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Abstract: Pb-free double halide perovskites have drawn immense attention in the potential pho-
tocatalytic application, due to the regulatable bandgap energy and nontoxicity. Herein, we first
present a study for CO2 conversion on Pb-free halide perovskite Cs2AgBiBr6 under state-of-the-
art first-principles calculation with dispersion correction. Compared with the previous CsPbBr3,
the cell parameter of Cs2AgBiBr6 underwent only a small decrease of 3.69%. By investigating the
adsorption of CO, CO2, NO, NO2, and catalytic reduction of CO2, we found Cs2AgBiBr6 exhibits
modest adsorption ability and unsatisfied potential determining step energy of 2.68 eV in catalysis.
We adopted defect engineering (Cl doping, I doping and Br-vacancy) to regulate the adsorption and
CO2 reduction behavior. It is found that CO2 molecule can be chemically and preferably adsorbed
on Br-vacancy doped Cs2AgBiBr6 with a negative adsorption energy of −1.16 eV. Studying the CO2

reduction paths on pure and defect modified Cs2AgBiBr6, Br-vacancy is proved to play a critical role
in decreasing the potential determining step energy to 1.25 eV. Finally, we probe into the electronic
properties and demonstrate Br-vacancy will not obviously promote the process of catalysis deactiva-
tion, as there is no formation of deep-level electronic states acting as carrier recombination center.
Our findings reveal the process of gas adsorption and CO2 reduction on novel Pb-free Cs2AgBiBr6,
and propose a potential strategy to improve the efficiency of catalytic CO2 conversion towards
practical implementation.

Keywords: halide perovskite; CO2 catalytic reduction; defect engineering; computational research

1. Introduction

Many environmental problems such as global warming [1–4], water pollution, and nat-
ural resource depletion have spurred numerous researchers to devote concerted efforts
to realizing the high-efficiency production of clean, reliable, renewable energy. Among
all the proposed strategies, catalytic conversion of carbon dioxide (CO2), of which the
released amount has far exceeded it that our ecosystem can handle, has become one of
the hottest research spheres. In this regard, photo(electro)catalytic hydrogenate of CO2
in hydrocarbon-based “green fuels” is regarded as state-of-the-art technology. It will con-
tribute to less reliance on fossil fuels with CO2 reduction production, serving as a substitute
high-energy-density fuel. It will also introduce a carbon resource in the carbon-cycling
which is crucial in the sustainable development of the earth [5,6]. Thus far, extensive
works have witnessed great interest in semiconductors such as TiO2 [7–10], Cu2O [11,12],
CdS [13,14] and g-C3N4 [15,16], with lots of experimental investigations focusing on pro-
moting the migration rate of induced charges. However, more studies are required to
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uncover novel and effective ideas, properties, and aspects of the CO2 conversion cata-
lysts to further advance the present state of knowledge and reaction performance to the
next level.

From the view of atomic and electronic points, CO2 reduction can be mainly divided
into two steps: forming a strong interaction between the gas molecules and the catalysts,
followed by reduction reaction in the existing H+/e− pairs. Determined by varied cat-
alysts and reaction environment (i.e., carbonate solution, CO2 mixed with H2O vapor,
pure CO2 gas, and so on), two to eight even numbers of the pairs will be utilized in the
whole reaction leading to different final products such as CO, HCOOH, H2CO, CH3OH,
and CH4. Nevertheless, few works give a deep insight into the relationship between CO2
molecular with catalysts, as the CO2 conversion efficiency highly depends on the surface
reaction [17–20]. The successive physicochemical adsorption of the small gas molecular on
to the catalyst surface guarantees effective catalysis. However, CO2 is not preferred to be
fixed, and methods like additional energy, pressure, and temperature are often adopted
to confirm the process of fixation. After that, the CO2 reduction encounters another chal-
lenge of first step hydrogenation: CO2 + e− → CO2− which needs a critical amount of
energy to climb over a reaction barrier as large as −1.90 V vs. NHE (normal hydrogen
electrode, the detail is displayed in the Electronic Supplementary Material (ESI)) in the
electrochemical study. Consequently, there is a pressing need and huge quest to provide
novel kinds of next-generation semiconductors with a followed optimized method to
overcome the bottlenecks and cover the in-depth study of reaction mechanism to give a
theoretical foundation for future researches.

Following the guidance of finding a more promising semiconductor, a great number
of researches have paid attention to conventional inorganic perovskites ABO3 (i.e., CaTiO3,
SrTiO3), which possess remarkable structural flexibility and stability with a myriad of
studies [21–25] reporting the unique catalytic performance. Nonetheless, the large bandgap,
high carriers recombination rate, small surface area, and unsatisfactory selectivity of CO2
reduction are still the challenges as a prominent catalyst for ABO3. As for the new kind of
halide Pb-based perovskites ABX3 (i.e., CH3CH2PbI3, CsPbBr3), the toxicity of Pb2+ is the
major bottleneck for the experimental synthesis [26–32].

Recently, novel Pb-free double halide perovskites A2BB’X6 have witnessed rapid
advances in the past two years as a new star of catalyst. Due to the diverse collocation
of atoms on the B/B’ sites, the intrinsic properties can be easily modulated. Moreover,
the double perovskite structure can effectively tackle the toxicity of traditional lead halide
perovskites [33]. The most typical double perovskite Cs2AgBiBr6 [34] shows a lack of
toxicity compared with CsPbBr3, and its nanocrystal has demonstrated great potential as
appealing candidates for the advanced photo(electro)catalytic applications [35,36].

Up to now, four types of double perovskites have been synthesized with different
kinds of B and B’ cations (i.e., B = Li+, Na+, K+, Rb+, etc. and B’ = In3+, Tl3+, Bi3+, Sb3+, etc.),
among which type A, B, and C all adopt the strategy of substituting Pb2+ by monovalent
and trivalent ions, while type D reveals B cation vacancy and tetravalent B’ cation. Figure 1
has concluded nearly all the construction routes of double perovskites, synthesis compo-
sitions, and the electronic properties followed by potential applications. Among all the
inorganic halide Pb-free perovskites, Cs2AgBiBr6 double perovskite exhibits unique semi-
conducting properties equipped with suitable band edges for CO2 reduction, high stability
and nontoxicity, which can be exploited for various industrial and artificial applications in
catalytic CO2 conversion [33,37,38]. However, there is little research reported to investigate
the CO2 capture and conversion on the Pb-free double halide perovskites. Meanwhile,
almost all the mechanism on CO2 conversion are established on the hypothesis that CO2 is
the only existing gas in the reaction environmental. The question remains of whether this
material be applied to the real reaction environment. Therefore, probing into the structural
and electronic properties of the catalysts and using the atom-scale regulation strategy to
optimize the catalytic activity is imperative. Herein, using state-of-the-art DFT calculations
with dispersion corrections, Cs2AgBiBr6 is comprehensively evaluated as the potential
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photocatalyst for CO2 reduction. The capture performance of CO2 in the exhaust is exam-
ined and indicates the priority of the adsorption of CO2. In addition, the detailed CO2
conversion mechanism on the pure Cs2AgBiBr6 is explored, and halide defect engineering
strategies (Cl, I, Br-vacancy doping) are proved to promote the process of CO2 reduction
at different degrees. Finally, we probe into the electronic properties and demonstrate Br-
vacancy will not obviously accelerate the deactivation of catalysis, as there is no formation
of deep-level electronic states acting as carrier recombination center. This work reveals
the process of gas adsorption and CO2 reduction on novel Pb-free Cs2AgBiBr6, and then
propose a potential strategy to improve the efficiency of catalytic CO2 conversion towards
practical implementation.
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Figure 1. Design strategies of lead-free double perovskites by replacing Pb2+ with B and B’ cations, synthesis compositions,
and the relationship between their electronic properties and potential applications. The concept “Electronic Dimensionality”
is used to describe the ability of carriers transporting in different directions [39,40]. Reproduced with permission from [36].

2. Computational Method

Our first-principles calculations were performed using the plane-wave pseudopo-
tential approach under the density functional theory (DFT). And the operations were
conducted within the Vienna Ab-initio Simulation Package (VASP) (5.3.5, Neng Li group,
Wuhan University of Technolohy, Wuhan, China) code [41–43]. The generalized gradient
approximation (GGA) was adopted to describe the exchange correlation functional in the
form of Perdew-Burke-Ernzerhof (PBE) [44]. To more precisely describe the Van der Waals
force between the substrate of the perovskite and the gas molecular, we employed the
DFT-D3 empirical correction of Grimme [44]. During the optimization process, the cut-off
energy was set as 250 eV for electron plane wave basis, and the convergence criteria of
residual energy and force for each atom were set to 10−4 eV and 0.05 eV/Å. A 3 × 3 × 1
Monkhorst-Pack k-point was adopted in geometry optimization. In regard of studying the
gas adsorption and CO2 conversion performance, a vacuum layer of 15 Å was established
in the z-direction to construct the surface model. In calculating the band structure, Heyd-
Scuseria-Ernzerhof (HSE) hybrid method was employed with the exact Fock exchange set
to be 25%. Spin-orbit coupling (SOC) was considered, which was significant in the presence
of Bi.
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The catalytic reduction of CO2 can be divided in to proton-coupled electron transfer
(PCET) steps one by one, with the possible products of CO, HCOOH, H2CO, CH3OH,
and CH4. In each PCET step, GRn was calculated following the Equation (1) [45]:

GRn = Gsubstrate+C1−mO2−2m−l Hn−2l
+ mCO2 + lH2O− Gsubstrate − GCO2 −

n
2

GH2 (1)

where n represents the number of the transferred H+/e− (the nth PCET step), and
Gsubstrate+C1−mO2−2m−l Hn−2l

represents the Gibbs free energy of the CO2 reacted with n PCET
steps. The Gibbs energy can be determined as G = H0 − TS + ZPE, and the detail is
displayed in ESI.

3. Results and Discussion
3.1. The Basic Crystal and Electronic Structure of Double Halide Perovskite

CsPbBr3 is one of the most typical cases of ABX3 halide perovskites with face-centered
cubic structure, and it shows promising properties in photocatalytic(electric) reaction.
However, the Pb-based perovskite faces the bottlenecks of toxicity originating from the
Pb ion. Up to date, Cs2AgInX6 and Cs2AgBiX6 (X = Cl, Br) have been demonstrated to be
the next generation materials for substituting Pb-based halide perovskites [46], which are
suitable for utilizing visible light. Consequently, we investigated the basic crystal and the
electronic band structure of Cs2AgInCl6, Cs2AgInBr6, Cs2AgBiCl6, and Cs2AgBiBr6 to find
out whether these perovskites have potential in catalysis. In Figure 2a, the schematic of the
substitution of Pb site and the corresponding primary cell of double halide perovskites are
demonstrated. We construct the Pb-free double perovskite Cs2AgBiBr6 via the replacement
of the Pb site by Ag and Bi atoms on the basis of the origin CsPbBr3 crystal structure.
In spite of the heterovalent substitution on the Pb site, the monovalent of Ag and trivalent
of Bi can maintain total charge neutrality. The radius of Ag and Bi atoms is 1.15 Å and
1.03 Å respectively, similar to the 1.19 Å of Pb atom, which can guarantee the stability
of the substitutional structure. The high cubic symmetry in the primary cell of double
perovskites is constructed by three different kinds of octahedrons [AgBr6]2−, [BiBr6]2− and
[CsBr6]2−. The optimized crystal structure with the lowest energy is exhibited in Figure S1
in ESI. Similar to the basic structure perovskite of CsPbBr3, it is a three-dimension frame
with Fm-3m space group symmetry, formed by corner connected octahedrons, and Cs+

is at the octahedral interstices. For the double oxide perovskites, the rock-salt ordering
is widely accepted as the ground state [47], and we believe it can also be adopted in the
double halide perovskites [48]. After the lattice optimization, there is a small decrease
of 3.69% in the cell parameter, compared with the original CsPbBr3 (11.92 Å [49]). At the
same time, the bond length of Ag-Br (3.20 Å) is larger than that of Bi-Br (2.88 Å) as the Br
ions undergo a light displacement toward Bi ion, contributing to the relatively stronger
attractive force of Bi3+ than Ag+.

To better evaluate the feasibility as photocatalysts, the band structures of the re-
ported double halide perovskites with the capacity in catalysis are investigated, including
Cs2AgBiX6 and Cs2AglnX6 [50]. The band structures are displayed in Figure 2b. Obviously,
there is an indirect bandgap in the Cs2AgBiX6 system, while the Cs2AglnX6 system pos-
sesses the direct bandgap like Pb-based CsPbCl3 perovskite. For the Cs2AgBiX6, the bottom
of the conduction band (CBM) and the top of the valence band (VBM) are located at L and
X point, respectively. The CBM and VBM in Cs2AgInX6 are both at Г point. In the above
computations, the spin-orbit coupling (SOC) is considered for all the double perovskites
and shrinks the bandgap of Cs2AgBiX6. When SOC is involved in Cs2AgBiX6 systems,
the VBM and CBM can be more accurately determined as additional states will arise in the
bandgap, leading to the downshift of the CBM [51]. As the halogen element changes from
Cl to Br, the bandgap energy will undergo a decrease of 1.11 eV and 0.67 eV on Cs2AgBiX6
and Cs2AglnX6, respectively. From the point of high-efficiency solar energy ultilization,
the Cs2AgBiCl6 and Cs2AglnCl6 exhibit relatively unsatisfactory ability as the utilized light
wavelength is <514.52 nm and <478.76 nm, respectively. Remarkably, the band structure of
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Cs2AgInX6 demonstrates the impropriety as the photocatalysts. Firstly, a relatively higher
recombination rate of photo-induced carriers will be induced by the direct bandgap, re-
sulting in the decrease in redox efficiency. Secondly, due to the parity-forbidden transition
at band edges in highly centrosymmetric crystal structure, the optical adsorption may
be severely reduced [52]. In the Cs2AgBiCl6 system, the unique electronic structure can
entirely overcome the above downsides. In addition, the comparison of typical Pb-free
perovskites in respect to the lattice parameters and bandgaps is listed in Table 1. Although
the organic perovskites exhibit a more satisfied bandgap for solar energy adsorption, they
suffer from the weakness of instability. The type D perovskites (Figure 1) will face the
challenge of decreased mobility of carriers [53,54]. Hence, the Cs2AgBiX6 is adopted as the
candidate for further adsorption investigation.
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CsPbBr3. (b) The band structure of Cs2AgBiCl6, Cs2AgBiBr6, Cs2AglnCl6 and Cs2AglnBr6.
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Table 1. Structure information and bandgaps of typical Pb-free halide perovskites obtained from theoretical first-principle
and experimental studies.

Perovskites Space Group Lattice Parameters (Å)
Band Gap (eV)

Ref.
Theory Experiment

Cs2AgBiCl6 Fm3-m 10.51 (This work) 2.59 (This work) 2.41 (Ref. [55])
Cs2AgBiBr6 Fm3-m 11.48 (This work) 1.92 (This work) 2.02 (Ref. [56])
Cs2AgInCl6 Fm3-m 10.53 (This work) 2.41 (This work) 2.1 (Ref. [57])
Cs2AgInBr6 Fm3-m 10.12 (This work) 1.30 (This work) 1.17 (Ref. [58])

Cs2SnI6 Fm3-m 11.6276 1.3 1.26 [59]
11.6276 1.6 1.62 [54]

11.65 - - [60]
Cs2TiBr6

Cs2TiBr6(@C60) Fm3-m 10.92 0.89
1.01

-
- [61]

Cs2TiI6 Fm3-m 11.67 0.79 - [32]

CsRbSnI6 Pmn21

a = 8.2608
b = 12.1507
c = 8.7913

1.58 - [62]

(CH3NH3)2AgBiBr6 Fm3m 11.6370 2.02 2.02 [63]

(CH3NH3)2KBiCl6 R3m a = 7.8372
c =20.9938 3.02 3.04 [64]

3.2. The Carbon Dioxide Capture Capacity on Modified Cs2AgBiBr6

It is worth noting that CO2 conversion can be applied to gas processing for factory
waste gas, automobile exhaust, useless gas from a laboratory. As such, we investigated the
adsorption energy of CO, CO2, NO, and NO2 to find out whether the CO2 adsorption is en-
ergetically preferable. In order to build a stable foundation for the Cs2AgBiBr6 framework,
finding a suitable crystal termination plays an essential role for the following researches on
surface catalytic reaction. Scientists have confirmed when employing room temperature
in synthesis that the most stable surfaces of ABX3 perovskite MAPbI3 (tetragonal) are
(001) and (110) [65,66]. While for the Fm-3m phase Cs2AgBiBr6, the (100) termination is
equivalent to the (001) and (110) terminations of the tetragonal phase. From the view of
charges, the (100) termination is nonpolar. Hence, Cs2AgBiBr6 can be treated by composed
layer by layer with TA (BiBr/AgBr3) and TB (CsX) (Figure 3a). The (2 × 1) supercell of
the optimized double halide perovskite bulk was cleaved as a (100) surface to establish
the slab model, as shown in Figure 3b. The slab and vacuum layer thickness are 18 Å and
15 Å respectively. This model can simulate the surface of the perovskite [67], because the
supercell will repeat continuously in the x-y plane while the vacuum layer can break the
continuity in the z-direction. In fact, a systematic research on the termination has been
given, and the TB is always favored irrespective of the CsBr availability [67]. To design a
prominent photocatalytic material employed at ambient conditions, the rational selection of
the terminal surfaces determines the electronic local environment on active sites. As such,
we adopt TB to investigate the adsorption performance on the CO, CO2, NO, and NO2,
which are the major compositions in the industry exhaust and adverse to the atmosphere.
At the same time, surface modification has been revealed to promote the adsorption and
catalytic performance [68–71], so we investigate the effect of Cl, I and Br-vacancy doping
on Cs2AgBiBr6 surface. Displayed in Figure 3c, there are two different sites (site 1 and site
2) of Br in TB, thus defect formation energy are calculated to ascertain the energetically
preferable doping sites following the Equation (2) [72]:

E f (D) = Etot(D)− Ehost(U)−∑
i

niµi (2)

where Etot(D) and Ehost(U) represents the energy of the doped system and undoped
system, ni are the amounts of atoms added or removed from the host material to create the
defect, µi are the chemical potentials of these atoms. Results demonstrate that Br-vacancy
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exhibits the smallest E f (D) of 3.47 eV in Site 2, which is close to the previous work in halide
and oxide perovskites [73–75]. The Cl, I, and Br-vacancy are calculated to be relatively
more stable to locate at Site 1, Site 1, and Site 2 respectively (detailed E f (D) information
is concluded in Table S1 in ESI). The doped structures after structure optimization are
displayed in Figure 3c.
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The outcomes are of great importance as steady adsorption is the prerequisite of
the next step in photocatalysis because the core of gas capture is changing the electronic
properties of the whole system. As is demonstrated in Figure 4, the adsorption performance
of CO, CO2, NO, NO2, in pure Cs2AgBiBr6 and the corresponding Cl doped, I doped,
and Br-vacancy system are comprehensively investigated. To obtain the optimal structure,
we consider unique adsorption sites and the orientation of gas molecular. Figure 4 displays
all the optimized structure in those systems and the corresponding structural details are
concluded in Table 2. We found that the O atom is attended to approach to Cs atom (as the
relative high ability of O in obtaining charges and Cs in losing charges), which gives the
foundation of gas molecular spontaneously adsorbed on the surface. The distance between
two-O-atom molecules (NO2 and CO2) and the Cs2AgBiBr6 surface are shorter than that
of one-O-atom molecules (CO and NO), and the bond length in every gas molecule is
increased. Figure 5 shows the adsorption energy and bond length of each gas molecular
after the structural optimization. The pure surface and the modified surface are adopted as
the substrate. Nearly all of the system exhibit spontaneous adsorption of the gas molecules
demonstrated from the negative value of Eb. It is widely accepted when |Eb| < 0.5 eV the
adsorption process can be treated as physical adsorption, when |Eb| > 0.5 eV it can be
treated as chemical adsorption [76]. In this regard, the Br-vacancy perovskite can lead to
the chemical adsorption of all gas molecules with the minimum value of |Eb| calculated
to be 0.77 eV. In Figure 5a, the pure Cs2AgBiBr6 shows the slight adsorption of NO, NO2,
CO and CO2 with the range of Eb from −0.38 eV to −0.01 eV. The halide dopant systems
(Cl doped and I doped) both exhibit insignificant improvement in adsorption. On the other
hand, the adsorption energy of NO, NO2, CO and CO2 on Br-vacancy Cs2AgBiBr6 are
within −1.2 eV to −0.7 eV, much more negative than the pure and halide dopant systems.
According to the previous research [77], the vacancy can accumulate massive charge on
the center of the site, playing a critical role in activating adsorption species. On the other
hand, the CO2 adsorption energy in all the Cs2AgBiBr6 systems is the lowest compared
with other gas, implying the Cs2AgBiBr6 materials prefer to capture CO2 from the exhaust
gas containing carbides and nitrides. Figure 5b demonstrates the bond length of each gas
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molecular on the different systems. Notably, the bonding in CO2 captured with the system
with Br vacancy elongate most compared with the pure and dopant systems, which can
illustrate the strong chemical adsorption between the CO2 and the vacancy site with the Eb
of −1.12 eV.

Table 2. Conclusion of structure information before and after gas molecular adsorbed on the substrate.

Pervskite Gas Eb (eV)
Bond Length of Gas Molecular (Å) Bond Angle of Gas Molecular (º)

Original Adsorbed Original Adsorbed

Pure

NO −0.33 1.15 1.17 / /
NO2 −0.01 1.20 1.27, 1.22 134.3 127.47
CO −0.13 1.13 1.13 / /
CO2 −0.38 1.16 1.17, 1.17 180.0 176.75

Cl doped

NO −0.28 1.15 1.16 / /
NO2 −0.12 1.20 1.27, 1.22 134.3 127.47
CO −0.27 1.13 1.14 / /
CO2 −0.46 1.16 1.17, 1.17 180.0 179.55

I doped

NO 0.027 1.15 1.17 / /
NO2 −0.18 1.20 1.23, 1.23 134.3 126.63
CO 0.12 1.13 1.14 / /
CO2 −0.26 1.16 1.17, 1.17 180.0

Br vacancy

NO −1.00 1.15 1.24 / /
NO2 −1.11 1.20 1.19, 1.15 134.3 149.71
CO −0.77 1.13 1.14 / /
CO2 −1.12 1.16 1.28, 1.24 180.0 143.15

Moreover, the charge transfer is considered, aiming to probe into the degree of asso-
ciation between surface and gas molecular in respect of charges. The charge loss of pure
Cs2AgBiBr6 is −0.055 eV, −0.414 eV, −0.023 eV, and −0.316 eV after the adsorption of
NO, NO2, CO, and CO2, which exhibit the strong ability of NO2 and CO2 on attracting
electrons.

3.3. The Pure Cs2AgBiBr6 for CO2 Catalytic Performance

Considering the end-on CO2 adsorption and the unique surface on Cs2AgBiBr6,
the CO2 reduction process follows the complicated reaction pathways, as is presented in
Figure 6a. For each step, the H+/e− pairs participates in the species’ protonation either on C
or O atoms. Since two adjacent Cs atoms are separated by halide atoms, the double carbon
products are unable to generate. The single carbon products (i.e., CH4, HCOOH, CH3OH,
CO) can be obtained via the regulation of combination sites in PCET steps and the exact
amount of H+/e− pairs participated in the reaction. If one CO2 molecular is only reduced
by singular numbers of H+/e− pairs, the whole system will be in an energetically unstable
transition state, resulting in the next PCET step spontaneously. In this paper, we focus
on the single carbon products. The CO and HCOOH molecules need two electrons in
reaction, while CH3OH belongs to the six-electron reaction and the CH4 is the eight-electron
product. Massive intermediates are involved in the CO2 reduction process. We optimized
all the possible species in the pure Cs2AgBiBr6, and the most energetically favored reaction
paths were obtained. The configurations of the intermediates with the lowest energy are
displayed in Figure 6b, which compose the optimal reaction pathway. And the free energy
profile of the whole system is displayed in Figure 6c. The reaction path is based on the
largest amount of H+/e− pairs (eight) participating in the catalysis process and enough
energy applied to support overcoming the energy barrier in each PCET step, especially
when an odd number of H+/e− pairs is induced. It was found that the products of HCOOH,
H2C(OH)2, H2COH, and CH4 were obtained. In the pure Cs2AgBiBr6 system, CO2 is firstly
held by one Cs atom exposed on the TB surface, and the CO2 end-on model, which is
fixed by two Cs atoms, has been proven to be energy-unfavorable. The first PCET step
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is to form highly symmetrical HCO2 with the free energy change of +1.23 eV. The next
triple H+ additions mainly concentrate on one O atom beside the Cs atom, and the H2O
is firstly released. The corresponding values of ∆G are −1.45 eV, +1.43 eV and −1.88 eV.
Then, the remaining H2CO undergoes triple protonation, and the CH4 is released with
the free energy change of +2.07 eV, −1.65 eV and +2.68 eV. Finally, OH forms H2O with
the declined free energy change of −2.32 eV. In the pure Cs2AgBiBr6 system, the change
of free energy ranges largely, implying the CO2 reduction process is massively exergonic,
and the main product is CH4. The potential determining step (PDS) is H3COH + H*→ OH*

+ CH4↑.This step is regarded as the crucial step for CH4 desorption, requiring overcoming
barrier energy of 2.68 eV.
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3.4. The Vacancy and Doping Engineering for the Improved CO2 Catalytic Performance

Due to the relatively large barrier of CO2RR, it is imperative to modulate the intrinsic
electronic properties of Cs2AgBiBr6 to enhance the catalytic activity. Vacancy and halogen
doping are regarded as two electronic structure designing strategies and make a contributor
to the adsorption of the intermediates. Hence, the detailed CO2RR process on Cs2AgBiBr6
with Cl dopant, I dopant and Br-vacancy on the TB is systematically explored (Figure 7).
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In the halide-doped systems (Figure 7a,b), the optimized CO2 reduction pathway
follows **CO2 → HCO2 → H2CO2 → H2COOH→ H2CO→ H2COH→ H3COH→ CH3
→ CH4, demonstrating the similarity to the pure Cs2AgBiBr6. However, when the H3COH
species is protonated, the H+/e− pairs are inclined to add on O atom. In the Cl and I
dopant systems, the H2O is firstly released with the increasing free energy of 2.04 eV and
2.14 eV. The value of the seventh PCET step is smaller than that of +2.68 eV in the pure
system, which can better illustrate that the halide dopant plays a significant role in the
decrease of the active barrier. The final product, CH4, is generated from the attack of H+/e−

pairs to the CH3 species. Owing to the high activation in CH3 species, this step results
in the high stability of the reactant CH4 with the distinct downhill free energy change of
−2.13 eV and −2.21 eV. CH4 is still captured by the Cs site, and the adsorption energy of
CH4 on Cl and I dopant systems are −0.14 eV and −1.02 eV, respectively. For the I dopant
system, the adsorption energy is too low, which will indicate the suppressed process of
desorption. In comparison, the moderate adsorption energy of CH4 on the Cl dopant
system demonstrates the advantages in adsorption and desorption for CO2RR. The PDSs
in Cl and I dopant systems are respectively **CO2→ HCO2 and H3COH→ CH3, requiring
the energy input of 2.27 eV and 2.14 eV. In spite of the fact that halide doping further
activates the species in CO2RR process, the improved efficiency is insignificant, and the
value of PDS is still above 2 eV.

Considering the vacancies often formed in experiments, continued computation via
the optimized free energy profile for catalytic CO2 reduction on the Cs2AgBiBr6 with one
vacancy was carried out and the reaction path is shown in Figure 7c. Distinguished from
the pure and halide dopant system, the pathway on Br-vacancy Cs2AgBiBr6 follows **CO2
→ COOH→ HCOOH→ H2COOH→ H2COHOH→ H2COH→ H3COH→ OH+CH4→
H2O. The first two PCET steps produce the new intermediates HCOOH with the maximal
barrier of 1.25 eV. In the next two steps, H+/e− pairs are prior to occupy the C atom and
then add to the O atom. After the formation of H2O, there are still two H atoms connected
with C atom, thus the next two PCET steps prompt the release of CH4. Obviously, the free
energy range of the whole intermediates in CO2 reduction maintains in a small scale.
The PDS is the process of COOH to form HCOOH (1.25 eV), and this value is comparable
to the Au catalyst [78] and sulfur-doped g-C3N4 [79] for CO2 reduction. This relative low
barrier of PDS predicts the smooth CO2 conversion in Cs2AgBiBr6 with vacancies.

To reveal the effect of Br-vacancy on the electronic property of Cs2AgBiBr6, we calcu-
lated the density of states (DOS) for pure and Br-vacancy Cs2AgBiBr6 surface using the
method of GGA-PBE. From Figure 8, it can be deduced that the forming of Br-vacancy can
move the Fermi level from VBM to near the CBM, which is consistent with previous work
on studying the O-vacancy and Cl-vacancy [80–82]. As the peak introduced by defective
states is sharp and separated from the relatively delocalized electrons in the conduction
band, the exceeding electrons brought by vacancy are localized. It widely acknowledged
that deep-level impurity can act as the recombination center for carriers, which will lead
to the deactivation of catalysts. The vacancy adopted in this work introduces the extra
defective electronic states located very close to the CBM, which can be defined as shallow
doping energy level, thus not expected to accelerate the catalysis deactivation. In addition,
although the vacancy decreases the bandgap energy, such a slight decrease in bandgap will
have minor effects on the conversion of carriers [83].
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4. Conclusions

In summary, employing the well-resolved DFT calculations, we concentrate on the
comprehensive investigation in the Cs2AgBiBr6 as the novel CO2 reduction catalyst. Based
on the structure of CsPbBr3, Ag+/Bi3+ and Ag+/In3+ are adopted to substitute Pb2+

to realize the objection on Pb-free, keeping the crystal stable and the charge balance.
The Cs2AgBiBr6, of which the bandgap is calculated to be 1.92 eV, is determined to be the
most potential material for CO2RR. Further studies on CO, CO2, NO, NO2, gas capture
proved Cs2AgBiBr6 a suitable material for CO2 adsorption and the doping and vacancy-
doped systems still demonstrate the simultaneous tendency for CO2 preference. Moreover,
the detailed CO2RR pathway on the pure, Cl-doped, I-doped and Br-vacancy Cs2AgBiBr6
are studied with the judgment of Gibbs free energy. The vacancy-doping system could
significantly promote the procedure with the potential determining step (PDS) of 1.25 eV,
compared with 2.68 eV of pure system, 2.27 eV of Cl-doped system and 2.14 eV of I-doped
system. Further investigation of the Cs2AgBiBr6 with Br-vacancy reveals that the vacancy
will not obviously promote the process of catalysis deactivation, as there is no formation of
deep-level electronic states acting as carrier recombination center. In this regard, this work
paves a potential avenue in demystifying the defect modification mechanism on lead-free
halide double perovskites, which will lay a foundation for defect engineering in CO2RR
photocatalysts toward a host of environmental and energetic applications.
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