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Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis.
Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers
devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting
informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge
number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we
propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search
and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we
have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600.
The performance of our proposedmethod proved to be superior to other related works including the conventional version of binary
optimization algorithm in terms of classification accuracy and the number of selected genes.

1. Introduction

DNA microarray technology which can measure the expres-
sion levels of thousands of genes simultaneously in the field
of biological tissues and produce databases of cancer based
on gene expression data [1] has great potential on cancer
research. Because the conventional diagnosismethod for can-
cer is inaccurate, gene expression data has been widely used
to identify cancer biomarkers closely associated with cancer,
which could be strongly complementary for the traditional
histopathologic evaluation to increase the accuracy of cancer
diagnosis and classification [2] and improve understanding of
the pathogenesis of cancer for the discovery of new therapy.
Therefore, it has gained popularity by the application of
gene expression data on cancer classification, diagnosis, and
treatment.

Due to the high dimensions of gene expression data
compared to the small number of samples, noisy genes,

and irrelevant genes, the conventional classification methods
cannot be effectively applied to gene classification due to
the poor classification accuracy. With the inherent property
of gene data, efficient algorithms are needed to solve this
problem in reasonable computational time. Therefore, many
supervised machine learning algorithms, such as Bayesian
networks, neural networks, and support vector machines
(SVMs), combined with feature selection techniques, have
been used to process the gene data [3]. Gene selection is
the process of selecting the smallest subset of informative
genes that are most predictive to its relative class using a
classification model. The objectives of feature selection prob-
lems are maximizing the classifier ability and minimizing
the gene subsets to classify samples accurately. The optimal
feature selection problem fromgene data isNP-hard problem.
Hence, it is more effective to use metaheuristics approaches,
such as nature inspired computation, to solve this problem. In
recent years, metaheuristic algorithms based on global search
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strategy rather than local search strategy have shown their
advantages in solving combinatorial optimization problems,
and a number of metaheuristic approaches have been applied
on feature selection, for example, genetic algorithm (GA),
particle swarm optimization (PSO), tabu search (TS), and
artificial bee colony (ABC).

Metaheuristic algorithms, as a kind of random search
techniques, cannot guarantee finding the optimal solution
every time. Due to the fact that a single metaheuristic
algorithm is often trapped into an immature solution, the
recent trends of research have been shifted towards the
several hybrid methods. Kabir et al. [4] introduced a new
hybrid genetic algorithm incorporating a local search to fine-
tune the search for feature selection. Shen et al. [5] presented
a hybrid PSO and TS for feature selection to improve the
classification accuracy. Next, Li et al. proposed a hybrid PSO
and GA [6]. Unfortunately, the experiment results did not
obtain high classification accuracy. Alshamlan et al. brought
out an idea of ABC to solve feature selection. They first
attempted applying ABC algorithm in analyzing microar-
ray gene expression combined with minimum redundancy
maximum relevance (mRMR) [7].Then, they also hybridized
ABC and GA algorithm to select genetic feature for microar-
ray cancer classification and the goal was to integrate the
advantages of both algorithms [8]. The result obtained by
ABC algorithm was improved to some extent, but the small
number of genes cannot get the high accuracy. Chuang et
al. [9] introduced an improved binary PSO in which the
global best particle was reset to zero position when its fitness
values did not change after three consecutive iterations. With
a large number of selected genes, the result of the proposed
algorithm obtained 100% classification accuracy in many
datasets.

So, in this paper, we concentrate on imperialist compe-
tition algorithm inspired by sociopolitical behavior which is
a kind of new swarm intelligent optimization algorithms to
address the process of feature selection from gene expression
data. It starts with an initial population and effectively
searches the solution space through some specially designed
operators to converge to optimal or near-optimal solution.
Although ICA has been proved a potential search technique
for solving optimization problem, it still faces some difficul-
ties that ICA is easy to trap into local optima and cannot get a
better result. Tabu search (TS) as a local search technique just
can make up for the deficiency of the ICA algorithm. It has
the ability to avoid convergence to local optimal by a flexible
memory system including aspiration criterion and tabu list.
Due to local search property of TS, the convergence speed
of TS largely depends on the initial solution. The parallelism
of population in ICA would help the TS find the promising
regions of the search space very quickly. So the hybrid
algorithm HICATS effectively combines the advantages of
ICA and TS and shows the superiority in feature selec-
tion.

The rest of the paper is organized as follows. Section 2
describes the related algorithm incorporating the process
of generic ICA and TS. Section 3 elaborates the proposed
HICATS including the framework, individual representa-
tion, empire initialization, colonies assimilation, and fitness

function evaluation. Section 4describes the parameter setting
and the experiment result based on several benchmark
gene datasets including comparative results betweenHICATS
and other variants of PSO. Finally, concluding remarks are
presented in Section 5.

2. Related Algorithm

2.1. Generic Imperialist Competition Algorithm (ICA). ICA is
a population-based stochastic optimization technique, which
was proposed by Atashpaz-Gargari and Lucas [10]. ICA, as
one of the recent metaheuristic optimization techniques, is
inspired by sociopolitical behavior. A review on last studies
showed that this method has not been used to solve gene
expression data for feature selection. Like other evolutionary
algorithms, ICA begins with an initial set of solutions (coun-
tries) called population. Each individual of population is an
array which is called “country” in ICA and “chromosome” in
GA. The empire is composed of the countries that would be
either an imperialist or a colony. The powerful countries are
considered to be imperialists and the colonies are assigned
to each empire based on the power of each imperialist state.
After generating the empires, the colonies are assimilated
by their related imperialist which would make the colonies
stronger and move towards the promising region. If the
colony is better than its imperialist whenmoving towards the
imperialist, then exchange positions of the imperialist and
its colony. As an empire has more power, it attracts more
colonies and imperialist competition among the empires
forms the basis of the ICA. The powerful imperialists are
reinforced and the weak ones are weakened and gradually
collapsed when the imperialist has no colony. Finally, the
algorithm converges to the optimal solution.The flowchart of
ICA is shown in Figure 1. ICA has been successfully applied
in many areas: fuzzy system control, function optimization,
artificial neural network training, and other application prob-
lems.

2.2. The Tabu Search Algorithm. Tabu search (TS) was pro-
posed by Glober in 1986 [11], which is a famous local search
algorithm, to solve a wide range of hard combination opti-
mization problems. The algorithm begins with initial solu-
tions and evaluates the fitness values for the given solutions.
Then an associated set of feasible solutions can be obtained
by applying a simple modification with given solution. This
modification by a simple and basic transformation is called
move. If the best of these neighbors is not in the tabu list,
then select it as the new current solution. The tabu list keeps
track of previously explored solutions and prevents TS from
revisiting them again to avoid falling into local optimum. A
move is created to increase diversity even if it is worse than
the current solution. At the same time, tabu list is introduced
and used to memorize the better local neighbors which have
been searched and will be neglected. After a subset of feasible
solutions is created according to the tabu list and evaluated
by the objective function. The best optimal solution will be
selected as the next solution. This loop is stopped when the
stopping criteria are satisfied.
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Figure 1: The flowchart of ICA scheme.
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Figure 2: The framework of the proposed algorithm HICATS.

3. Proposed HICATS

ICA as a global search metaheuristic algorithm reveals the
advantage in solving combinatorial optimization problems;
however, the diversity of the population would be greatly
reduced after some generations and the algorithmmight lead
to premature convergence. TS as a local search technique
can exploit the neighbors of current solutions to get better
candidates, but it will take much time to obtain the global
optimum or near-global optimum. The incorporation of
TS into ICA as a local improvement strategy enables the
method to maintain the population diversity and prohibits
misleading local optimal. Each binary coded string (country)
represents a set of genes, which is evaluated by the fitness
function. TS is applied on imperialist in each empire to
select the new imperialist and avoid premature conver-
gence. The framework of the proposed algorithm HICATS
can be shown in Figure 2, which is described further as
follows.

Step 1. Set parameters of the algorithm and initialize coun-
tries with binary representation 0 and 1. Evaluate each

country in the population which utilizes support vector
machine classifier (SVM). The fitness is decided by the
percentage of classification accuracy of SVM and the number
of feature subsets. Then empires are generated depending on
their fitness values.

Step 2. Apply TS on imperialist in each empire. Generate and
evaluate the neighbors of imperialist. Select the new solution
according to the tabu list and aspiration criterion to replace
the old imperialist.

Step 3. Apply a learning mechanism on colonies which is the
same as Baldwinian Learning (BL) mechanism [12]. Find out
the different genes between imperialist and one of its colonies;
then use the randomly generated learning probability to
decide the number of selected genes for a colony.This strategy
makes the colonies move towards their imperialist.

Step 4. Compare the objective values between imperialist and
its colonies in the same empire. Exchange the positions of
imperialist and its colony when a colony is better than its
imperialist.
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ual representation.

Step 5. Calculate the total power of an empire and compare
all empires; then eliminate the weakest empire when it loses
all of its colonies.

Step 6. If the termination condition (the predefined max
iterations) is not fulfilled, go back to Step 2.Otherwise, output
the optimal solution in the current population and stop the
algorithm.

It is clear that HICATS integrates two quite different
search strategies for feature selection, that is, the operation
on ICA which can explore the new region and provide the
ideal solution for TS, while TS can exploit the neighbors of
imperialist for better candidate and avoid getting into local
optimal according to memory system. The evaluation func-
tion, incorporating the accuracy of SVM with the number
of selected genes in feature subset, assists HICATS to find
the most salient features with less redundancy. A reliable
selection method for genes classification should have higher
classification accuracy and contain less redundant genes. For
more comprehensibility, details about each component of
HICATS are described in the following sections.

3.1. Individual Representation and Empire Initialization. In
this paper, we utilize random approach to generate a binary
coded string (country) composed of 0, 1 and its length is
equal to the dimensions of gene expression data. A value of
1 in country indicates that this gene should be selected while
the value of 0 represents the uselessness of corresponding
gene. In order to clearly understand these operations, we take
an example for explanation. Assume that the gene data have
10 dimensions (10 features: 𝑓

1
, 𝑓
2
, 𝑓
3
, 𝑓
4
, 𝑓
5
, 𝑓
6
, 𝑓
7
, 𝑓
8
, 𝑓
9
,

and 𝑓
10
); the country 𝑋country = {1, 1, 0, 0, 1, 0, 1, 0, 0, 1} is

initialized with 0 and 1. The bits of the string template are
10 which is equal to the dimensions of gene data. The string
is randomly generated and the number of 1 is 5. Hence, the
features 𝑓

1
, 𝑓
2
, 𝑓
5
, 𝑓
7
, and 𝑓

10
are selected to form a country

which is shown in Figure 3.
After generating the population, we should evaluate the

countries and initialize empires composed of imperialists and
colonies. The fitness value of a country is estimated by the
fitness function 𝐹:

fit = 𝐹 (𝑋country) = 𝐹 (𝑓1, 𝑓2, . . . , 𝑓𝐷) . (1)

In this study, assume that the initial population size is 𝑁pop;
𝑁imp most powerful countries are selected as imperialists
and the remaining 𝑁col (𝑁col = 𝑁pop − 𝑁imp) countries
are assigned to these empires according to the power of
imperialists as their colonies. To assign the colonies among

imperialists proportionally, normalized fitness value of 𝑚th
imperialist is defined by

Fit
𝑚
= fit
𝑚
−min {fit

𝑖
} , 𝑖 ∈ 1, 2, . . . , 𝑁imp, (2)

where Fit
𝑚

and fit
𝑚

are the normalized fitness value of
𝑚th imperialist and the fitness value of 𝑚th imperialist,
respectively. The normalized power for this imperialist is
defined by

𝑝
𝑚
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Fit
𝑚

∑
𝑁imp
𝑖=1

Fit
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (3)

The normalized power of an imperialist reveals the strength
of this imperialist. So the possessed colonies of 𝑚th empire
will be

𝑁𝐶
𝑚col = round {𝑝

𝑚
⋅ 𝑁col} , (4)

where 𝑁col is the total number of colonies and 𝑁𝐶
𝑚col is

the initial number of colonies of 𝑚th empire. To generate
each empire, we randomly choose 𝑁𝐶

𝑚col colonies and give
them to each imperialist. Figure 1 shows the initial population
of each empire including imperialist and colonies with the
same color. It is obvious that bigger imperialists have greater
number of colonies while weaker ones have less. Imperialist 1
has the most colonies and formed the most powerful empire.

3.2. Colonies Assimilation. In HICATS, assimilation is an
important operation and could likely be a momentous help
in the progress of colonies evolution. In this paper, the idea
of continuous BL is introduced into the HICATS for colonies
assimilation by their imperialist. This strategy can utilize
some specific differential information from the imperialist,
that is, the differential information between imperialist and
colony 𝑋IM − 𝑋CO, indicating a more effective way to learn
from the excellent solution. It can be defined as follows:

𝑋CO = 𝑋CO + ⌊𝛽 ∗ (𝑋IM − 𝑋CO)⌋ . (5)

The operation of difference states that, 1 subtracting 0, the
result is 1; 1 subtracting 1, the result is 0; 0 subtracting 1, the
result is 0; and 0 subtracting 0, the result is 0. The learning
rate 𝛽 ∈ (0, 1) is a randomly generated real number which
means the proportion of selected genes from the differences.
⌊⋅⌋ is the operator that rounds its argument towards the
closest integer and ⌊𝛽 ∗ (𝑋IM −𝑋CO)⌋ represents the selected
genes. In order to reduce the dimension of the country, our
research adopts a randomly generated template depending
on the larger dimensions of imperialist and colonies. For
imperialist (IM) with five characteristics 𝑓

1
, 𝑓
2
, 𝑓
5
, 𝑓
7
, and

𝑓
10

and one of its colonies with six characteristics 𝑓
1
, 𝑓
3
,

𝑓
6
, 𝑓
8
, 𝑓
9
, and 𝑓

10
in an empire, the dimension of binary

template (BT) is 6. The template of colony is generated from
nonoperation of BT, denoted by BTF. Because the number of
IM feature genes is less than the template BT, the IMBT just
takes one part of BT. To describe how it works, we will illus-
trate the following numerical example. Imperialist represents
𝑋IM = {1, 1, 0, 0, 1, 0, 1, 0, 0, 1}; one of its colonies encodes
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𝑋CO = {1, 0, 1, 0, 0, 1, 0, 1, 1, 1}; then the differential informa-
tion is described as𝑋IM −𝑋CO = {0, 1, 0, 0, 1, 0, 1, 0, 0, 0}. It is
obvious that the number of different genes is 3 (the number
of 1). According to the parameter 𝛽, the number of selected
genes from different genes set is 2 and the features of 𝑓

2

and 𝑓
7
are chosen. At the same time, BT = {1, 0, 1, 1, 0, 0}

is produced by random strategy and BTF = {0, 1, 0, 0, 1, 1}
is the nonoperation of BT. IMBT = {1, 0, 1, 1, 0} is obtained
from BT and COBT = {0, 1, 0, 0, 1, 1} is equal to BTF. After
this process, CO becomes a country with the features 𝑓

3
, 𝑓
9
,

and 𝑓
10

and the assimilated CO combining different genes
between CO and IM, with five features 𝑓

2
, 𝑓
3
, 𝑓
7
, 𝑓
9
, and

𝑓
10
, is produced. Therefore, assimilated CO is generated by

BL operation which is shown in Figure 4.

3.3. Fitness Function. The feature selection of gene expression
data needs to consider the classification accuracy and the
number of selected informative genes. Hence, the fitness
function is defined as follows:

fitness (𝑋
𝑖
) = 𝑤
1
× 𝐴 (𝑋

𝑖
) + (𝑤

2
×
𝑛 − 𝐷 (𝑋

𝑖
)

𝑛
) (6)

in which 𝐴(𝑋
𝑖
) ∈ [0, 1] is the leave-one-out-cross-validation

(LOOCV) classification accuracy of one country 𝑋
𝑖
(gene

subset) obtained by SVM model. 𝑛 is the dimensions of
optimal problem; in other words, it is the total number of
genes for each sample and 𝐷(𝑋

𝑖
) is the number of selected

genes in 𝑋
𝑖
. We use the parameters 𝑤

1
and 𝑤

2
to measure

the importance of classification accuracy and the number
of selected genes, respectively. The classification accuracy is
more crucial than the number of selected genes and setting
of the parameters satisfies constraint condition as follows:
𝑤
1
∈ [0, 1] and 𝑤

2
= 1 − 𝑤

1
.

3.4. TS-Based Local Search. In HICATS, each colony can be
assimilated by its imperialist and then improve itself. Thus,

1

1

1 1

1 1 11 1

1 1 0 0 0 0 0

0 0 00

Figure 5: Producing nearby solutions in TS.

the whole algorithm has a speed convergence. However, the
classical ICA is easy to fall into local optimum. Therefore,
the exploitation is performed by TS to search the better
solution nearby the current imperialist and to escape from
local optimal in this paper. How to produce the solution
and the tabu list is very important in TS algorithm. In our
study, one bit of the solution with nonoperation is utilized
to produce the nearby solutions. For example, if the gene
expression data with 10 dimensions and the current country
is 𝑋country = {1, 1, 0, 0, 1, 0, 1, 0, 0, 1}, the nearby solution
can be obtained from the current solution through TS-based
algorithm in Figure 5.

4. Experiment

4.1. Gene Expression Datasets and Parameter Setting. In this
paper, except for SRBCT which was gained by continuous
image analysis, the rest of the gene microarray datasets
were obtained by the oligonucleotide technique. Presently,
there is no standard method for processing gene expres-
sion data. Therefore, we designed an effective algorithm
HICATS to perform feature selection for improving the
classification accuracy. The datasets consist of 10 pieces
of gene expression data, which can be downloaded from
http://www.gems-system.org/. The description of datasets is
listed in Table 1, which contains the dataset name and detailed
expression. Table 2 gives the related samples, genes, and
classes. These datasets contained binary-class and multiclass
data that contained thousands of genes.
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Table 1: Cancer-related human gene microarray datasets used in this study.

Dataset name Description
9 Tumors Oligonucleotide microarray gene expression profiles for the chemosensitivity profiles of 232 chemical compounds

11 Tumors Transcript profiles of 11 common human tumors for carcinomas of the prostate, breast, colorectum, lung, liver,
gastroesophagus, pancreas, ovary, kidney, and bladder/ureter

Brain Tumor 1
DNA microarray gene expression profiles derived from 99 patient samples. The medulloblastomas included primitive
neuroectodermal tumors, atypical teratoid/rhabdoid tumors, malignant gliomas, and the medulloblastomas activated by
the sonic hedgehog pathway

Brain Tumor 2 Transcript profiles of four malignant gliomas, including classic glioblastoma, nonclassic glioblastoma, classic
oligodendroglioma, and nonclassic oligodendroglioma

Leukemia 1 DNA microarray gene expression profiles of acute myelogenous leukemia (AML) and acute lymphoblastic leukemia
(ALL) of B-cell and T-cell

Leukemia 2 Gene expression profiles of a chromosomal translocation to distinguish mixed-lineage leukemia, ALL, and AML

Lung Cancer Oligonucleotide microarray transcript profiles of 203 specimens, including lung adenocarcinomas, squamous cell lung
carcinomas, pulmonary carcinomas, small-cell lung carcinomas, and normal lung tissue

SRBCT cDNA microarray gene expression profiles of small, round blue cell tumors, which include neuroblastoma,
rhabdomyosarcoma, non-Hodgkin’s lymphoma, and the Ewing family of tumors

Prostate Tumor
cDNAmicroarray gene expression profiles of prostate tumors. Based on MUC1 and AZGP1 gene expression, the prostate
cancer can be distinguished as a subtype associated with an elevated risk of recurrence or with a decreased risk of
recurrence

DLBCL DNA microarray gene expression profiles of DLBCL, in which the DLBCL can be identified as cured versus fatal or
refractory disease

Table 2: Description of gene expression datasets.

Dataset number Dataset name Number of
Samples Genes Classes

1 9 Tumors 60 5726 9
2 11 Tumors 174 12533 11
3 Brain Tumors 1 90 5920 5
4 Brain Tumors 2 50 10367 4
5 Leukemia 1 72 5327 3
6 Leukemia 2 72 11225 3
7 Lung Cancer 203 12600 5
8 SRBCT 83 2308 4
9 Prostate Tumor 102 10509 2
10 DLBCL 77 5469 2

Table 3: Parameter settings for HICATS.

Parameters Values
The number of countries 15
The number of imperialists 4
The number of colonies 11
The number of iterations (generations) 50
𝑤
1

0.8
𝑤
2

0.2

The parameter values for HICATS are shown in Table 3. It
is very clear that the parameters of the proposed algorithmare
less than binary particle swarm optimization (BPSO). Hence,
the influence of parameter setting on HICATS is relatively
small and the robustness of algorithm is better. The size of
the population affects the performance of the algorithm and

computation efficiency. Large number of countries would
require more computational times for completing feature
selection while if the number is too small, although the
algorithm can take place in a relatively short period of
time, the performance of the algorithm is not guaranteed.
Therefore, the intermediate values for the size of population
and iteration are chosen to be 15 and 50, respectively. Since
population is composed of imperialists and colonies, the
number of imperialists also needs to be determined. If the
number of imperialists is 1, the HICATS algorithm is trans-
formed to single-population evolutionary algorithm instead
of multisubpopulation while if the number of imperialists is
too large, the number of colonies cannot be guaranteed. The
number of imperialists is chosen to be 4 in our experiment. In
Section 3.3, the parameters of 𝑤

1
and 𝑤

2
are introduced and

the range of values is given. In order to guarantee that 𝑤
1
is

larger than 𝑤
2
, the values of 𝑤

1
and 𝑤

2
are set as 0.8 and 0.2

in our proposed algorithm with the same parameter setting
of EPSO [13].

4.2. Experiment Results. In this paper, a hybrid algorithm
HICATS incorporating ICA andTS is used to perform feature
selection for the gene expression data. TS was embedded in
the ICA to prevent the method from getting trapped into a
local optimum, while applying TS on imperialist can improve
the performance and speed up the convergence of TS.

The experiment results included classification accuracy
and the number of selected feature genes obtained by
HICATS over 10 independent runs for 10 datasets included
11 Tumors, 9 Tumors, SRBCT, Leukemia 1, Leukemia 2,
DLBCL, Prostate Tumor, Lung Cancer, Brain Tumors 1, and
Brain Tumors 2 which are shown in Tables 4, 5, and 6. It is
found that the classification accuracy of HICATS achieves
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Table 4: The computational results obtained by our proposed algorithm HICATS for 10 independent runs on 11 Tumors, 9 Tumors, and
SRBCT datasets.

Runs 11 Tumors 9 Tumors SRBCT
Acc. (%) Selected genes Acc. (%) Selected genes Acc. (%) Selected genes

1 97.70 287 75.00 245 100 10
2 96.55 302 76.67 262 100 14
3 94.83 330 75.00 233 100 15
4 95.40 268 75.00 249 100 13
5 96.55 290 76.67 257 100 9
6 96.55 356 81.67 242 100 12
7 94.83 323 83.33 259 100 16
8 94.83 349 76.67 238 100 9
9 95.98 275 81.67 247 100 9
10 95.40 295 81.67 253 100 10
Ave. ± SD 95.86 ± 0.97 307.5 ± 30.46 78.33 ± 3.33 248.5 ± 9.38 100 ± 0 11.70 ± 2.67

Table 5: The computational results obtained by our proposed algorithm HICATS for 10 independent runs on Leukemia 1, Leukemia 2, and
DLBCL datasets.

Runs Leukemia 1 Leukemia 2 DLBCL
Acc. (%) Selected genes Acc. (%) Selected genes Acc. (%) Selected genes

1 100 3 100 8 100 4
2 100 3 100 10 100 3
3 100 3 100 6 100 5
4 100 3 100 6 100 3
5 100 3 100 7 100 4
6 100 3 100 8 100 3
7 100 3 100 5 100 4
8 100 3 100 7 100 5
9 100 3 100 5 100 6
10 100 3 100 6 100 4
Ave. ± SD 100 ± 0 3 ± 0 100 ± 0 6.80 ± 1.55 100 ± 0 4.10 ± 0.99

100% with less than 10 informative genes for Leukemia 1,
Leukemia 2, and DLBCL and with less than 20 selected
genes for SRBCT.The average classification accuracy is more
than 92.22% for all the datasets except for 9 Tumors. In
other words, it is strongly demonstrated that HICATS can
efficiently select informative genes from high-dimensional,
binary-class, or multiclass datasets for classification. For all
best classification results, the selected genes are less than 10
except for 9 Tumors and 11 Tumors, while, for the average
classification result, the informative genes in subset are also
less than 10 except for 9 Tumors, 11 Tumors, and SRBCT
datasets. Furthermore, the standard deviation is less than 5
for all datasets except for 9 Tumors and 11 Tumors. From the
classification accuracy and the selected informative genes, it
is not difficult to find that HICATS is an efficient algorithm
for feature selection and produces a near-optimal gene subset
from gene expression data.

In order to verify the effectiveness of the proposed algo-
rithm, firstly, we will compare the performance of HICATS
with pure ICA using SVM as a classifier under the same
experimental conditions; then, we will compare HICATS
with other optimization algorithms on several benchmark

classification datasets. The comparison results including the
optimal classification accuracy and the number of selected
genes obtained by HICATS and ICA are given in Table 7.
The difference between these two algorithms is only whether
each contains local search mechanism TS or not. It is quite
clear that HICATS performs better than original ICA for
all datasets. Hence, ICA combined with TS can effectively
jump out of local optimum and HICATS achieves better
performance. Table 8 compares experiment results obtained
by other approaches from the literature and the proposed
method HICATS. Various methods including non-SVM and
MC-SVM were used to compare with our proposed method.
The experiment results listed in Table 8 were taken from
Chuang et al. for comparison [9]. Non-SVM contains the 𝐾-
nearest neighbor method [9, 14, 15], backpropagation neural
networks [16], and probabilistic neural networks [17]. MC-
SVM includes one-versus-one and one-versus-the-rest [18],
DAG-SVM [19], the method byWeston andWatkins [20, 21],
and themethod by Crammer and Singer [20, 22]. It is obvious
that our proposed approach HICATS obtained all the high-
est classification accuracies for the 10 benchmark datasets.
The average highest classification accuracy of non-SVM,
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Table 6:The computational results obtained by our proposed algorithmHICATS for 10 independent runs on Prostate Tumor, Lung Cancer,
Brain Tumor 1, and Brain Tumor 2 datasets.

Runs Prostate Tumor Lung Cancer Brain Tumor 1 Brain Tumor 2
Acc. (%) Selected genes Acc. (%) Selected genes Acc. (%) Selected genes Acc. (%) Selected genes

1 98.04 8 95.57 6 94.44 6 94 5
2 97.06 7 96.06 6 93.33 12 90 6
3 98.04 5 96.06 9 94.44 9 94 7
4 98.04 7 95.57 8 91.11 10 92 5
5 97.06 6 96.06 7 93.33 8 92 3
6 98.04 7 97.04 11 92.22 14 94 8
7 97.06 10 96.06 8 91.11 7 92 4
8 98.04 8 96.06 7 93.33 9 94 3
9 98.04 9 96.06 9 94.44 6 90 9
10 98.04 5 97.04 7 93.33 8 94 8
Ave. ± SD 97.75 ± 0.47 7.2 ± 1.62 96.16 ± 0.50 7.8 ± 1.55 93.10 ± 1.26 8.9 ± 2.55 92.60 ± 1.60 5.8 ± 2.14

Table 7: Classification accuracies and selected genes obtained by HICATS and ICA for gene expression data.

Datasets
Methods

HICATS ICA
Acc. (%) Selected genes Acc. (%) Selected genes

9 Tumors 83.33 259 76.67 282
11 Tumors 97.70 287 95.98 293
Brain Tumor 1 94.44 6 91.11 8
Brain Tumor 2 94 3 92 5
Leukemia 1 100 3 97.50 7
Leukemia 2 100 5 97.32 8
Lung Cancer 97.04 7 95.57 12
SRBCT 100 9 100 10
Prostate Tumor 98.04 5 97.06 6
DLBCL 100 3 97.50 5

Table 8: Classification accuracies of gene expression data obtained via different classification methods.

Datasets
Methods HICATS

Non-SVM MC-SVM SVM
𝐾NN [9] NN PNN OVR OVO DAG WW CS OVR

9 Tumors 78.33 19.38 34.00 65.10 58.57 60.24 62.24 65.33 83.33
11 Tumors 93.10 54.14 77.21 94.68 90.36 90.36 94.68 95.30 97.70
Brain Tumor 1 94.44 84.72 79.61 91.67 90.56 90.56 90.56 90.56 94.44
Brain Tumor 2 94.00 60.33 62.83 77.00 77.83 77.83 73.33 72.83 94
Leukemia 1 100 76.61 85.00 97.50 91.32 96.07 97.50 97.50 100
Leukemia 2 100 91.03 83.21 97.32 95.89 95.89 95.89 95.89 100
Lung Cancer 96.55 87.80 85.66 96.05 95.59 95.59 95.55 96.55 97.04
SRBCT 100 91.03 79.50 100 100 100 100 100 100
Prostate Tumor 92.16 79.18 79.18 92.00 92.00 92.00 92.00 92.00 98.04
DLBCL 100 89.64 80.89 97.50 97.50 97.50 97.50 97.50 100
(1) Non-SVM: traditional classification method. (2) MC-SVM: multiclass support vector machines. (3)𝐾NN:𝐾-nearest neighbors. (4) NN: backpropagation
neural networks. (5) PNN: probabilistic neural networks. (6) OVR: one-versus-the-rest. (7) OVO: one-versus-one. (8) DAG: DAGSVM. (9) WW: method by
Weston and Watkins. (10) CS: method by Crammer and Singer. (11) HICATS: improved binary imperialist competition algorithm.
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Table 9: The number of selected genes from datasets between HICATS and IBPSO.

Datasets HICATS IBPSO
Genes selected Percentage of genes selected Genes selected Percentage of genes selected

9 Tumors 259 0.045 2941 0.51
11 Tumors 287 0.022 3206 0.26
Brain Tumor 1 6 0.001 754 0.13
Brain Tumor 2 3 0.0003 1197 0.12
Leukemia 1 3 0.0006 1034 0.19
Leukemia 2 5 0.0004 1292 0.12
Lung Cancer 7 0.0005 1897 0.15
SRBCT 9 0.004 431 0.19
Prostate Tumor 5 0.0005 1294 0.12
DLBCL 3 0.0005 1042 0.19
Average 5 0.00097 1117.6 0.15
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Figure 6:The convergence graphs of the best and average accuracy classification byHICATS algorithm on 9 Tumors and 11 Tumors datasets.

MC-SVM, andHICATS is 97.14, 93.63, and 97.81, respectively.
For the datasets of Leukemia 1, Leukemia 2, SRBCT, and
DLBCL, the classification accuracy can reach 100%. The
average classification accuracy of HICATS and IBPSO seems
to be the same; however, the selected genes of HICATS are
significantly less than those of IBPSO listed in Table 9 because
dimension reduction mechanisms are different. IBPSO algo-
rithm mainly utilizes the value of sigmoid function to deter-
mine whether the gene is selected. In the initial iteration, the
probabilities of 0 and 1 are 0.5 by a standard sigmoid function
without any constraint and no modification. Then, in the
next iteration, the probabilities are potentially influenced by
velocity vectors; however, the probabilities of 0 and 1 are
mostly maintained for its application on the gene expression
data due to its high dimensions and a large search space. The
number of genes is minimized about half of the total number
of genes using the standard sigmoid function in high-
dimensional data. Therefore, Mohamad et al. [13] introduced

a modified sigmoid function to increase the probability of
the bits in a particle’s position to be zero and minimized
the number of selected genes. In our proposed algorithm,
randomly generated binary templates are used to reduce
the dimension of selected genes in each generation due to
the assimilation mechanism that the colonies learn a lot of
different genes from their imperialist. Hence, it is not hard
to find that the speed of convergence is very fast and the
differences of the number of selected genes between HICATS
and IBPSO are huge.

The convergence graphs of the best and average classifica-
tion accuracy obtained by HICATS for 9 Tumors, 11 Tumors,
SRBCT, and DLBCL are shown in Figures 6 and 7. It can be
seen that the best classification accuracy is achieved to be
100% less than 10 iterations for SRBCT and between 10 and
20 generations for DLBCL. Therefore, HICATS possesses a
faster convergence speed and achieves the optimal solution
rapidly.
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Figure 7: The convergence graphs of the best and average accuracy classification by HICATS algorithm on SRBCT and DLBCL datasets.

5. Conclusions

In this paper, a hybrid algorithm HICATS incorporated
binary imperialist competition algorithm and tabu search
is used to perform feature selection and SVM with one-
versus-the-rest serves as an evaluator of HICATS for gene
expression data classification problems. This work effectively
combines the advantages of two kinds of different search
mechanism algorithms to obtain the higher classification
accuracy for gene expression data problems. In general, the
classification performance of HICATS is as good as IBPSO;
however, HICATS is superior to IBPSO and other methods
in terms of selected genes. In our proposed algorithm, in
order to avoid imperialist premature convergence, a local
search strategy TS embedded in ICA while TS is applied
on imperialist in each empire can exploit the neighbors
of imperialist to speed the convergence and assist in the
imperialist evolution. Experimental results show that our
method effectively classifies the samples with reduced feature
genes. In the future work, imperialist competition algorithm
combined with other intelligent search strategies will be used
to select informative genes.
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