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Abstract: Extracellular signal-regulated kinases 1 and 2 (ERK1/2) play key roles in promoting cell
survival and proliferation through the phosphorylation of various substrates. Remarkable antitumour
activity is found in many inhibitors that act upstream of the ERK pathway. However, drug-resistant
tumour cells invariably emerge after their use due to the reactivation of ERK1/2 signalling. ERK1/2
inhibitors have shown clinical efficacy as a therapeutic strategy for the treatment of tumours with
mitogen-activated protein kinase (MAPK) upstream target mutations. These inhibitors may be used
as a possible strategy to overcome acquired resistance to MAPK inhibitors. Here, we report a class
of repeat proteins—designed ankyrin repeat protein (DARPin) macromolecules targeting ERK2 as
inhibitors. The structural basis of ERK2–DARPin interactions based on molecular dynamics (MD)
simulations was studied. The information was then used to predict stabilizing mutations employing
a web-based algorithm, MAESTRO. To evaluate whether these design strategies were successfully
deployed, we performed all-atom, explicit-solvent molecular dynamics (MD) simulations. Two
mutations, Ala → Asp and Ser → Leu, were found to perform better than the original sequence
(DARPin E40) based on the associated energy and key residues involved in protein-protein interaction.
MD simulations and analysis of the data obtained on these mutations supported our predictions.

Keywords: molecular dynamics simulations; extracellular regulated kinase; DARPins; MAESTRO

1. Introduction

Protein kinases play a principal regulatory role in nearly all aspects of cell biology.
The human genome encodes 538 protein kinases [1]. Out of all the post-translational
modifications (PTMs), protein phosphorylation is the most widespread class used in signal
transduction. One of the members of the protein kinase family, mitogen-activated protein
kinase (MAPK) is a type of protein kinase that is specific to the amino acids serine and
threonine (i.e., a serine/threonine-specific protein kinase). MAPK is involved in the most
fundamental pathway to cell biology, known as the MAPK pathway, and it plays a crucial
role in integrating cell surface signals to transcriptional regulation of the proteome [2]. The
MAPK pathway is also referred to as the RAS-RAF-MEK-ERK signal cascade. The main
function of this cascade is to regulate physiological processes by transmitting upstream
signals to its downstream effectors. They are mainly involved in cell differentiation,
proliferation, survival, and death. Targeting the MAPK pathway is thought to be a hopeful
strategy for cancer therapy as it is the most often mutated signalling pathway in human
cancer. In the past decades, extensive efforts have been made by different research groups,
leading to the clinical success of BRAF and MEK inhibitors.
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In the early 1980s, the first protein kinase inhibitor was developed followed by FDA
approval of many more drugs as kinase inhibitors for the treatment of cancers, for example,
lung and breast cancers. Till date, around 150 drugs targeting kinases have undergone
clinical phase trials, and many other specific inhibitors are in the preclinical stage of drug
development [3]. However, with the speedy increase in resistance developed to clinical
RAF and MEK inhibitors, interest has been encouraged towards targeting ERK directly for
cancer therapy.

Natural proteins and antibodies undoubtedly changed medicine, but they usually treat
only one disease target. Antibodies have some well-known limitations such as expensive
production, difficult formulation, low tissue penetration, and complex architecture, and
they bind to their target bivalently. On the other hand, designed ankyrin repeat proteins
(DARPins) have completely overcome these limitations of conventional therapeutic ap-
proaches due to their small size, high stability, high potency, high affinity (strong binding),
and flexible architecture. Moreover, the development of in vitro selection technologies such
as ribosome display [4] and phage display [5] has enabled the selection of DARPins as
specific binders. DARPins show commendable stability (thermodynamic as well as intra-
cellular), which has made them promising candidates for therapeutic applications [6–10].

Based on naturally occurring ankyrin repeat proteins, DARPins are emerging a promis-
ing new class of binding proteins [11,12]. DARPins (designed ankyrin repeat proteins)
are one of the most profusely found binding proteins in the human genome [13]. The
structure of ankyrin repeat proteins consists of tightly joined repeats of 33 amino acid
residues [14]. The basic structural unit of ankyrin repeats consists of two antiparallel
α-helices preceding a β-turn. In a single protein, up to 29 consecutive repeats can be
found [15,16]. DARPins repeat a typical structure that consists of a module flanked by
N and C caps (Figure 1A), where N- and C- designate N and C terminal capping repeats,
respectively, and “–” stands for the number of library modules that ranges between 2
and 4 (N2C and N3C) [17]. The hydrophobic core of “repeats” is shielded by these caps.
Domains of ankyrin repeats forming a continuous hydrophobic core together with a large
solvent-accessible surface that holds the repeat modules together provide stability to the
structure. They are thermodynamically very stable. Through a consensus approach, it was
found that repeats of DARPin consist of residues that are responsible for the maintenance
of its structure (fold conservation) called fixed framework residues, while there are other
residues through which DARPins interact with their target proteins known as randomized
interacting residues (Figure 1B) [14]. Variations in DARPins can be brought about through
randomized residues along with conserved interfaces that are present between repeat units.
These interfaces are the places where single repeats can be deleted, inserted, or exchanged,
maintaining the tertiary structure intact [18]. In addition to designing a large DARPin
library, the consensus design approach also produced desired DARPins with enhanced
properties in terms of expression levels, stability, and solubility [12,17]. All these qualities
make them a suitable candidate for ERK inhibition. In the present study, we have explored
DARPins (designed ankyrin proteins) as ERK2 inhibitors.
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Figure 1. (A) Architecture of DARPins (N3C) showing C-cap, N-cap, and internal repeats. (B) Con-
sensus design of a DARPin repeat containing 33 amino acids showing framework (black) and ran-
domized residues (red). 
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tion and binding [18]. MD simulations have been extensively used in the study of protein–
protein and protein–ligand interactions, and the study of the mechanism of drug action 
[19–23]. The plethora of applications of molecular dynamics simulations extend from the 
study of complex and dynamic processes that play a central role in biological systems to 
the structure determination from X-ray crystallography and NMR experiments. In biolog-
ical systems, the main application of MDS focuses on studies related to the stability of 
proteins through conformational changes and folding. MD studies also enable the molec-
ular recognition of cellular components such as DNA, membranes along with complexes 
(drug–receptor), and ion transport [24–27]. MD studies have also enabled the study of the 
mechanism of drug resistance [28–31]. Molecular dynamics simulations calculate the 
binding free energy, which is very helpful in investigating receptor–ligand interactions 
[32]. Over time, MDS have made immense contributions towards drug discoveries, ex-
ploring ligands such as small molecules, chemicals derived from plants, peptides, and 
proteins against targets such as protein kinases (PKs) [33–37], G-protein-coupled recep-
tors (GPCRs) [38], and NMDA receptors [20,39,40]. Altogether, this method affords a 
means for drug design by providing a holistic approach to understanding the mechanism 
of receptor activation/deactivation, inhibiting the receptor to the mechanism of drug re-
sistance. 

Figure 1. (A) Architecture of DARPins (N3C) showing C-cap, N-cap, and internal repeats. (B) Con-
sensus design of a DARPin repeat containing 33 amino acids showing framework (black) and
randomized residues (red).

In the pharmaceutical industry, computational drug design has played a vital role in
the discovery, design, and analysis of drugs. Computer technology nowadays is so rich
and advanced that the accuracy of biomolecular simulations is consistently high enough
to be used to truly drive preclinical drug discovery projects. Among the computational
tools used for drug discovery, molecular dynamics simulations (MDS) and related methods
are routinely used nowadays. Their main contribution is towards the understanding of
structural flexibility together with entropic effects of complex systems. This allows an in-
depth estimation of the thermodynamics and kinetics related to drug-target recognition and
binding [18]. MD simulations have been extensively used in the study of protein-protein
and protein-ligand interactions, and the study of the mechanism of drug action [19–23].
The plethora of applications of molecular dynamics simulations extend from the study of
complex and dynamic processes that play a central role in biological systems to the structure
determination from X-ray crystallography and NMR experiments. In biological systems,
the main application of MDS focuses on studies related to the stability of proteins through
conformational changes and folding. MD studies also enable the molecular recognition
of cellular components such as DNA, membranes along with complexes (drug–receptor),
and ion transport [24–27]. MD studies have also enabled the study of the mechanism of
drug resistance [28–31]. Molecular dynamics simulations calculate the binding free energy,
which is very helpful in investigating receptor-ligand interactions [32]. Over time, MDS
have made immense contributions towards drug discoveries, exploring ligands such as
small molecules, chemicals derived from plants, peptides, and proteins against targets such
as protein kinases (PKs) [33–37], G-protein-coupled receptors (GPCRs) [38], and NMDA
receptors [20,39,40]. Altogether, this method affords a means for drug design by providing
a holistic approach to understanding the mechanism of receptor activation/deactivation,
inhibiting the receptor to the mechanism of drug resistance.

During MD simulations, configurations of the progressing system are sequentially
generated; these configurations come out as trajectories that contain specific details of the
positions and velocities of a particle over the time of simulation. These trajectories are
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explored to calculate a variety of properties, such as kinetic measures and free energy and
other macroscopic quantities. These properties can be further compared with experimental
observables that are helpful in drug design. This method was initially perceived within
theoretical physics in the late 1950s, and its application was extended to chemical physics,
materials science, biomolecular modelling, and, more recently, drug discovery [41].

In the past decade, there has been immense progress in the development of algorithms
and technology using mutations, which has transformed the field of protein design and
engineering to attain tailormade proteins suitable for pharmaceutical and biotechnological
applications. Among various in silico tools available, the Cologne University Protein
Stability Analysis Tool (CUPSAT) [42], Site Directed Mutator (SDM) [43], PopMusic 2.1 [44],
SNPeffect 4.0 [45], PolyPhen-2 [46], DUET [47], MAESTRO Web [48], DynaMut [49], and
mCSM PPI2 [50] for mutational studies have been successfully used to evaluate stability
change (stabilizing or destabilizing) and, after mutations, to predict the phenotypic conse-
quence of missense variants. These tools are structure based, sequence based, and energy
based, and combined features (statistical approach and/or machine learning methods,
such as neural networks and support vector machines (SVM). These methods are fast,
user-friendly, and reliable and promise to be invaluable in the development of proteins
with a wide range of impactful applications. The applications of these tools extend from un-
derstanding the origin of diseases caused by misregulation of protein maintenance [51,52]
to discriminating disease-associated mutations from non-disease mutations, studying drug-
resistant mutations [53–55], and providing important structural and functional insights
into designing new proteins [56–59]. To design DARPins as ERK2 inhibitors, a multi-point
mutation approach, MAESTRO, was applied to the wild-type DARPin protein to identify
the stabilizing mutation points, followed by validation of the binding energy of mutants
employing MD simulations using MM-PBSA/GBSA protocols. The details of the results
are discussed in the next section.

2. Results
2.1. Design and Prediction of New Inhibitors

The effect of mutations on the thermodynamic stability of DARPins (E40) was analysed
using MAESTRO and the predictions were further analysed using other algorithms, and a
comparison of ∆∆G predictions is shown in Table S1. MAESTRO is an easy and standalone
program that provides different kinds of mutation experiments on single chains and protein
complexes. The predictive power of this method is suggested to be reliable as it combines
multiple linear regression (MLR), a neural network approach (NN), and a support vector
machine (SVM) that allows to include additional information such as protein size or solvent
accessibility. The mutation sensitivity profile of E40 is shown in Figure 2. Mutation points
were selected based on MAESTRO suggestions, from which only randomized residues of
DARPin E40 were chosen to undergo further investigation; refer to Figure 1B.
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∆∆Gpred and Cpred.  

Figure 2. Mutation-sensitive profile of the complex E40/ERK2 obtained from MAESTRO. Confidence estimation and predic-
tion error on multi-point mutations are shown. Blue and red bars show stabilizing and destabilizing mutations, respectively.

2.1.1. Evaluation of Specific Mutations

In total, seven single-point favourable mutations (S380, I389, D421, N422, A443, D454,
and R455) were suggested by MAESTRO based on predicted change in stability and
confidence estimation calculated in terms of ∆∆G and Cpred, respectively. Wild-type amino
acids (AA) in DARPin E40 were mutated with 16 other available amino acids (except
cysteine, proline, and glycine). Table 1 shows the suggested mutations with their respective
∆∆Gpred and Cpred.
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Table 1. Specific mutation evaluation using the MAESTRO algorithm.

Mutants ∆∆Gpred Cpred Mutants ∆∆Gpred Cpred Mutants ∆∆Gpred Cpred Mutants ∆∆Gpred Cpred Mutants ∆∆Gpred Cpred Mutants ∆∆Gpred Cpred Mutants ∆∆Gpred Cpred

S380(A) 0.038 0.959 N422(A) −0.517 0.907 A443(R) 0.067 0.807 D454(A) −0.035 0.933 R455(A) −0.146 0.922 D421(A) −0.031 0.926 I389(Y) −0.709 0.861
S380(R) 0.402 0.76 N422(R) −0.05 0.851 A443(N) −0.232 0.92 D454(R) 0.173 0.801 R455(N) −0.27 0.915 D421(A) 0.145 0.808 I389(W) -0.672 0.848
S380(N) −0.007 0.946 N422(D) −0.697 0.835 A443(D) −0.325 0.947 D454(N) −0.094 0.906 R455(D) −0.171 0.934 D421(A) −0.115 0.909 I389(V) −0.45 0.855
S380(D) 0.084 0.944 N422(E) −0.739 0.832 A443(E) −0.385 0.948 D454(Q) −0.125 0.909 R455(E) −0.305 0.931 D421(A) −0.461 0.882 I389(T) −0.522 0.846
S380(E) 0.065 0.937 N422(Q) −0.441 0.872 A443(Q) −0.278 0.925 D454(H) 0.016 0.894 R455(Q) −0.439 0.895 D421(A) −0.128 0.913 I389(S) −0.378 0.84
S380(Q) −0.075 0.915 N422(H) −0.359 0.898 A443(H) 0.127 0.896 D454(I) −0.287 0.886 R455(H) −0.517 0.864 D421(A) 0.023 0.901 I389(R) −0.059 0.881
S380(H) −0.102 0.878 N422(I) −0.484 0.912 A443(I) 0.056 0.905 D454(L) −0.352 0.867 R455(I) −0.433 0.903 D421(A) −0.24 0.913 I389(Q) −0.644 0.858
S380(M) −0.227 0.896 N422(L) −0.412 0.902 A443(L) 0.041 0.902 D454(K) 0.411 0.79 R455(L) −0.401 0.92 D421(A) −0.255 0.908 I389(N) −0.556 0.84
S380(F) −0.346 0.898 N422(K) −0.067 0.909 A443(K) 0.028 0.848 D454(M) -0.335 0.876 R455(K) −0.534 0.881 D421(A) 0.503 0.795 I389(M) −0.589 0.871
S380(W) −0.466 0.86 N422(M) −0.484 0.895 A443(M) −0.133 0.922 D454(F) −0.347 0.888 R455(M) −0.473 0.885 D421(A) −0.256 0.894 I389(L) −0.449 0.874
S380(T) −0.002 0.944 N422(F) −0.512 0.879 A443(F) −0.052 0.914 D454(S) 0.072 0.93 R455(F) −0.502 0.889 D421(A) −0.351 0.891 I389(K) −0.054 0.893
S380(Y) −0.392 0.872 N422(S) −0.536 0.899 A443(S) −0.246 0.931 D454(T) −0.116 0.924 R455(S) −0.155 0.917 D421(A) 0.033 0.941 I389(H) −0.434 0.875
S380(V) −0.292 0.905 N422(T) −0.608 0.902 A443(T) 0.039 0.909 D454(W) −0.317 0.873 R455(T) −0.3 0.925 D421(A) −0.428 0.872 I389(F) −0.704 0.859
S380(K) 0.278 0.807 N422(W) −0.764 0.842 A443(W) −0.006 0.901 D454(Y) −0.352 0.888 R455(W) −0.568 0.879 D421(A) −0.021 0.955 I389(E) -0.793 0.83
S380(L) −0.285 0.907 N422(Y) −0.65 0.866 A443(Y) −0.001 0.905 D454(V) −0.215 0.921 R455(Y) −0.586 0.879 D421(A) −0.401 0.876 I389(D) −0.827 0.834
S380(I) −0.209 0.904 N422(V) −0.479 0.899 A443(V) 0.054 0.909 D454(E) −0.357 0.891 R455(V) −0.328 0.928 D421(A) −0.163 0.919 I389(A) −0.294 0.854

∆∆Gpred, total predicted change in stability (kcal/mol). ∆∆Gpred < 0.0 indicates a stabilizing mutation. Cpred, confidence estimation, given as a value between 0.0 (not reliable) and 1.0 (highly reliable).
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2.1.2. Evaluation of Selected Mutants by MDS

In the light of these results, out of all the suggested mutation points from MAESTRO, a
total of 13 mutation points meeting the criterion, i.e., ∆∆G < 0.0 (stabilizing) and Cpred values
~1 (highly reliable), were selected for further analysis. Their structures were modelled using
the “Build mutant” protocol in DS Modeller [60], further optimized, and finally subjected to
large-scale MD simulations to investigate the structural consequences of mutating residues.
To study the forces interplay, trajectories of mutant complexes were analysed for binding
free energy, per-residue binding free energy of complexes, and pairwise binding free energy
of residues within 4 Å.

The trajectories obtained from the production run of 100 ns MD simulations of mutants
were analysed for their binding free energy. Binding free energies of mutant complexes
(A443D/ERK2, S380L/ERK2, A443N/ERK2, and N422T/ERK2) suggested better binding
than E40/ERK2 (Table 2. In the next section, the decomposition of binding energy and
important interacting residues with their H-bonds are discussed in detail. MAESTRO gave
the highest match with other prediction techniques and has been used as a guide for the
new design.

Table 2. Comparison of the binding free energy (±SEM) of mutants obtained by the MM-
PBSA/GBSA method.

Mutants MM-PBSA (kcal/mol) MM-GBSA (kcal/mol)

A443D −91.51 ± 0.42 −59.86 ± 0.29
S380L −94.90 ± 0.34 −56.74 ± 0.27
A443N −80.29 ± 0.34 −51.59 ± 0.26
N422A −66.44 ± 0.39 −38.87 ± 0.27
N422I −64.34 ± 0.34 −37.49 ± 0.27
N422T −86.74 ± 0.33 −52.86 ± 0.25
S380I −71.96 ± 0.41 −40.69 ± 0.31
D421I −62.95 ± 0.39 −45.20 ± 0.29
I389D −70.14 ± 0.31 −47.45 ± 0.23
I389W −71.06 ± 0.34 −45.55 ± 0.22
I389T −57.75 ± 0.39 −42.92 ± 0.26

D454W −62.27 ± 0.37 −44.12 ± 0.26
D421W −42.71 ± 0.37 −41.08 ± 0.26

E40/ERK2 −75.64 ± 0.27 −49.50 ± 0.2

For ranking MM-GBSA, binding energy criteria are used and the energy contributions
are Ggas and Gsolv. The polar and non-polar contributions are EGB and ESURF, respectively,
for the GB calculations shown in Table 3. Although the electrostatic contribution from
all mutants is big, it is mostly compensated by a large positive polar contribution (EGB),
making the total polar contribution (EEL + EGB) positive and hence it is mostly the van
der Waals term that contributes towards the total binding free energy.

To understand the residue contribution from DARPin and ERK2, a comparison was
made for the decomposed free energy for each residue. Important binding residues are
shown with their respective energies for all the three mutants, and E40/ERK2.DARPin
residues start with “L,” while ERK2 residues start with “R” followed by a three-letter code
of amino acids. From Figure 3 it is suggested that most of the important interactions from
ERK2 come from the activation loop, specifically ARG180 contributing the most to the αG
and L14 regions, while for all the DARPins (N3C), A443D, S380L, and D421W interactions
come from all repeats (2,3), including L-ASP409, TRP413, and ASP421, but residues from
C-cap (L-TYR444, ASP454, and PHE477) terminal contribute the most. Among all the
complexes, A443D/ERK2 and S380L/ERK2 show stronger interactions with decomposed
binding free energy <−5 kcal/mol for the above-mentioned residues.
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Table 3. Comparison of the energetics in kcal/mol (±SEM) of mutants with E40/ERK2 obtained by the MM-PBSA/GBSA
method. VDWAALS, van der Waals energy; EEL, MM electrostatic energy. The polar and non-polar contributions are EGB
(or EPB) and ESURF (or ENPOLAR), respectively, for MM-GBSA (or MM-PBSA).

Mutants A443D A443N S380L S380I N422A N422I N422T

En
er

ge
ti

cs

VDWAALS −97.75 ± 0.23 −88.88 ± 0.22 −91.76 ± 0.25 −97.73 ± 0.22 −94.84 ± 0.28 −86.68 ± 0.26 −91.07 ± 0.24

EEL −626.46 ± 2.63 −589.4 ± 2.97 −673.80 ± 1.87 −521.631 ± 2.08 −441.77 ± 1.77 −457.6 9 ± 1.88 −407.50 ± 2.08

EGB 672.13 ± 2.41 634.15 ± 2.86 712.20 ± 1.78 582.05 ± 1.95 503.72 ± 1.76 512.63 ± 1.82 448.52 ± 1.97

ESURF −7.78 ± 0.03 −7.43 ± 3.01 −3.38 ± 0.03 −3.38 ± 0.04 −5.97 ± 0.03 −5.75 ± 0.04 −2.81 ± 0.03

∆Ggas −724.22 ± 2.59 −678.31 ± 3.01 −765.56 ± 1.89 −619.36 ± 2.07 −536.62 ± 1.84 −544.37 ± 1.92 -498.58 ± 2.07

∆Gsolvation 664.35 ± 2.41 626.72 ± 2.86 708.82 ± 1.77 578.67 ± 1.94 497.75 ± 1.75 506.88 ±1.80 445.71 ± 1.97

∆G TOTAL −59.8 6 ± 0.29 −51.59 ± 0.26 −56.74 ± 0.27 −40.69 ± 0.31 −38.87 ± 0.27 −37.49 ± 0.27 −52.86 ± 0.25

Mutants D421I I389D I389W I389T D454W D421W

En
er

ge
ti

cs

VDWAALS −102.03 ± 0.2 −92.03 ± 0.22 −93.21 ± 0.22 −84.65 ± 0.22 −104.74 ± 0.27 −104.74 ± 0.27

EEL −357.28 ± 2.08 −409.02 ± 2.03 −501.96 ± 1.85 −341.38 ± 2.02 −307.17 ± 2.28 −274.95 ± 1.61

EGB 423.76 ± 1.81 463.06 ± 1.95 558.67 ± 1.79 390.69 ± 1.95 379.18 ± 2.29 348.28 ± 1.54

ESURF −9.65 ± 0.01 −9.04 ± 0.01 −9.04 ± 0.01 −8.77 ± 0.01 −10.18 ± 0.01 −10.06 ± 0.01

∆Ggas −459.31 ± 1.96 −501.06 ± 2.01 −595.18 ± 1.86 −426.04 ± 1.97 −411.92 ± 2.40 −379.30 ± 1.62

∆Gsolvation 414.11 ± 1.81 453.61 ± 1.95 549.62 ± 1.79 381.91 ± 1.95 368.99 ± 2.28 338.21 ± 1.53

∆G TOTAL −45.20 ± 0.29 −47.45 ± 0.23 −45.55 ± 0.22 −44.12 ± 0.26 −42.92 ± 0.2 −41.08 ± 0.26
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Figure 3. Comparison between the per-residue free energy decomposition of E40/ERK2 and mutants.
DARPin residues start with “L”, while ERK2 residues start with “R” followed by a three-letter code
of amino acids.

To evaluate the effect of stabilizing mutations on E40 DARPin, the RMSD values of
the position differences of backbone atoms between mutant and wild-type structures were
calculated throughout the MD simulations. A comparison of the RMSD of E40/ERK2 with
the other four complexes pE59/ERK2, A443D/ERK2, S380L/ERK2, and D421W/ERK2 is
shown in Figure S1. According to the figures, all the simulations are well converged. Ac-
cording to MAESTRO suggestion, the mutations A443D, S380L, and D421W are stabilizing.
After performing 100 ns simulation on the complexes A443D/ERK2, S380L/ERK2, and
D421W/ERK2, the average RMSD values are ~3.19, 2.61, and 2.80 Å, respectively.
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2.2. Exploring the Binding Mechanism of DARPins with ERK2

The main contribution towards the receptor-ligand affinity comes from non-covalent
interactions. In the complex A443D/ERK2, alanine at position 443 on the DARPin loop
is mutated to aspartate. Alanine contains a non-polar aliphatic R (CH3) group, which
is small, being mutated to a polar aspartate that has a negatively charged or acidic R
(CH2COO) group and a long side chain that can enhance electrostatic interactions, which
can be seen from the electrostatic energy of −626.46 kcal/mol (Table 3). The second-best
selected mutant of E40 that came out after MDS is S380L with a −7 kcal/mol dip in
binding free energy (−56.74 kcal/mol) compared to the previous one (Table 2). Serine
contains a hydroxymethyl group and is classified as a polar amino acid mutated to a
positively charged and non-polar leucine with a side chain containing an isobutyl group.
This mutation leads to a more negative electrostatic interaction energy of −673.80 kcal/mol
than E40/ERK2 (Table 3).

To design a high binding inhibitor, it is required to understand interactions that
differentiate it from the low binding inhibitors. For this purpose, the third mutant, D421W,
having ∆∆G = −41.08 kcal/mol (Table 2), was selected. An aspartic acid at position 421
was mutated to tryptophan that contains a side chain indole, making it non-polar through
its aromatic amino acid. Unlike the previous mutations that were located on the DARPin
loops, this point mutation on the DARPin repeat has a negative effect on the binding
affinity with a binding free energy of −41.08 kcal/mol compared to −49.50 kcal/mol for
E40/ERK2.

Figure 4 displays pairwise decomposition free energy for residues within 4 Å. The
DARPin interacts with the receptor mainly through the activation loop, alpha G and MAPK
insertion regions [61]. The receptor-ligand interactions are mainly through hydrogen bonds
(details of the type of hydrogen bonds are presented in Table 4). For all the three mu-
tants, the hotspot residues show interactions mostly through cation-Π and salt bridges.
The two most remarkable salt bridge interactions occur between ARG180-ASP454 and
LYS220-ASP409 (Figure 5). In the mutant A443D, salt bridges ARG180-HH12–ASP454-
OD1 and LYS220-HZ1–ASP409-OD2 possess quite a low polar interaction energy—(−8.76
and −8.25 kcal/mol) and (−8.98 and −8.27 kcal/mol), respectively; hence the total bind-
ing free energy of these residue pairs. There is a remarkable decrease in the energy of
LYS220-HZ1–ASP409-OD2 here compared to E40/ERK2. For the next mutant complex
S380L/ERK2, the pairwise interaction of 4 Å residues is almost like that in the previous
case A443D/ERK2. Here, the interactions between receptor and ligand are also through
hydrogen bonds (Table 5) but differ in their energies, with two strong salt bridge interac-
tions between ARG180-HH22–ASP454-OD1 (−8.30 kcal/mol) and LYS220 HZ2-ASP409
OD2. A noticeable drop is observed in the decomposition energy of the receptor-ligand
pair LYS220–ASP409 (−11.45 kcal/mol). For the third mutant complex, D421W/ERK2
also follows a pattern similar to that of the pairwise interaction of 4 Å residues like that in
the previous cases of A443D and S380L. As in the previous cases, the interactions occur
between receptor and ligand through hydrogen bonds, but are not as strong as the previous
mutations. Except for a strong salt bridge interaction between ARG180-HH22–ASP454-OD1
(−8.30 kcal/mol), all other interactions have lower ∆∆G values compared to the other two
mutants, while salt bridge LYS220 HZ2-ASP409 OD2 shows a remarkable increase (positive)
in ∆∆G values. The main polar receptor-ligand interactions of the mutant complexes are
shown in Figure 6.
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Table 4. Distance, occupancy, and angle of the hydrogen bonds formed from ERK2-A443D/D421W/S380L.

System Acceptor Donor Occupancy (%) Distance Angle

A443D/ERK2 ASP475-OD2 TYR222-OH 99.0 2.66 166.77
ASP442-OD2 HIE221-NE2 84.6 2.80 154.14
ASP454-OD1 ARG180-NH1 52.5 2.78 159.34

VAL177-O ARG455-NH1 50.7 2.81 154.93
ASP224-OD2 TYR444-OH 43.9 2.70 161.74

ASN488-O TYR176-OH 42.7 2.76 160.74
ASP409-OD2 LYS220-NZ 22.2 2.79 152.82

TYR176-O ARG455-NH 16.2 2.86 160.46
ASN190-OD1 LYS479-NZ 3.6 2.85 154.21

D421W/ERK2 ASP475-OD2 TYR222-OH 99.0 2.66 166.77
ASP442-OD2 HIE221-NE2 84.6 2.81 154.13

VAL177-O ARG455-NH1 50.7 2.81 154.92
ASP454-OD2 ARG180-NH1 46.7 2.80 159.39
ASP224-OD1 TYR444-OH 43.9 2.71 161.74

ASN488-O TYR176-OH 42.7 2.75 163.75
ASP454-OD1 ARG180-NH1 38.3 2.80 157.34
ASP409-OD2 LYS220-NZ 22.2 2.79 152.82

TYR176-O ARG455-NH 16.2 2.85 160.46

S380L/ERK2 ASP475-OD2 TYR222-OH 98.9 2.65 167.16
ASP442-OD2 HIE221-NE2 84.4 2.80 153.80
ASP421-OD1 ARG180-NH2 72.6 2.80 154.62

ASN488-O TYR176-OH 68.7 2.75 162.41
ASP454-OD1 ARG180-NH1 55.1 2.77 160.96
ASP224-OD1 TYR444-OH 52.8 2.70 161.61
ASP421-OD1 ARG180NH1 49.6 2.84 149.43

TYR176-O ARG455-NH1 45.3 2.85 159.24
ASP409-OD2 LYS220-NZ 14.0 2.79 154.31

Table 5. Type of receptor-ligand interactions in mutant complexes.

System Acceptor Donor Interaction

A443D/ERK2 ASP475-OD2 TYR222-OH Cation-Π
ASP442-OD2 HIE221-NE2 Salt Bridge
ASP454-OD1 ARG180-NH1 Salt Bridge

VAL177-O ARG455-NH1 Salt Bridge
ASP224-OD2 TYR444-OH Cation-Π

ASN488-O TYR176-OH Amino-Π
ASP421-OD1 ARG455-NH Salt Bridge
ASP409-OD2 LYS220-NZ Salt Bridge

TYR176-O ARG455-NH Cation-Π
ASN190-OD1 LYS479-NZ Salt Bridge

D421W/ERK2 ASP475-OD2 TYR222-OH Cation-Π
ASP442-OD2 HIE221-NE2 Salt Bridge

VAL177-O ARG455-NH1 Salt Bridge
ASP454-OD2 ARG180-NH1 Salt Bridge
ASP224-OD1 TYR444-OH Cation-Π

ASN488-O TYR176-OH Amino-Π
ASP454-OD1 ARG180-NH1 Salt Bridge
ASP409-OD2 LYS220-NZ Salt Bridge

TYR176-O ARG455-NH Cation-Π
TRP421-O ARG455-NE Cation-Π

S380L/ERK2 ASP475-OD2 TYR222-OH Cation-Π
ASP442-OD2 HIE221-NE2 Salt Bridge
ASP421-OD1 ARG180-NH2 Salt Bridge

ASN488-O TYR176-OH Amino-Π
ASP454-OD1 ARG180-NH1 Salt Bridge
ASP224-OD1 TYR444-OH Cation-Π
ASP421-OD1 ARG180NH1 Salt Bridge

TYR176-O ARG455-NH1 Cation-Π
ASP409-OD2 LYS220-NZ2 Salt Bridge
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Electrostatic interactions are a pivotal player in protein interactions and helpful in
understanding intermolecular protein-protein interactions as they are long-range and have
influence on charge molecules. Electrostatic potential maps are also called electrostatic
potential energy maps or molecular electrical potential surfaces. These maps demonstrate
the charge distributions of molecules in three dimensions and allow us to visualize the
variably charged regions of a molecule. Knowledge about the charge distributions can be
useful in determining how molecules interact with one another. Moreover, electrostatic
forces help in fast recognizing the right partner among hundreds of thousands of candidates
present in the intracellular environment of protein-protein complexes [62].

The electrostatic potential surfaces of the complexes E40/ERK2, A443D/ERK2, S80L/ERK2,
and D421W/ERK2 were generated using the Adaptive Poisson-Boltzmann Solver (APBS)
plugin in PyMOL [63] keeping the same orientation.

To study in detail the specific electrostatic potential of the interacting residues, the
interface region in the map was zoomed and the potential was matched with the van der
Waals and electrostatic energies of the interacting residues in receptor-ligand pairs.

In Figure 7, it can be observed that the interacting residues from receptors and lig-
ands have opposite potentials, i.e., electropositive (blue) and electronegative (red). The
electrostatic and van der Waals energy shown in the bottom left corner also corroborates
the same. We know that van der Waals are weak forces or temporary attractions between
electron-rich regions of one molecule and electron-poor regions of another. For the arginine
residue from ARG180, a guanidino group is protonated to give the guanidinium form
(-C-(NH2)2

+), making arginine a charged, aliphatic amino acid; the lysine from LYS220
is also protonated −NH3

+ at physiological pH, and the tyrosine from TYR222 contains
4-hydroxyphenylalanine that is neutral. These residue charges extend from positive to
neutral, which is shown by blue to white regions in the maps. In order to interact, they
need to recognize oppositely (negatively) charged residues (aspartate form, −COO−) in
their vicinity that are ASP409, ASP454, and ASP475, shown by red regions in the maps.
ARG180-ASP454 shows the strongest electrostatic energy because of the salt bridge formed
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between these residues. Although there exist various interactions between receptors and
ligands, only important residues are shown in Figure 6.
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In general, single-point mutation in ankyrin does not affect the secondary struc-
ture. We have predicted the protein secondary structure for the wild-type and the mu-
tated ankyrin using PredictProtein (ROSTLAB, Technische Universität München, https:
//predictprotein.org/) [64] and SCRATCH protein predictor (Institute for Genomics and
Bioinformatics, University of California, Irvine, USA, http://scratch.proteomics.ics.uci.
edu/) [65]. Results are shown in Supplementary Material, Figure S2. It was observed that
the secondary structures of mutant DARPins were unaffected.

3. Discussion

To design DARPins with higher binding affinity towards ERK2, the MAESTRO method
was used to predict stability upon point mutations in N3C DARPin (E40). From the
suggested mutation points, 13 stabilizing mutants were subjected to 100 ns simulations and
then compared with the wild-type complex (E40/ERK2) in terms of binding free energy.
After evaluation, two DARPins, A443D and S380L (showing higher binding affinity than
E40), and D421W (showing lower binding than E40) were selected to further analyse their
binding mechanism. Out of the suggested mutants, the key elements of the ankyrin mutants
with high and low affinity towards ERK2 were compared in terms of binding free energy,
decomposition free energy, and strength and type of hydrogen bonds formed between
receptor and ligands. It was found that all the DARPins show interactions, mostly coming
from their third repeat and C-cap terminal residues. The most persistent interactions in each
structure were studied via a H-bond analysis, wherein it was found that the high binding
affinity of all the N3C DARPins is mainly attributed to salt bridges (ARG180- ASP454 and

https://predictprotein.org/
https://predictprotein.org/
http://scratch.proteomics.ics.uci.edu/
http://scratch.proteomics.ics.uci.edu/
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LYS220-ASP409) along with various other DARPin–ERK2 interactions. Analysis of the
energy decomposition shows that electrostatic and van der Waals interactions were the
main contributors towards the total binding free energy of these systems. The binding free
energy of the newly designed DARPins was improved up to ~20%. The binding affinity of
these systems shows a trend of E40 < D421W < S380L < A443D.

The wild-type DARPin (E40) along with mutants interact (A443D, S380L, and D421W)
through hydrogen bonds, mainly salt bridges and cation-Π. Moreover, the strength of the
salt bridges formed between ARG180- ASP454 and LYS220-ASP409 plays a significant role
in deciding the binding affinity of DARPins towards ERK2. For a DARPin to have a good
binding affinity, both interactions must be strong, which can be shown by the order of
decomposition free energy of these receptor-ligand pairs and the total binding free energy
of the complex. Electrostatic potential surface analysis revealed that mutants that can
generate an electronegative potential near the binding interface, show good binding with
ERK2. It was also observed that mutations on the loops of DARPins extend better binding
compared to that on a DARPin repeat. All this information can be used in the design of
new DARPin inhibitors against ERK2.

4. Materials and Methods

The starting structure for the present study is the X-ray crystal structure of DARPin
E40 complexed with ERK2 (PDB ID: 3ZU7) [66], designated as E40/ERK2 for further
reference in this study. For the complex (E40/ERK2), chain A of ERK2 and chain C of
DARPin (E40) were taken as the initial structure for the MD simulations (Figure 8).
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MD simulations were performed using the GPU version of Particle Mesh Ewald Molec-
ular Dynamics (PMEMD.CUDA) from AMBER14 [67]. At the molecular level, physical
forces were implemented using ff14SB [68] protein force field to carry out MD simulations.
The structures were solvated (using the tLeap module implemented in AMBER). The water
model TIP3P [69] was used, wherein a cubic box of water extends at least 10 Å from the
solute in each direction. A cut-off distance of 15 Å was used to compute the non-bonded
interactions (electrostatic interactions and van der Waals interactions). For each of the
complexes, a 100 ns long simulation was performed. To minimize the edge effects, all
simulations were performed under periodic boundary conditions, and to treat long-range
electrostatics, the particle mesh Ewald method was used [70]. To relax the system prior
to MD simulation, the complexes were minimized using a series of steepest descent (SD)
and conjugated gradient (CG) under the sander module of the AMBER14 program. During
the simulation, the system was heated gradually over a period of 60 ps from 0 to 310 K
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(biological temperature), and a force constant of 5 kcal/mol Å2 was applied to restrain
the atomic position. A constant pressure of 1 atm for 200 ps (NPT) was applied under
Langevin dynamics, followed by a 40 ps volume-constant period (NVT) at a force constant
of 2.5 kcal/mol Å2, which was maintained and followed by 100 ps dynamics at a force
constant of 1.25 kcal/mol Å2. Finally, unrestrained production runs were performed for
100 ns, wherein no force was applied on any protein atoms in the NVT ensemble at a
constant temperature of 310 K (biological temperature). For all analyses, 500 snapshots
were taken from the last 5 ns of the simulation (96–100 ns). To check the system equilib-
rium, root-mean-square deviation (RMSD) of all backbone atoms was performed using
the cpptraj module [71] incorporated in AmberTools 15 and compared to the starting
structure. All simulations were carried out under periodic boundary conditions [72]. To
treat long-range electrostatics, the particle mesh Ewald method was used [73–75], and the
SHAKE algorithm was employed to constrain bond lengths involving hydrogen atoms. A
2 fs time step was set up while the trajectory was recorded every 0.1 ps. To relax the system
prior to MD simulation, a series of steepest descent (SD) along with conjugated gradient
(CG) minimizations with a total of 500 steps each was performed. Post-processing of the
trajectories was performed using the MM-PBSA/GBSA protocol [76].

Supplementary Materials: The following are available online: Figure S1: Comparison of the RMSD
values of mutants and E40/ERK2; Figure S2: Comparison of secondary structures of DARPin E40
and mutants (A443D, S380L, and D421W) obtained by using (A) PredictProtein and (B) SCRATCH
protein predictor web servers. (For PredictProtein, helixes are shown in blue and others in yellow;
for the SCRATCH protein predictor, H is for helix and C is for others.); Table S1: Comparison of
predicted ∆∆G (kcal/mol) mutants of 3ZU7 from different web-based algorithms.
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