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Abstract: In Traditional Chinese Medicine (TCM), Mori ramulus (Chin.Ph.)—the dried twigs of
Morus alba L.—is extensively used as an antirheumatic agent and also finds additional use in
asthma therapy. As a pathological high xanthine oxidase (XO, EC 1.1.3.22) activity is strongly
correlated to hyperuricemy and gout, standard anti-hyperuremic therapy typically involves
XO inhibitors like allopurinol, which often cause adverse effects by inhibiting other enzymes
involved in purine metabolism. Mori ramulus may therefore be a promissing source for the
development of new antirheumatic therapeutics with less side effects. Coumarins, one of the
dominant groups of bioactive constituents of M. alba, have been demonstrated to possess
anti-inflammatory, antiplatelet aggregation, antitumor, and acetylcholinesterase (AChE)
inhibitory activities. The combination of HPLC (DAD) and Q-TOF technique could give
excellent separating and good structural characterization abilities which make it suitable to
analyze complex multi-herbal extracts in TCM. The aim of this study was to develop a HPLC
(DAD)/ESI-Q-TOF-MS/MS method for the identification and profiling of pharmacologically
active coumarin glycosides in Mori ramulus refined extracts for used in TCM. This HPLC
(DAD)/ESI-Q-TOF-MS/MS method provided a rapid and accurate method for identification of
coumarin glycosides—including new natural products described here for the first time—in the
crude extract of M. alba L. In the course of this project, two novel natural products moriramulosid
A (umbelliferone-6-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside) and moriramulosid B
(6-[[6-O-(6-deoxy-α-L-mannopyranosyl)-β-D-glucopyranosyl]oxy]-2H-1-benzopyran-1-one) were
newly discovered and the known natural product Scopolin was identified in M. alba L. for the
first time.

Keywords: Morus alba L.; coumarin glycosides; structural characterization; electrospray ionization;
tandem mass spectrometry
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1. Introduction

A pathological high xanthine oxidase (XO, EC 1.1.3.22) activity is strongly correlated to
hyperuricemy and gout [1]. The prevalence of this disease is 2% to 9 % depending on age and
gender and increases continuously in industrialized countries [2]. The pathological symptoms of gout
emerge from the extracellular precipitation of monosodium urate crystals in different tissues (e.g.,
joints) followed by an inflammatory response [2,3]. An anti-hyperuremic therapy often includes the
application of XO inhibitors like allopurinol. Upon reaction with the enzyme, allopurinol is oxidized to
oxypurinol [2]. Whereas allopurinol is a weak competitive XO inhibitor, oxypurinol exhibits a strong
non-competitive inhibitory effect [3]. Unfortunately, the use of the purine analog allopurinol in gout
therapy shows adverse effects by inhibiting other enzymes involved in purine metabolism, making
the search for alternative XO inhibitors necessary [2].

In this context, several ethnopharmacological approaches have been described [1,4], finding
gallic and ellagic acids as well as several flavonoids as inhibitors of XO. Recently, testing of the
pharmacological potential of Mediterranean plants by the consortium ‘Local Food-Nutraceuticals’ also
included XO inhibitory studies [5]. For example, in Mediterranean traditional medicine olive leaf (Olea
europaea L.) preparations such as aqueous decocts are used against gout and hypertension [6].

In Traditional Chinese Medicine, Mori ramulus (Chin.Ph.)—the dried twigs of Morus alba L.—are
extensively used as an antirheumatic [7] agent. Just as several medical plants traditionally used for gout
treatment (e.g., Erythrina stricta Roxb., Cunonia macrophylla Brongn. & Gris., Olea europaea L.) also exhibit
antiinflammatory effects [6,8–12], the Mori ramulus drug also finds additional use in asthma therapy [13].
This fact as well as the structural complexity, specialized tissue distribution, and manifold regulatory
mechanisms of XO strongly suggest a (patho-)physiological XO function beyond the purine metabolism [6].

Many potentially active constituents of M. alba such as flavonoids [14], benzofuran derivatives [15],
stilbenes [16] and coumarins [17] have been identified in this herbal drug. Coumarins, one of
these groups of bioactive constituents, have been demonstrated to possess anti-inflammatory [18],
antiplatelet aggregation [19], antitumor [20], as well as both acetylcholinesterase (AChE) [21]
and tyrosinase inhibitory activities [22]. Several methods have been reported for the analysis of
natural products such as coumarin glycosides using LC-MS—including ion trap—and Q-TOF mass
spectrometry [23]. The combination of HPLC (DAD) and Q-TOF technique could give excellent
separating and good structural characterization abilities which make it suitable to analyze complex
extracts in TCM [24–26]. The aim of this study was to develop a HPLC(DAD)/ESI-Q-TOF-MS/MS
method for the identification and profiling of pharmacologically active coumarin glycosides in Mori
ramulus refined extracts for used in TCM.

2. Results and Discussion

2.1. Structural Characterization and Fragmentation Behavior of Compounds A and B and C

The full-scan mass spectrum of the newly discovered natural product
umbelliferone-6-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside (A) contains a [M − H]− ion
at m/z 455.1176, [M + Cl − H]− ion at m/z 491.0944 and [2M − H]− ion at m/z 911.2448 in the
negative ESI source. The molecular formula of A was determined to be C20H24O12 by HRESI-MS
analysis [m/z 455.1176 (M − H)−]. In addition, a small abundant ion at m/z 293.0842 was observed;
this suggests Glc-Api residue was present in the structure. In MS/MS spectrum of this ion [M − H]−,
a product ion at m/z 161.0235 was observed as a major product ion, resulting from the direct loss
of Glc residue from [M − Glc − Api]−. The ion at m/z 161.0235 was very stable and did not yield
any further fragmentation. We believe that the Glc residue elimination originate from C-7 of this ion.
Consequently, the structure of the novel natural product A was identified as shown in Figure 1 (and
Figure S1) and was named moriramulosid A.

A similar diagnostic fragmentation pattern was observed in the MS and MS/MS spectra of
6-[[6-O-(6-deoxy-α-L-mannopyranosyl)-β-D-glucopyranosyl]oxy]-2H-1-benzopyran-1-one (B). The UV
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spectra were obtained for the two compounds. The results showed a local absorption maximum
around 320 nm for both compounds in the UV spectrum data. Hence, it can be concluded that the
fragmentation behavior and UV absorption of these analogue 6-substituent coumarin glycosides are
indeed very similar. Consequently, the structure of the novel natural product B (Figure 2 and Figure S2)
was identified as a second new natural product that was named moriramulosid B.

In the MS/MS spectrum of A, a product ion at m/z 191 was observed, meanwhile, it is notably
that fragment ion at m/z 176 was labeled as [Y0 − 2H]−. The similar diagnostic fragmentation pattern
was observed in the MS and MS/MS spectra of C; identified as Scopolin (Figure 3 and Figure S3).
Its UV spectrum shows two local absorption maxima: one at ca. 285 nm (band II) and another at ca.
340 nm (band I).

2.1.1. Compound A

The 13C-NMR and DEPT spectra revealed that compound A contains a sugar chain. The 13C-NMR
spectra of compound A displayed three sets characteristic for oxygen bearing methylene—δC 63.7
(C-6′), δC 73.5 (C-4”), δC 68.0 (C-5”)—seven methyne sets and one quaternary carbon atom (see Table 1).
Combined with the 1H-NMR spectral data, it can be deduced that A contains one hexose group and
one apiose group. For the aglycone part of A, the presence of two singlets at δH 6.34 (d, 9.5 Hz) and δH

8.00 (d, 9.5 Hz) in the 1H-NMR spectra and four singlets at δC 160.7, δC 155.4, δC 144.6, δC 113.8 in the
13C-NMR spectra, were in accord with substitution of benzopyranocoumarion. The presence of three
aromatic protons at δH 7.04 (d, 2.2 Hz), δH 7.04 (dd, 9.3 Hz, 2.3 Hz), δH 7.66 (d, 9.3 Hz) assignable to
the benzopyranocoumarion structural unit is a typical AMX coupled system, and clearly indicates a
C-6 monosubstituted coumarin. The 13C-NMR signals of C-6 and C-6′, and 1H-NMR signals of H-1′

and H-1” were assigned on the basis of HMBC connectivity observed for the sugar unit connecting with
C-6 aglycone, which was shown by H-1′ and C-7, and H-1” and C-6′, having long-distance correlations.

Table 1. 1H- and 13C-NMR Data for Compound A.

No. 13C 1H

Benzopyranocoumarion Structural Moiety
1 160.7 /
2 113.8 6.34 (1H, d, J = 9.5 Hz)
3 144.6 8.00 (1H, d, J = 9.5 Hz)
4 130.0 7.66 (1H, d, J = 9.3 Hz)
5 113.8 7.04 (1H, d, J = 2.2 Hz)
6 160.6 /
7 109.8 7.04 (1H, dd, J = 9.3 Hz, 2.3 Hz)
8 155.4 /
9 113.8 /

Hexose Moiety
1′ 100.4 5.02 (1H, d, J = 7.4 Hz)
2′ 76.8 3.45 (1H, d, J = 7.0 Hz)
3′ 73.8 3.46 (1H, d, J = 7.0 Hz)
4′ 70.3 3.13 (1H, t, J = 9.3 Hz)
5′ 76.0 3.26~3.29 (1H, m)
6′ 63.7 3.70~3.76 (2H, m)

Apiose Moiety
1” 103.8 4.81 (1H, d, 3.1 Hz)
2” 76.4 3.30~3.33 (1H, m)
3” 79.2 /
4” 73.5 3.59~3.62 (2H, m)
5” 68.0 3.87~3.91 (2H, m)
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2.1.2. Compound B

The NMR data of compound B are similar to those for compound A. B also contains a
benzopyranocoumarion structural moiety: δH 6.35 (1H, d, 9.5 Hz), δH 8.01(1H, d, 9.5 Hz), δC 160.8,
and a typical AMX coupled system: δH 7.66 (1H, d, 8.4 Hz), δH 7.03(1H, dd, 8.5 Hz, 2.4 Hz), δH 7.04
(1H, d, 2.4 Hz) (see Table 2). There are two hexose moieties in the sugar part, one of which contains a
methyl group. The HMBC cross-peaks of H-1′ with C-7 and H-1” with C-6′ indicated that the sugar
unit is connected with C-6 aglycone.

Table 2. 1H- and 13C-NMR Data for Compound B.

No. 1H-NMR 13C-NMR

Benzopyranocoumarion Structural Moiety
1 / 160.8
2 6.35 (1H, d, J = 9.5 Hz) 113.8
3 8.01 (1H, d, J = 9.5 Hz) 144.7
4 7.66 (1H, d, J = 8.4 Hz) 113.8
5 7.03 (1H, dd, J = 8.5 Hz, 2.4 Hz) 103.9
6 / 160.6
7 7.04 (1H, d, J = 2.4 Hz) 101.0
8 / 155.4
9 / 113.6

Hexose moiety
1′ 5.03 (1H, d, J = 7.4 Hz) 100.5
2′ 3.51 (1H, d, J = 3.4 Hz) 76.9
3′ 3.50 (1H, d, J = 3.2 Hz) 73.5
4′ 3.14~3.16 (1H, m) 70.2
5′ 3.26~3.29 (1H, m) 76.0
6′ 3.82~3.94 (2H, m) 66.6
1” 4.53 (1H, d, J = 1.3 Hz) 101.0
2” 3.45~3.49 (1H, m) 72.3
3” 3.41~3.44 (1H, m) 70.8
4” 3.17~3.20 (1H, m) 68.8
5” 3.30~3.32 (1H, m) 71.1

6”-Me 1.08 (3H, d, J = 6.3 Hz) 68.2

2.1.3. Compound C

The 13C-NMR and DEPT spectra revealed that compound C contains a monosaccharide, and the
glycosyl group has six carbon signals. The 13C-NMR spectra of compound C displayed one oxygen
bearing a methylene characteristic set—δC 61.1 (6′-C)—and five methyne sets. Combined with the
1H-NMR spectral data, it can be concluded that C contains one glucose group. For the aglycone part of
C, the presence of two singlets at δH 6.33 (1H, d, 9.5 Hz) and δH 7.97 (1H, d, 9.5 Hz) in the 1H-NMR
spectra and one carbonyl carbon singlet at δC 160.7 in the 13C-NMR spectra, are in accordance with
substitution of benzopyranocoumarion. The presence of singlets of a methoxy group at δH 3.83 and of
an aromatic single hydrogen at δH 7.30, δH 7.16 in the 1H-NMR spectra, demonstrates that C-5 and
C-6 of the benzopyranocoumarion are substituted (see Table 3).

Based on these data, compound C was identified as Scopolin, a previously known natural product
that was identified as a constituent of Morus alba L. for the first time in the present study.
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Table 3. 1H- and 13C-NMR Data for Compound C.

No. 1H-NMR 13C-NMR

Benzopyranocoumarion Structural Moiety
1 / 160.9
2 6.33 (1H, d, J = 9.5 Hz) 110.2
3 7.97 (1H, d, J = 9.5 Hz) 144.6
4 7.30 (1H, s) 113.7
5 / 149.4
6 / 150.4
7 7.16 (1H,s) 103.5
8 / 146.5
9 / 112.7

10-OMe 3.83 (3H, s) 56.5
Hexose Moiety

1′ 5.09 (1H, d, J = 7.4 Hz) 100.2
2′ 3.40~3.44 (1H, m) 73.5
3′ 3.30~3.33 (1H, m) 77.2
4′ 3.17 (1H, t, J = 9.0 Hz) 70.1
5′ 3.28~3.30 (1H, m) 77.6

6′ 3.45~3.48 (1H, m)
3.68~3.71 (1H, m) 61.1

Molecules 2017, 22, x  5 of 11 

 

Table 3. 1H- and 13C-NMR Data for Compound C. 

No. 1H-NMR 13C-NMR 
Benzopyranocoumarion Structural Moiety 

1 / 160.9 
2 6.33 (1H, d, J = 9.5 Hz) 110.2 
3 7.97 (1H, d, J = 9.5 Hz) 144.6 
4 7.30 (1H, s) 113.7 
5 / 149.4 
6 / 150.4 
7 7.16 (1H,s) 103.5 
8 / 146.5 
9 / 112.7 

10-OMe 3.83 (3H, s) 56.5 
Hexose Moiety 

1′ 5.09 (1H, d, J = 7.4 Hz) 100.2 
2′ 3.40~3.44 (1H, m) 73.5 
3′ 3.30~3.33 (1H, m) 77.2 
4′ 3.17 (1H, t, J = 9.0 Hz) 70.1 
5′ 3.28~3.30 (1H, m) 77.6 

6′ 
3.45~3.48 (1H, m) 
3.68~3.71 (1H, m) 

61.1 

 

a 

 
 

b 

min0 10 20 30 40 50 60 70 80 90

mAU

0

2

4

6

8

10

12

14

 DAD1 A, Sig=324,4 Ref=off (桑桑\桑桑 2016-03-25 16-50-54\201602250000011.D)

 3
3.

89
9

 

 

Figure 1. (a) Structure of compound A C20H24O12, moriramulosid A 
(umbelliferone-6-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside); (b) HPLC chromatogram of 
moriramulosid A (umbelliferone-6-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside). Details of the 
HPLC-MS method, see main text. 

Figure 1. (a) Structure of compound A C20H24O12, moriramulosid A
(umbelliferone-6-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside); (b) HPLC chromatogram of
moriramulosid A (umbelliferone-6-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside). Details of the
HPLC-MS method, see main text.
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Figure 3. (a) Structural formula of compound C C16H18O9, Scopolin; (b) HPLC chromatogram of 
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= 8), namely the healthy control group (C), the placebo model group (M), the allopurinol positive 
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1-benzopyran-1-one). Details of the HPLC-MS method, see main text.
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Scopolin. Details of the HPLC-MS method, see main text.

2.2. Anti-Hyperuricemic Activity In Vivo

In order to study the effect of the Mori ramulus refined extract ZY1402-A on the serum uric acid
levels, in vivo experiments in a mouse model were performed. Therefore, 32 adult male SPF Kunming
mice (body weight each between 18 and 22 g) were randomly divided into four groups (n = 8), namely
the healthy control group (C), the placebo model group (M), the allopurinol positive control group
(A), and the group treated with the Mori ramulus refined extract ZY1402-A. All mice were treated
by intragastric administration (ig) daily (at 9:00 am) for 8 days. All groups with the exception of the
healthy control group (C) were treated (ig) with 300 mg/kg potassium oxonate 1 h before the respective
treatment was administered. Blood was collected from the posterior venous plexus of the eye after
1 h of administration of the respective treatment on the 8th day. Subsequently, serum was taken after
centrifugation for measuring the levels of serum uric acid (SUA). For further details see Section 4.5.

Compared with the healthy control group the serum uric acid levels of the placebo model group
were significantly increased. Compared with the placebo model group, both the serum uric acid levels
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of the positive control group (5 mg/kg allopurinol) and the Mori ramulus refined extract (ZY1402-A)
treatment group and were significantly reduced (Figure 4).

Molecules 2017, 22, x  7 of 11 

 

before the respective treatment was administered. Blood was collected from the posterior venous 
plexus of the eye after 1 h of administration of the respective treatment on the 8th day. 
Subsequently, serum was taken after centrifugation for measuring the levels of serum uric acid 
(SUA). For further details see section 4.5. 

Compared with the healthy control group the serum uric acid levels of the placebo model 
group were significantly increased. Compared with the placebo model group, both the serum uric 
acid levels of the positive control group (5 mg/kg allopurinol) and the Mori ramulus refined extract 
(ZY1402-A) treatment group and were significantly reduced (Figure. 4). 

 

Figure 4. The effect of the Mori ramulus refined extract ZY1402-A on serum uric acid levels in the in 
vivo mouse model (n = 8; ### p < 0.001 compared to C; *** p < 0.001 compared to M). All data are given as 
X ± SD. Healthy control group (C), placebo model group (M), allopurinol positive control group (A). 

3. Conclusions 

In the present study, two novel natural products from the class of coumarin 
glycosides—moriramulosid A and B—were isolated and identified for the first time from an ethanol 
extract of Mori ramulus (Chin.Ph.). Said extract was characterized using negative ion 
HPLC/ESI-Q-TOF-MS/MS spectra in combination to UV-DAD. This HPLC/ESI-Q-TOF-MS/MS 
method provided a rapid and accurate method for identification of coumarin glycosides in crude 
extract from M. alba L. 

The accompanying mouse model experiments for measuring the anti-hyperuricemic activity of 
the Mori ramulus refined extract (ZY1402-A) in vivo demonstrate that this extract can reduce the 
serum uric acid levels of SPF Kunming mice significantly. 

4. Experimental 

4.1. Extract Preparation, Reagents, and Chemicals 

Mori ramulus (Chin.Ph.)—the dried twigs of Morus alba L.—(batch No. 20150113-2) were 
purchased via Chuxiongtengyang Chinese Herbal Medicine Corporation, from Good Agricultural 
Practice (GAP) cultivation sites (Figure 5) in Yunnan, China. The plant material was taxonomically 
identified by the author Houhong He and a voucher specimen (accession No. 20150113) was 
deposited at the herbarium of Zhejiang CONBA Pharmaceutical, China. 

Figure 4. The effect of the Mori ramulus refined extract ZY1402-A on serum uric acid levels in the
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given as X ± SD. Healthy control group (C), placebo model group (M), allopurinol positive control
group (A).

3. Conclusions

In the present study, two novel natural products from the class of coumarin
glycosides—moriramulosid A and B—were isolated and identified for the first time from an
ethanol extract of Mori ramulus (Chin.Ph.). Said extract was characterized using negative ion
HPLC/ESI-Q-TOF-MS/MS spectra in combination to UV-DAD. This HPLC/ESI-Q-TOF-MS/MS
method provided a rapid and accurate method for identification of coumarin glycosides in crude
extract from M. alba L.

The accompanying mouse model experiments for measuring the anti-hyperuricemic activity of
the Mori ramulus refined extract (ZY1402-A) in vivo demonstrate that this extract can reduce the
serum uric acid levels of SPF Kunming mice significantly.

4. Experimental

4.1. Extract Preparation, Reagents, and Chemicals

Mori ramulus (Chin.Ph.)—the dried twigs of Morus alba L.—(batch No. 20150113-2) were
purchased via Chuxiongtengyang Chinese Herbal Medicine Corporation, from Good Agricultural
Practice (GAP) cultivation sites (Figure 5) in Yunnan, China. The plant material was taxonomically
identified by the author Houhong He and a voucher specimen (accession No. 20150113) was deposited
at the herbarium of Zhejiang CONBA Pharmaceutical, China.
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Figure 5. Photos taken at a GAP cultivation site for Morus alba L. in Yunnan, China. (a) Farmer
harvesting Morus alba twigs; (b) Young leaved sprouting on the Morus alba twigs in spring; (c) Mori
ramulus drug in market form. Although more than 10,000,000 tons of mulberry twigs are produces in
the Peoples Republic of China annually, only a small percentage is used as medicine, whereas most is
treated as agricultural waste or as firewood.

1002.8 g of dried and powdered Mori ramulus (Chin.Ph.) drug were soaked with 60% ethanol
(Carl Roth, Karlsruhe, Germany) overnight, and subsequently extracted twice with 7.0 L of 60% ethanol
under reflux for 2 h each. After filtration, the liquid extract was evaporated to dryness under reduced
pressure resulting in 5.127 g of dry extract residue, which was subsequently dissolved in 90% ethanol.
This ethanol solution was precipitated by adding water in order to obtain the aqueous solution of
its water soluble constituents. These were subsequently adsorbed to HPD-100 macroporous resin
(Cangzhou Bao’en Adsorbing Material Technology, Cangzhou, China), which was eluted with 25%
ethanol. Finally, this eluent was evaporated to dryness under reduced pressure, thus yielding the final
Mori ramulus (Chin.Ph.) refined extract that was named ZY1402-A.

HPLC grade acetonitrile, methanol, and analytical grade CH3COOH were utilized for HPLC
analysis. Three compounds A, B, and C were isolated and purified from the above described refined
extract of Mori ramulus (Chin.Ph.). Their structures were determined by the analysis of UV, NMR, MS
spectra and compared with previous literature. The purities of isolates were over 95%, determined
by HPLC/DAD analysis based on a peak area normalization method. The standard solution of each
compound was prepared by dissolving it in 60% (v/v) methanol and stored at 4 ◦C until analysis.

4.2. Chromatography

HPLC was performed on an Agilent series 1260 instrument (Agilent, Waldbronn, Germany)
equipped with a quaternary pump, a diode-array detector (DAD), an autosampler, and a column
compartment. The sample was separated on an Xtimate XB-C18 column (5 µm, 4.6 × 250 mm, Welch
Materials, Shanghai, China). The mobile phase consisted of acetonitrile (mobile phase A); water (H2O)
containing 0.2% (v/v) CH3COOH (mobile phase B); and 5% (v/v) CH3OH (mobile phase C). The flow
rate was 1 mL/min, and column temperature was set at 25 ◦C. The development of the gradient over
time is summarized in Table 4. The DAD detector was monitored at 324 nm, and the on line UV spectra
were recorded in the range 190–400 nm.

Table 4. HPLC gradient.

Time (min) Mobile Phase A (%) Mobile Phase B (%) Mobile Phase C (%)

0~50 4 5 91
50~60 4→6 5 91→89

60~60.01 6→5 5→6 89
60.01~70 5→7 6 89→87

70~80 7→12 6 87→82
80~85 12→17 6 82→77
85~90 17→0 6→100 77→0
90~95 0 100 0
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4.3. Mass Spectrometry

An Aglient 6530 Q-TOF mass spectrometer (Agilent, Santa Clara, CA, USA) was connected to the
Agilent 1260 HPLC instrument via an ESI interface. The acquisition parameters were as follows: drying
gas (N2) flow rate, 12.0 L/min; temperature, 350 ◦C; nebulizer, 60 psig; capillary, 4500 V; fragmentor,
175 V; skimmer, 65 V; OCT RF V, 750 V. Each sample was analyzed in both positive and negative ion
mode to provide complimentary information for molecular formulae and structural identification.
The quasi-molecular ion [M − H]− of interest in the negative ESI mode MS scan was selected as
precursor ion and subjected to Target-MS/MS or Auto-MS/MS analyses. The collision energy (CE)
was set at 35 V and the mass range recorded m/z 100–2000.

4.4. NMR Spectroscopy

NMR spectra were recorded in deuterated dimethyl sulfoxides (DMSO-d6) or methanol (MeOD)
on a Bruker DRX-500 spectrometer (Bruker biospin, Rheinstetten, Germany) operating at 500 MHz for
1H and at 125 MHz for 13C including Distortionless Enhancement by Polarization Transfer (DEPT-135)
measurements. Chemical shifts are persented in ppm downfield of tetramethylsilane. 1D and 2D
NMR experiments were recorded using Mest NOVA software (Mestrelab Research, Santiago de
Compostela, Spain).

4.5. Anti-Hyperuricemic Activity

In order to study the effect of the Mori ramulus refined extract ZY1402-A on the serum uric acid
levels, in vivo experiments in a mouse model were performed based on the mouse model developed by
Wang M. et al. 2016 [27]. Therefore, 32 adult male SPF Kunming mice (body weight each between 18 and
22 g) obtained from the Shanghai Jiesijie Experiment Animal (Shanghai, China) were acclimatized for
two days under 12 h/day light cycle (environment temperature 25± 2 ◦C) and food and drinking water
ad libitum. Mice were randomly divided into four groups (n = 8), namely the healthy control group
(C), the placebo model group (M), the allopurinol positive control group (A), and the group treated
with the Mori ramulus refined extract ZY1402-A. All mice were treated by intragastric administration
(ig) daily (at 9:00 am) for 8 days. All groups with the exception of the healthy control group (C) were
treated (ig) with 300 mg/kg potassium oxonate 1 h before the respective treatment was administered.
Blood was collected from the posterior venous plexus of the eye in mice after 1 h of administration in
the eighth day, and serum was taken after centrifugation. The levels of serum uric acid (SUA) were
measured. All data were expressed by X ± SD. SPSS19.0 one-way analysis of variance (ANOVA) was
used to look at the statistical difference between the groups.

All animal maintenance and experimental studies were based on the guidelines of the National
Institutes of Health for the Care and Use of Animals of the People’s Republic of China, and were
approved by the Experiment Animal Center of Nanjing University.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/3/629/s1.
Figures S1–S3.
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