ml/s followed by 50 ml of saline injected at

the same rate.

Data processing

All data in this study, both simulated and patient data, have been processing by the same pipe-

line, which is briefly presented here. After loading the data from DICOM images, motion cor-

rection was performed using a 12-parameter affine transformation, correcting all temporal

volumes to the first temporal volume. The motion correction step was performed using the

Statistical Parametric Modeling toolbox version 12 (SPM12). Next, the pre-contrast baseline

was determined automatically, by fitting a time-shifted gamma-variate to the mean intensity

curve and selecting the bolus initiation as two timepoints before the point of maximum

change. This fitting used a LM procedure. With the pre-bolus determined, concentration-time

curves were calculated from the intensity-time curves as outlined in Appendix A in S1 File. A

fixed prebolus T1 value of 1 second was, except stated otherwise, used for all but the AIF,

where a prebolus T1 value of 1.66 seconds was used. An experienced neuroradiologist (AT)

performed manual selection of the AIF using in-house developed software (pgui, http://cfin.

au.dk/software/pgui/). Calculations of parameter maps were performed using in-house devel-

oped software (pgui, http://cfin.au.dk/software/pgui/). The LM algorithm used was the one

supplied by the curve fitting toolbox available in MATLAB (Mathworks, Natick), while the

BM was an in-house implementation. All steps of the described pipeline were implemented in

MATLAB.

Results

Simulations

In Fig 1, we present examples of parameter maps obtained from digital phantom data. The

temporal evolution of the signal was simulated for 5 minutes, which is typical of standard 3D

DCE measurements in for example cancer protocols. For the simpler ETM, both LM and BM

provided good quality parameter estimates at SNR = 20, see for example the Ktrans parameter

in Fig 1A and 1B as compared to the exact values in Fig 1C. The parameter estimates in the

ETM model are further improved with increasing SNR, resulting in smoother appearing

images (results not shown). This observation is quantified in Fig 2A, where absolute bias and

SD are presented for all ETM-based biomarkers, computed via the two algorithms as a func-

tion of SNR level. The curves are very similar for the two methods, showing very low bias (Fig

2A) and SD (Fig 2B) across SNR.

Fig 1J–1U display the face value of the parameters in the 2CXM at SNR = 20. Overall, the

parameter estimates are observed to be close to the ground truth maps, see for instance the Fp

parameter in Fig 1J–1L. Upon closer scrutiny, slight overestimation of Fp is observed for both

LM and BM in the upper left corner, which corresponds to a situation with low plasma volume
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in conjunction with high flow. With a low vp, the amount of tracer passing through such a

voxel is limited and the observed temporal signal intensity variation likewise. This, in turn,

limits the contrast to noise ratio and ultimately results in bias towards overestimation of Fp.

The problem is alleviated to some extent with increasing SNR (results not shown). For the ve

maps (Fig 1M and 1N), one observes increasing bias from left to right compared to the ground

truth. This area corresponds to decreasing intra- and extravascular flow in conjunction with

constant accessible extravascular volume fraction. Hence, there is an inflow to the extravascu-

lar compartment determined by the AIF, but a slow washout, which makes it difficult to esti-

mate parameters related to the tail of the concentration curve. This is more extensively

explored in simulation studies in Appendix B in S1 File. Similar to the ETM, we present in Fig

2C and 2D mean relative bias and SD for the parameters in the two-compartment exchange

model across SNR and observe, in general, quite fast convergence to low values for all

parameters.

One boundary condition, which is not directly probed in the simulations above, is the

behavior in cases where the basic assumption of a two-compartment model is not met, i.e.

where there is no possible transfer from the intra-vascular compartment to the extra-vascular

compartment. This could be relevant in brain applications, where healthy tissue will have an

intact brain-barrier, effectively nulling the extravasation. In Fig 3, we investigate situations

with very limited to no extravasation in the 2CX model. Here, the LM based fitting method

Fig 1. Illustrations of parameter plots using the Bayes or LM method for the extended Tofts model (panels A to I) and the two-compartment exchange

correlation model (panels J to U). Each row in the two model panels represents a given parameter. The first two columns for each row represent the BM and

LM parameter estimates, while the third column present the ground truth parameter map (denoted ‘Exact’ in the figure).

https://doi.org/10.1371/journal.pone.0209891.g001
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clearly overestimates the accessible extravascular volume fraction, especially for the special

case with zero accessible volume, which might be an artifact of the parameters adjusting unfa-

vorably to the curve. The extent of these spurious high-intensity voxels is reduced for increas-

ing extravasation and increasing SNR, as illustrated by the plot in panels C and D of Fig 3. The

BM methodology is observed to capture these situations better, with almost no voxels having

ve values above five times the ground truth value (0.1 is used for the ve = 0 case) even for low

SNRs.

In vivo DCE data

Fig 4 shows post-contrast T1-weighted images, 2CXM-based Fp and ve parameter maps of six

patients with GBMs, calculated using either LM or BM. The Fp maps are of similar quality for

both algorithms, although the LM-based maps for subjects B, D, E, and F appear more scat-

tered than their BM-based counterparts. For the ve maps, however, the BM-based images

stand out by their clarity with the tumor easily detectable against surrounding tissue in all

cases. The LM-based ve maps, on the other hand, vary substantially in quality, deteriorating

notably from patient A to F in Fig 4. The tumor is adequately visible on the LM-based ve maps

Fig 2. Bias and standard deviation plots of entire digital phantoms for the Tofts and 2XC model parameters as a function of SNR. In panels A and B, the

bias and standard deviation for the ETM model parameters are displayed as a function of SNR, while the similar plots for the 2XC model parameters are

presented in panels C and D. The Bayes and LM parameters are displayed in blue and red, respectively and the insert in A and C define the symbols used for

the model parameters.

https://doi.org/10.1371/journal.pone.0209891.g002

Fig 3. Illustration of ve parameter estimation for very limited extravascular accessible volume. Panels A and B display the estimated 2XCM ve parameter

maps for a ground truth 2CXM model with ve = 0. Panel C displays the number of severely overestimated voxels (defined as ve greater than five times the

ground truth value or 0.1 for ve = 0) for the BM and LM methods at ve = 0 as a function of SNR. Panel D displays the number of severely overestimated voxels

as a function of ground truth ve at SNR = 20.

https://doi.org/10.1371/journal.pone.0209891.g003
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in case A, apart from some scattered high intensity voxels, which might be due to limited signal

intensity change in those areas. In cases B and C, the tumor is still discernible, although the

high intensity voxels are much more prevalent. In patients D-F a vast number of high-intensity

voxels lead to severe image degradation that prevents overall tumor outlining. In comparison,

the tumor is clearly discernible on the corresponding BM-based ve maps in all cases. Indeed,

Fig 4. Examples of Fp and ve parameter maps from the 2CXM for six patients diagnosed with glioblastoma multiforme computed using the Bayes and

LM algorithms. For reference the post contrast T1 weighted images registered to DCE space are displayed in the bottom row.

https://doi.org/10.1371/journal.pone.0209891.g004
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paired t-tests show significantly fewer extreme-intensity voxels for BM compared to LM for

both ETM (p<0.0001) and 2CXM (p<0.0001). This superiority of BM may be attributed to

the greater robustness of the algorithm towards voxels with very limited extravascular accessi-

ble volume. We interpret the ve maps in D-F as measured examples of the corresponding phe-

nomenon observed in the digital phantom simulations (see Fig 3), where severe

overestimation of ve was more often encountered for the LM method compared to the BM

method.

Since DCE imaging can be utilized outside of the brain, it is a natural next step to apply the

presented algorithm to data obtained for non-brain tissue. Accordingly, we present in Fig 5

and Fig 6 five examples of parametric maps obtained with the LM and Bayesian methods. Fig 5

and Fig 6 display the results obtained for the ETM and 2CXM models, respectively. From Fig 5

and Fig 6, one initially observes quite similar appearing maps regardless of fitting algorithm

used. Especially the high intensity scatter observed for the LM ve parameter in the 2CXM is vir-

tually non-existent in the cervical maps. This might be attributed to the limited view, which

essentially covers only the tumor, and hence a reasonable SNR level is attained. Another possi-

bility is the very different nature of brain tissue and non-brain tissue, where extreme extra-vas-

cular transit times are not encountered, due to faster washout of extra-vascular tracer.

Discussion

In this work, two curve-fitting algorithms for fitting well-established pharmacokinetic models

to DCE MRI data were compared. We assessed a proposed Bayesian method, which has previ-

ously been shown to improve the diagnostic quality of DSC parameter maps [17], and com-

pared the results to the standard LM approach, which is implemented in most conventional

DCE MRI analysis tools.

For the ETM, we found that the parameter maps computed on simulated data were very

similar regardless of fitting algorithm. We speculate that the ability for standard algorithms to

provide good parameter estimates regardless of noise might provide an explanation for the

extensive use of this method in the DCE analysis products marketed today, despite the sug-

gested superiority of more complex models.

In cases characterized by a combination of high intra-/extravascular flow and a large extra-

vascular volume, both algorithms performed poorly when estimating 2CXM-based parameters

related to the extravascular compartment. The BM and LM methods provided quite different

results in this case, where the BM consistently underestimated ve, while LM yielded more

binary results. We speculate that the more stable performance, although underestimating the

ve parameter, might be caused by either the implicit parameter regularization through the

prior covariance matrix or by the fact that the algorithms optimize substantially different func-

tions. While the LM method minimizes a sum-of-squares residual, BM maximizes the poste-

rior (log-)likelihood of the parameters given the observed data. It is possible that the (log-)

likelihood transformation of the problem might result in a more stable multi-dimensional

landscape for parameter estimation. The possible clinical consequences of the very slow extra-

vascular dynamics are difficult to assess. It is conceivable that these extreme cases might not be

encountered in practice but are simply a consequence of non-physiological combinations of

model parameters. To that end, the simulation in the work of Sourbron et al [31] was limited

to extravascular transit-times of at most 750s, which is well below the range used in our simu-

lations (extravascular transit-times up to 3500s). However, it does suggest that care should be

taken when selecting the acquisition duration in DCE experiments, since a too short scan time

might severely impair the reliability of extra-vascular parameter maps. Parameters such as

blood flow, blood volume, and plasma volume, are negligibly affected by the slow extravascular
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dynamics, in simulations and patient data alike. This can be ascribed to the fact that these

parameters are primarily an effect of the initial part of the bolus passage, while the tail of the

concentration curve largely determines the extra-vascular parameters.

Further, we presented parameter maps of six patients with high-grade gliomas, where DCE

imaging has previously been proposed to be a source of clinical value [32–34], as well as five

patients diagnosed with advanced stage cervical cancer. Quantitative DCE MRI is increasingly

used for the assessment of for example pharmacodynamics changes in clinical trials [34]. The

reliability of this technique has, however, been repeatedly questioned [35, 36], and we speculate

that miscalculated voxels might considerably affect accurate parameter quantification. From

the simulation results, we attribute this mainly to the differences between the two implementa-

tions in the event of very limited extravascular accessible volume.

The limitations of our study are primarily the retrospective design and the use of small sam-

ple sizes in the clinical data presented. However, the main goal of the present paper was first

and foremost to characterize the performance of the Bayesian fitting algorithm and illustrate

the value added compared to standard algorithms. We therefore refer to a clinical study pub-

lished recently [37], investigating the clinical perception and diagnostic value of the generated

parametric maps. In that work, we use a larger patient cohort and a systematic approach to

evaluate the appearance of the parameter maps resulting from the two curve-fitting algorithms.

Lastly, we note that improvement in image quality was observed in both brain and pelvic data,

which gives some comfort in the generality of the method.

The algorithmic framework described in this work is general, albeit the prior distribution of

the covariance matrix must be specified. In this, and related work, we specify the prior covari-

ance as a diagonal matrix with the elements specified from empirically observed parameter

variations. The algorithm is, however, rather robust against the exact specification of the prior

covariance matrix [17], since the target posterior distribution is anyway estimated from data,

and does not, in our experience, pose a limitation in practical application.

In this work, we have chosen to fit the pharmacokinetic models to the concentration curves

rather than the signal intensity curves. Clearly this introduces a non-linear conversion of the

image noise, making the noise distribution of the resulting CTCs extremely complicated and

its derivation beyond the scope of this work. To make an operational algorithm, we have cho-

sen to model the residual noise as drawn from a normal distribution, which is likely too sim-

plistic. Conversely, the fitting to the observed signal change would require a further non-linear

transformation of the parameters. This strategy provides an even more complex model to esti-

mate and might be more error prone, since one part of it would contain the exponential to the

convolution described in Eqs (1)–(3).

We note that we have limited the discussion to the so-called fast exchange limit (FXL) case,

where water exchange between different compartments within an imaged voxel is assumed

sufficiently fast. This is clearly not the case in actual tissue, where almost any voxel is compart-

mentalized. However, selection of pharmacokinetic model and exchange regime provide a

plethora of different possibilities and indeed selecting the most appropriate model, albeit sci-

entifically interesting [10–12], is a voxel-wise problem, which is incompatible with clinical rou-

tine. In this work, we have aimed at providing a reliable parameter estimation method, which

should be sufficiently robust to be clinically applicable. This does not preclude the use of the

algorithmic framework on more complex problems, but this is beyond the scope of this paper.

Fig 5. Examples of ETM parameter maps for 5 subjects diagnosed with cervical cancer, using the LM and Bayes

algorithms.

https://doi.org/10.1371/journal.pone.0209891.g005
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Fig 6. Examples of 2CXM parameters maps for 5 subjects diagnosed with cervical cancer using the LM and Bayes

algorithms.

https://doi.org/10.1371/journal.pone.0209891.g006
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In conclusion, we presented and evaluated the performance of a new curve-fitting algo-

rithm for estimating perfusion biomarkers in DCE MRI, which, in the case of the two-com-

partment exchange model, was found to be superior to the standard LM fitting algorithm

typically employed for analysis of such data. We showed that the new BM approach improves

the reliability of particularly ve parameter maps, which was illustrated through application to

data from brain tumor and cervical cancer patients. We found that the Bayesian method

allowed the use of more elaborate models compared to the standard LM approach, which

might ultimately open for clinical use of these models.

In addition, our findings illustrate that digital phantom simulations provide a solid and reli-

able method for evaluating the performance of a proposed algorithm. In addition, insights into

the limitations and underlying mechanisms of a method may be gained. For example, it was

found that long extravascular transit time might be prohibitive for obtaining reliable 2CXM

parameters.
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