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Background: The clinical prognosis assessment of renal cell carcinoma (RCC) still relies on nuclear 
grading and nuclear score by naked eye with microscope, which has defects long time, low efficiency, and 
uneven evaluation level criteria. There are few machine learning (ML) studies investigating the prognosis 
in the RCC literature which could also quantify the risk of postoperative recurrence of RCC patients and 
guide cancer patients to conduct individualized postoperative clinical management. This study evaluated the 
suitability of ML algorithms for survival prediction in patients with RCC.
Methods: A total of 192,912 RCC patients from the Surveillance, Epidemiology, and End Results (SEER) 
were obtained from 2004 to 2015. Six ML algorithms including support vector machine (SVM), Bayesian 
method, decision tree, random forest, neural network, and Extreme Gradient Boosting (XGBoost) were 
applied to predict overall survival (OS) of RCC. 
Results: Patients from the SEER with a median age of 62 years and the pathological types were clear cell 
RCC (47.6%), papillary RCC (9.5%), chromophobe RCC (4.0%) and others (4.1%) were collected. In the 
deleting patients with missing data, the highest accurate model was XGBoost [area under the curve (AUC) 
67.0%]. In the deleting patients with missing data and survival time <5 years, the accuracy of random forest, 
neural network and XGBoost were high, with AUC of 80.8%, 81.5% and 81.8%, respectively. In the only 
deleting the missing tumor diameter and filling the missing dataset with missForest, the highest accurate 
model was random forest (AUC: 71.9%). In this study, the overall accuracy of the SVM model was not high, 
apart from in the population of patients with deleting the missing tumor diameter and survival time <5 years, 
and filling the missing data with missForest. Random forest, neural network and XGBoost had high accuracy, 
with AUC of 84.1%, 84.7% and 84.8%, respectively.
Conclusions: ML algorithms could be used to predict the prognosis of RCC. It could quantify the 
recurrence possibility of patients and help more individualized postoperative clinical management. Given 
the limitations and complexity of datasets, ML may be used as an auxiliary tool to analyze and process larger 
datasets and complex data.
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Introduction

In 2019, 73,820 new renal cancer cases were diagnosed, 
accounting for 4.2% of all tumors and 14,770 renal cancer-
associated deaths in the United States (1). Renal cell 
carcinoma (RCC) originates from the epithelial cells of 
renal tubules and has a relatively favorable prognosis after 
surgery for localized diseases. However, approximately 
20% of RCC patients are diagnosed with metastasis, which 
is incurable and associated with poor survival outcomes. 
Despite modest advances in treatment, the prognosis 
of patients with different risk factors is variable (2).  
Therefore, RCC survival outcomes differ significantly 
among individuals. Although prognostic factors and 
models have been developed for RCC, the limited data 
commonly restrict the accuracy of individualized accurate 
prediction (3-5). In a review conducted by Usher-Smith 
et al. (6), they provide the most comprehensive summary 
to date on the role of models in different populations. The 
authors argue that there is no clear single ‘best’ model for 

any of the populations being studied, namely recurrence 
free survival (RFS), cancer specific survival (CSS), and OS. 
Regarding RFS, the Sorbellini, Karakiewicz, Leibovich, 
and Kattan models have shown better performance, 
while University of California, Los Angeles Integrated 
Staging System (UISS) also demonstrates comparable 
performance in the European/American population. 
In terms of CSS, the Zisman, SSIGN, Karakiewicz, 
Leibovich, and Sorbellini models have performed better. 
For OS, the Leibovich, Karakiewicz, Sorbellini, and 
SSIGN models have demonstrated better predictive 
ability in terms of patient prognosis. One of the most 
interesting and challenging aspects is accurate survival 
time prediction.

Machine learning (ML), a major subbranch of artificial 
intelligence, is a promising statistical method that allows 
the analysis of heterogeneous and large-scale data. Within 
medicine, ML algorithms are built using data from large 
patient databases, with the intention to find patterns and 
make predictions (7,8). As a matter of fact, ML has been 
used for cancer prevention, diagnosis, and prognosis 
prediction (9-11). The main areas of ML research in 
RCC literature are the differentiation between benign 
and malignant small renal masses, Fuhrman nuclear 
grade prediction, and gene expression-based molecular 
signatures (12). However, few studies of ML techniques in 
RCC prognostication have focused on overall survival (OS) 
outcomes.

The Surveillance, Epidemiology, and End Results 
(SEER) database represents approximately 28% of the 
US population and consists of demographic, tumor 
characteristic, treatment, and outcome data. The SEER 
database could be a valuable source of research on large 
sample and multi-institutional patient pool. In the past, 
researchers have used the SEER database to conduct a large 
number of studies that are beneficial to the understanding 
of current diseases (13). In this study, we collected RCC 
patient data from the SEER database and aimed to 
investigate the utility of ML algorithms in predicting the 
5-year OS outcomes of patients with RCC. We present 
this article in accordance with the TRIPOD reporting 
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checklist (available at https://tau.amegroups.com/article/
view/10.21037/tau-23-319/rc).

Methods

Data collection

The data used in this study were collected from the online, 
publicly available SEER database using SEER*Stat software 
(Version 8.3.6). A data agreement form was signed, and was 
submitted to the SEER administration. A data agreement 
form was submitted to the SEER administration. The 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). This study did not involve 
personal identifiers. Thus, the study was deemed exempt 
by the Domain-Specific Review Board. We extracted data 
from patients with RCC (International Classification of 
Disease for Oncology C64) in the SEER database from 
2004 to 2015 (n=192,912). The variables consisted of race, 
sex, age at diagnosis, marital status, tumor location, primary 
tumor size, histological type, tumor grade, tumor-node-
metastasis (TNM) stage information, surgical treatment, 
OS duration in months, and vital status. “Others” in the 
race category included American Indian/Alaska Native or 
Asian/Pacific Islander. Marriage was analyzed using marital 
status. “Single” included never married, separated/divorced, 
and widowed, according to SEER marital status categories.

Data preparation

To correct the loss of important feature information, 
such as tumor size, TNM stage and survival time, which 
may affect the judgment of prognosis information, we 
tested four groups to investigate the feasibility of six ML 
algorithms including support vector machine (SVM), 
Bayes point machine, decision tree, random forest, neural 
network and Extreme Gradient Boosting (XGBoost), which 
were applied to construct models based on prior work 
(14-19). Bayes is a flexible probability graph model that 
captures the dependencies between selected variables, with 
the advantage of using graphical representations. Other 
researchers have compared traditional logistic regression 
models with Bayesian networks for risk prediction in breast 
cancer recurrence, and found similar accuracy (20). In this 
study, similar to the SVM model, the accuracy of Bayesian 
network method was not high in general, which may also 
depend on the integrity of the data. And a decision tree is 
a model that follows a tree structure classification scheme 

that can process nonnumeric data and is easy to understand. 
Other scholars have successfully proven its usability (21,22). 
Random forest is an extension of a decision tree with 
multiple decision trees that use random variables. Zhao 
et al. (23) used a public database to investigate random 
forest for analyzing the differences in gene expression in the 
microenvironment of lung cancer, providing a new strategy 
for exploring prognostic biomarkers and immunotherapy.

First, we converted the category description of patient 
characteristics into a digital description scheme that the 
ML model can recognize. Then, three common data 
preprocessing methods in ML including standardization, 
normalization, and Min-Max Scaler were used to evaluate 
the feasibility of the algorithms. Finally, to investigate the 
influence of possible noise, such as missing data, completion 
and uncertain information on ML models, and to verify 
the effect of data completion methods on missing tumor 
information, all patients were divided into a training set 
and validation set, and data were analyzed in four different 
populations: (I) deleting patients with missing data 
(n=92,475); (II) deleting patients with missing data and 
survival time <5 years (n=55,334); (III) only deleting the 
missing tumor diameter and filling the missing dataset with 
missForest (n=120,202); (IV) deleting the missing tumor 
diameter and survival time <5 years, and filling the missing 
data with missForest (n=71,710).

Additionally,  to obtain ML models with better 
generalization and stability, we divided the SEER dataset 
into 10 subsets and selected a 10-fold cross-validation 
method to debug the hyperparameters in the training 
process of all models.

Statistical analysis

Our outcome of interest was the 5-year OS outcome. We 
trained all ML models using Python, including Python 
version 3.6.8, Numpy version 1.20.1, Scikit-Learn version 
0.19.2, Scipy version 1.7.3, and XGBoost version 1.6.2. 
The ML models were developed and evaluated using  
10-fold cross-validation. The receiver operating characteristic 
(ROC) curve and the C index were also used to evaluate the 
accuracy of the model.

Results

Patient characteristics

A total of 192,912 patients from the SEER database were 
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collected, with a median age of 62 years [interquartile range 
(IQR), 53–71 years]. Among them, 122,902 (63.7%) were 
male and 70,010 (36.3%) were female. Most of the RCC 
patients were married, accounting for 82.5% (n=159,183). 
The population was mostly white (83.1%, n=160,280). 
The mean tumor diameter was 3.4±3.2 cm. At the initial 
diagnosis, 3.1% (n=6,055) and 7.4% (n=14,286) of patients 
had lymph node and organ metastasis respectively. 
Histologically, the common pathological types were 
clear cell RCC (47.6%, n=91,793), papillary RCC (9.5%, 
n=18,337), chromophobe RCC (4.0%, n=7,765) and others 
(4.1%, n=7,837). The baseline characteristics of RCC 
patients are summarized in Table 1.

Preprocessing result analysis

Min-Max Scaler was more beneficial for the training of 
SVM models than standardization and normalization 
preprocessing methods. Bayes, decision tree, random forest, 
and XGBoost were suitable for non-processing modes. The 
standard preprocessing method was appropriate for the 
neural network (Figure 1).

Validation analysis

The box-plot results of the area under the curve (AUC) with 
the 10-fold cross-validation showed that 6 ML algorithms 
were relatively stable and concentrated in this population 
(Figure 2A). The SVM (max AUC: 0.656), Bayes (max AUC: 
0.636), decision tree (max AUC: 0.615) and random forest 
(max AUC: 0.643) models were less effective at predicting 
5-year survival rates for RCC patients, while the models of 
neural network (max AUC: 0.666) and XGBoost (max AUC: 
0.671) models performed relatively well (Figure 2B). Further 
calibration curves of the 5-year OS rates showed that the 
predicted and observed values of the neural network model 
(Brier score: 0.221) and XGBoost (Brier score: 0.220) were 
relatively consistent while the prediction and observations 
of the SVM (Brier score: 0.230), Bayes (Brier score: 0.316), 
decision tree (Brier score: 0.259) and random forest (Brier 
score: 0.232) models were relatively discrete (Figure 2C). 
Overall, all models revealed poor identification in this 
population.

Patients with deleting missing data and survival time  
<5 years

The box diagram results of the model test showed that 

Table 1 Patient characteristics at baseline

Characteristics Values

Sex, n (%)

Male 122,902 (63.7)

Female 70,010 (36.3)

Age (years), median [interquartile range] 62 [53–71]

Marital status, n (%)

Married 159,183 (82.5)

Unmarried 25,366 (13.1)

Unknown 8,363 (4.3)

Race, n (%)

White 160,280 (83.1)

Black 21,008 (10.9)

Others 10,630 (5.5)

Unknown 994 (0.5)

Tumor location, n (%)

Left 93,975 (48.7)

Right 96,739 (50.1)

Bilateral 1,912 (1.0)

Uknown 286 (0.1)

Tumor size (cm), mean ± SD 3.4±3.2

Histological types, n (%)

Clear cell 91,793 (47.6)

Papillary 18,337 (9.5)

Chromophobe 7,765 (4.0)

Others 7,837 (4.1)

Unknown 67,180 (34.8)

Tumor grade, n (%)

G1/2 87,409 (45.3)

G3/4 45,170 (23.4)

Unknown 60,333 (31.3)

T stage, n (%)

T1/2 93,149 (48.3)

T3/4 25,167 (13.0)

Unknown 74,596 (38.7)

N stage, n (%)

N0 112,518 (58.3)

N1 6,055 (3.1)

Unknown 74,339 (38.5)

M stage, n (%)

M0 107,455 (55.7)

M1 14,286 (7.4)

Unknown 71,171 (36.9)

SD, standard deviation.
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random forest, neural network and XGBoost were more 
stable than SVM, Bayes and decision tree by the 10-
fold cross-validation in this population (Figure 3A). The 
maximum AUC of the linear model was 0.797 (Table 2). The 
SVM (max AUC: 0.799), Bayes (max AUC: 0.783), decision 
tree (max AUC: 0.776), random forest (max AUC: 0.808), 
neural network (max AUC: 0.815) and XGBoost (max AUC: 
0.818) models were all effective in predicting the 5-year 
survival rate of patients with RCC (Figure 3B). Further 
calibration curves also indicated that the SVM (Brier score: 
0.162), Bayes (Brier score: 0.189), decision tree (Brier score: 
0.170), random forest (Brier score: 0.148), neural network 
model (Brier score: 0.145) and XGBoost (Brier score: 0.144) 
models were relatively consistent (Figure 3C). In general, 
all models demonstrated good recognition results for this 
dataset.

Patients with only deleting the missing tumor diameter 
and filling the missing dataset with missForest

The model stability test of the box diagram showed that all 
models were relatively stable after 10-fold cross-validation 
in this population (Figure 4A). The SVM (max AUC: 0.675), 
Bayes (max AUC: 0.656) and decision tree (max AUC: 
0.683) models were not effective for predicting the 5-year 
survival rate of RCC patients, while the random forest 
(max AUC: 0.719), neural network (max AUC: 0.698) and 
XGBoost (max AUC: 0.714) models performed relatively 
well (Figure 4B). Calibration curves also showed that 
SVM (Brier score: 0.223), Bayes (Brier score: 0.323) and 
decision tree (Brier score: 0.231) models were ineffective, 
and the predicted and observed values were relatively 
discrete, while random forest (Brier score: 0.208), neural 

Figure 1 Preprocessing mode for different machine learning methods. SVM, support vector machine; AUC, area under the curve; XGBoost, 
Extreme Gradient Boosting.
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Figure 2 The characteristics of patients with deleting missing data. (A) The box-plot results of AUC with the 10-fold cross-validation of 
different machine learning algorithms. (B) ROC curve analysis of different models for predicting 5-year survival in patients with RCC. 
(C) Calibration curves of different models for predicting 5-year survival in patients with RCC. SVM, support vector machine; XGBoost, 
Extreme Gradient Boosting; AUC, area under the curve; ROC, receiver operating characteristic; RCC, renal cell carcinoma.

Figure 3 The characteristics of patients with deleting missing data and survival time <5 years. (A) The box-plot results of AUC with the 10-fold 
cross-validation of different machine learning algorithms. (B) ROC curve analysis of different models for predicting 5-year survival in patients 
with RCC. (C) Calibration curves of different models for predicting 5-year survival in patients with RCC. SVM, support vector machine; 
XGBoost, Extreme Gradient Boosting; AUC, area under the curve; ROC, receiver operating characteristic; RCC, renal cell carcinoma.
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Figure 4 The characteristics of patients with only deleting the missing tumor diameter and filling the missing dataset with missForest. (A) 
The box-plot results of AUC with the 10-fold cross-validation of different machine learning algorithms. (B) ROC curve analysis of different 
models for predicting 5-year survival in patients with RCC. (C) Calibration curves of different models for predicting 5-year survival in 
patients with RCC. SVM, support vector machine; XGBoost, Extreme Gradient Boosting; AUC, area under the curve; ROC, receiver 
operating characteristic; RCC, renal cell carcinoma.

Table 2 An ensemble model based on ML models in patient population with those with missing data and a survival time <5 years removed

Validation Bayes AUC Dec. Tree AUC Linear Reg. AUC Random forest AUC SVM AUC XGBoost AUC Ensemble AUC

Val 1 0.77939 0.76762 0.79458 0.80445 0.79654 0.81797 0.81109

Val 2 0.77853 0.77162 0.78755 0.80306 0.79022 0.81260 0.80974

Val 3 0.78024 0.773 0.79323 0.80627 0.77195 0.81577 0.81314

Val 4 0.77515 0.76795 0.78836 0.80101 0.78764 0.8068 0.8063

Val 5 0.77903 0.76459 0.78848 0.79628 0.78991 0.81106 0.80748

Val 6 0.7726 0.75161 0.7908 0.79962 0.78747 0.80726 0.80334

Val 7 0.76675 0.76023 0.7792 0.79381 0.77922 0.80473 0.80197

Val 8 0.77833 0.77088 0.79284 0.80252 0.78507 0.81031 0.80922

Val 9 0.7841 0.77389 0.79149 0.80750 0.79546 0.81793 0.81639

Val 10 0.78072 0.7763 0.79737 0.80674 0.79934 0.81602 0.81407

ML, machine learning; AUC, area under the curve; Dec. Tree, decision tree; Linear Reg., Linear Regression; SVM, support vector machine; 
XGBoost, Extreme Gradient Boosting.
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network (Brier score: 0.209) and XGBoost (Brier score: 
0.205) performed relatively well (Figure 4C). Overall, all 
models demonstrated relatively poor recognition in this 
dataset.

Patients with deleting the missing tumor diameter and 
survival time <5 years, and filling the missing data with 
missForest

The box diagram showed that random forest, neural 
network and XGBoost were more stable than SVM, Bayes 
and decision tree in this population (Figure 5A). Further 
analysis showed that each model had a good recognition. 
The SVM (max AUC: 0.830), Bayes (max AUC: 0.810), 
decision tree (max AUC: 0.805), random forest (max AUC: 
0.841), neural network (max AUC: 0.847) and XGBoost 
(max AUC: 0.848) models were all effective for predicting 
the 5-year survival rate of RCC patients (Figure 5B). Further 
calibration curves indicated that the SVM (Brier score: 
0.151), Bayes (Brier score: 0.190), decision tree (Brier score: 
0.163), random forest (Brier score: 0.142), neural network 

model (Brier score: 0.139) and XGBoost (Brier score: 0.139) 
models were almost consistent (Figure 5C). 

Based on all ML models, we obtained the importance 
degree of all features of SEER, as shown in Figure S1. The 
most important feature affecting prognosis was M stage, 
followed by N stage, tumor grade, tumor size, T stage, 
surgery, age, pathology type, marital status, side, sex, and 
race.

Discussion

Cancer patients are often eager to know as much as possible 
about their disease and prognosis, and good predictive 
tools can help clinicians provide that information for 
patients. Several studies have sought to identify prognostic 
factors in kidney cancer, one of the most common urinary 
tumors (24-27). However, few researchers have attempted 
to provide clinicians with web-based tools. To the best of 
our knowledge, this study is the first research to use ML 
algorithms to predict the prognosis of RCC patients. Based 
on the primary investigation, the results suggested that ML 

Figure 5 The characteristics of patients with deleting the missing tumor diameter and survival time <5 years, and filling the missing data 
with missForest. (A) The box-plot results of AUC with the 10-fold cross-validation of different machine learning algorithms. (B) ROC curve 
analysis of different models for predicting 5-year survival in patients with RCC. (C) Calibration curves of different models for predicting 
5-year survival in patients with RCC. SVM, support vector machine; XGBoost, Extreme Gradient Boosting; AUC, area under the curve; 
ROC, receiver operating characteristic; RCC, renal cell carcinoma.
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algorithms could be an effective tool for predicting RCC 
patient. Additionally, given the limitations and complexity 
of some public datasets, the ML model as an auxiliary tool 
may be advantageous for processing large datasets.

Accurately predicting the prognosis of patients with 
RCC is one of the most interesting and challenging tasks 
for urologists. However, renal tumors are heterogeneous 
and associated with many factors, and traditional linear 
statistical models are not reliably accurate for predicting 
prognosis. Regarding nonlinear statistical models, various 
ML techniques (including SVM, Bayes, decision tree, 
random forest, neural networks, and XGBoost) have been 
widely explored to develop predictive models that can 
detect and identify patterns and nonlinear relationships 
between multidimensional factors (28). In addition, cancer 
research has entered the era of big data (29). Data from a 
single center often do not fully reflect the real situation. 
Research has been further deepened with the development 
and use of public databases. Multiple studies have shown 
that ML algorithms can be used to mine public databases 
and exhibit high accuracy (30-33). However, there is still a 
lack of research on ML algorithms in RCC.

SVM is a supervised ML algorithm mainly used to 
classify cases and has been proved successful in multiple 
tumors (34,35). In the dataset analyses in this study, the 
overall accuracy of the SVM model was not high, apart 
from in the population of patients with deleting the missing 
tumor diameter and survival time <5 years, and filling 
the missing data with missForest. Data integrity is likely 
beneficial for establishing the SVM model. 

We also tried decision tree and random forest to predict 
the 5-year OS outcomes of RCC patients, and the accuracy 
was moderate, with the highest AUC at 80.5% and 84.1%, 
respectively.

A neural network is a group of interconnected nodes 
similar to the vast network of neurons in the human brain. 
Large quantities of information can be processed, and the 
network can output variables through a hidden layer, neural 
networks are developing rapidly and are widely used in 
many fields for disease prevention, diagnosis, treatment, 
and prognosis evaluation and for basic research (36,37). 
XGBoost is an optimized lift library with efficient and 
flexible features. XGBoost is also widely used, and several 
studies have confirmed that XGBoost has high accuracy 
and applicability (38,39). In this study, neural networks 
and XGBoost had better predictive power than other ML 
models in each dataset, with the highest AUC reaching 
84.7% and 84.8%, respectively. These approaches may be 

potential ML algorithms to be further studied.
There were also some limitations in this study. First, 

this study is a retrospective study of a population from the 
SEER database, which has some defects. The algorithms 
developed have not been externally verified, and rigorous 
external verification is necessary to determine whether the 
model is suitable for a specific population. In addition, our 
data source is the SEER database, which is limited by the 
common limitations of all administrative dataset studies, 
including lack of data such as specific laboratory indicators, 
adjuvant therapy, and tumor recurrence.

Conclusions

All six algorithm models could predict the 5-year survival 
rate of RCC patients, but the prediction accuracy was 
different. ML algorithms may be used as an auxiliary tool to 
analyze and process large datasets in the future.
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