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Abstract

Bacteriophages (phages) are selective viral predators of bacteria.
Abundant and ubiquitous in nature, phages can be used to treat
bacterial infections (phage therapy), including refractory infections
and those resistant to antibiotics. However, despite an abundance
of anecdotal evidence of efficacy, significant hurdles remain before
routine implementation of phage therapy into medical practice,
including a dearth of robust clinical trial data. Phage–bacterium
interactions are complex and diverse, characterized by co-
evolution trajectories that are significantly influenced by the envi-
ronments in which they occur (mammalian body sites, water, soil,
etc.). An understanding of the molecular mechanisms underpinning
these dynamics is essential for successful clinical translation. This
review aims to cover key aspects of bacterium–phage interactions
that affect bacterial killing by describing the most relevant
published literature and detailing the current knowledge gaps
most likely to influence therapeutic success.
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Brief introduction to phage therapy

With the discovery of antibiotics and the development of vaccines,

the 20th century saw an unprecedented steady decline in mortality

attributable to bacterial infections (Armstrong et al, 1999). This pro-

gress built on advances in microbiology and sanitation in the 1880s

led by Louis Pasteur and Ignaz Semmelweis (Cavaillon & Chr�etien,

2019). In the late 1910s, following initial work by Ernest Hankin and

Frederick Twort, Felix D’Herelle identified viruses that specifically

and selectively kill bacteria, naming them bacteriophages (phages)

[from “bacterium” + “phagêin” (Greek, to eat)], and immediately

recognized their potential as antimicrobial agents (Sulakvelidze

et al, 2001; Kutter & Sulakvelidze, 2004; Wittebole et al, 2014). In the

following decades, however, the development of phage-based therapy

was hampered by a poor understanding of phage biology, some

early clinical failures and the meteoric rise of antibiotics (Sulakvelidze

et al, 2001; Wittebole et al, 2014; Rohwer & Segall, 2015).

Regrettably, the use (and misuse) of antibiotics has since led to

the emergence of globally disseminated bacterial pathogens that are

resistant to last-line treatments, and antibiotic resistance now poses

a significant global health and economic burden (Fair & Tor, 2014;

O’Neill, 2016; WHO, 2017; Baker et al, 2018). As investment in the

discovery and production of new antibiotics dwindles, the develop-

ment of alternative antimicrobial therapies, including revaluation of

phage therapy, is a primary goal (Moelling et al, 2018; Rohde et al,

2018; Petrovic Fabijan et al, 2020a).

In parts of eastern Europe (e.g. Georgia, Poland and Russia),

phages have been in routine medical practice for over 70 years and

this experience provides a rich source of empirical data (Sulakve-

lidze et al, 2001; Stone, 2002; Rohwer & Segall, 2015; G�orski et al,

2020). Several reviews of recent progress in the development of

phage therapy cover preclinical experimentation in animal models,

compassionate use in critically ill humans and a few clinical trials

(Wittebole et al, 2014; McCallin & Br€ussow, 2017; Gordillo Altami-

rano & Barr, 2019; Nale & Clokie, 2021; Pirnay & Kutter, 2021). Most

of the cited studies attest to the safety of phage therapy, but clinical

effectiveness has not yet been conclusively demonstrated (McCallin

& Br€ussow, 2017; Gordillo Altamirano & Barr, 2019; Pirnay & Kutter,

2021). In addition, the results of experimentation in small animal

models do not consistently translate into clinical success (Wittebole

et al, 2014; Nale & Clokie, 2021), just as in vitro phage activity often

fails to correlate with in vivo efficacy (Melo et al, 2020a). These

inconsistencies complicate the design of clinical protocols, under-

mine confidence in phage application and hinder progress towards

clinical implementation.
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While the number of completely sequenced phage genomes has

doubled in the last 5 years (Fig 1) (Cook et al, 2021), these repre-

sent a minuscule fraction of the prokaryotic virosphere, estimated to

exceed 1031 particles (Hatfull, 2015). Phages are found in all bacte-

rial habitats (Kutter & Sulakvelidze, 2004; Clokie et al, 2011) and

are a key driving force of microbial ecology and evolution (Dion

et al, 2020). Tailed double-stranded DNA phages (order Caudovi-

rales) constitute the largest group described to date (Clokie et al,

2011) and are easily isolated with simple techniques from diverse

environmental sources (Ackermann, 1998). Tailed phages have high

target specificity, which can be redirected by forced evolution or

genetic engineering (Pires et al, 2016a; Burrowes et al, 2019), and

are the only phage type to have been trialled in therapy so far (Ack-

ermann, 1998; Kutter & Sulakvelidze, 2004).

Phages eliminate target bacteria by bursting bacterial cells (lysis)

within minutes of infection (Kutter & Sulakvelidze, 2004), thereby

releasing newly formed phage particles (virions) that go on to infect

new host cells in a self-perpetuating cycle (Kutter & Sulakvelidze,

2004; Kortright et al, 2019). Crucially, phage activity is unaffected

by antibiotic resistance.

The highly specific virus–host pairing is central to microbial

population dynamics and is deeply connected to environmental

conditions and ecological niches. In therapeutic applications, the

risk of undesirable adaptive outcomes of the phage–bacterium inter-

play (e.g. resistance development in bacteria) is pragmatically

addressed by the use of combinations of multiple phages (cocktails)

with differing adaptive strategies (Chan & Abedon, 2012; Chan et al,

2013; Pirnay et al, 2018; Rohde et al, 2018). Combining phages into

therapeutic cocktails (as opposed to monophage therapy), broaden-

ing their utility and commercialization potential, requires a clear

understanding of phage–phage and phage–bacterium dynamics

(Chan & Abedon, 2012; Schmerer et al, 2014; Gordillo Altamirano &

Barr, 2019; Venturini et al, 2019a; Pirnay, 2020; Haines et al, 2021).
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Figure 1. Phage whole genome sequencing.
Number of complete phage genomes deposited in GenBank in the past 5 years
(with permission from Cook et al, 2021).

Glossary

Bacteriophages
Bacteriophages, or phages, are viruses that specifically and selectively
infect bacteria
Biofilm
Surface-attached, structured community of microorganisms embedded
in a self-produced extracellular matrix (polysaccharides, DNA, water)
Enzybiotics
Phage-derived antibacterial enzymes with therapeutic potential.
Depolymerases catalyse the hydrolysis of the capsule polysaccharide
of Gram-negative bacteria, while lysins (also endolysins or murein
hydrolases) are hydrolytic enzymes capable of cleaving the cell wall
(peptidoglycan) of both Gram-negative and Gram-positive species
L-forms
Cell wall-deficient bacteria resistant to supra-therapeutic concentra-
tions of cell wall targeting antibiotics
Lysogenic conversion
Phage–bacterium interaction in which a prophage encodes proteins
that enhance bacterial fitness or virulence
Lysogeny or lysogenic cycle
Phage life cycle in which the viral genome stably integrates in the
bacterial chromosome, replicating with it
Lytic infection and productive lysis
Infecting phages replicate their genome and assemble new viral
particles (virions) by hijacking host resources. Phage-directed cell lysis
then releases this viral progeny ready to infect new cells, in an expo-
nential growth cycle (productive lysis) limited only by availability of
bacterial prey and their response/s to phage attack
Obligate lytic phages
Phages that cannot undergo lysogeny. Preferred for therapeutic
applications

Phage adsorption
Molecular interactions between phage proteins and specific bacterial
receptors that bind the phage to the bacterial cell surface allowing
for infection (phage genome release into the cytosol) to occur
Phage cocktail
Combination of multiple phages for therapeutic application. Phages in
a cocktail ideally act synergistically against a bacterial target and
limit the development of phage-resistant variants. Cocktails combining
phages with different host specificity allow for broader therapeutic
targeting
Phage therapy
Medical use of phages as antimicrobials for treatment of bacterial
infections
Pseudolysogeny
Phage–bacterium interaction in which the phage genome resides
within the host cell without chromosomal integration, in an unstable,
inactive state
Temperate phages
Phages capable of undergoing lysogeny. These may lie “dormant”
within a living bacterial cell while integrated into the host
chromosome as “prophages”, but have the potential to enter a lytic
infection cycle under certain conditions (e.g. host cell stress).
Temperate phages are less preferred for therapy
Transduction
Phage-mediated horizontal transmission of genetic information from
one bacterial cell to another, as opposed to genetic inheritance
through reproduction (“vertical transmission”). Mainly associated with
the lysogenic life cycle
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The key mechanisms that may allow prediction of in vivo phar-

macokinetics and dynamics linked to therapeutic outcome have not

yet been fully elucidated. Here, we provide an overview of the

biological processes linked to phages’ antimicrobial potential and

highlight some of the research challenges that remain.

Phage infection

Infection cycles
Phages depend on their bacterial hosts for survival and multiplica-

tion, but bacterial growth rates can fluctuate significantly even in

nutritious habitats. Doubling times for wild-type Escherichia coli

laboratory strains in optimal conditions are approximately 20 min

(Gibson et al, 2018), while those measured in the mammalian gut

can range from 40 min to 140 h (Abedon, 1989; Poulsen et al,

1995). Although one infective phage particle may yield as many as

20,000 new virions per infected bacterial cell in optimal conditions

(Zinder, 1980), bacteria rarely encounter such habitats in nature

and phages that would ordinarily propagate exponentially may fail

to do so when bacterial growth is limited (e.g. by nutritional stress)

(Lourenço et al, 2020; Attrill et al, 2021).

In exponentially growing bacteria, phages replicate typically via

either a lytic or a lysogenic cycle (Fig 2A). Phage therapy tradition-

ally uses “virulent” or “obligate lytic” phages (lytic cycle only) that

lyse bacteria immediately upon infection in preference to “temper-

ate” phages, which undergo a lysogenic cycle, integrating their

genome into the bacterial host chromosome and replicating pas-

sively with it as “prophages” (Fig 2A–C) (Lamont et al, 1989;

Howard-Varona et al, 2017; Li et al, 2020). Therapeutic use of

temperate phages risks transfer of genes (“transduction”) that may

enhance bacterial fitness or virulence (e.g. toxins) or confer antibi-

otic resistance to the bacterial host (Brussow et al, 2004). This is

known as “lysogenic conversion”, a process by which important

pathogens have acquired cardinal virulence factors (e.g. Corynebac-

terium diphtheriae carrying the siphovirus b-phage that encodes the

diphtheria toxin Tox (Holmes, 2000) or enterohaemorrhagic E. coli

with the lambdoid phage encoding Shiga toxins (Schmidt, 2001)).

Stable chromosomal integration is mainly a function of the phage

itself (Brussow et al, 2004; Fortier & Sekulovic, 2013; Argov et al,

2019; Petrovic Fabijan et al, 2021) but also depends on host condi-

tions; when these change (e.g. nutritional stress or DNA damage),

prophages may excise from the chromosome and enter a lytic cycle

that leads to bacterial cell death (Banks et al, 2003; Nanda et al,

2014; Balasubramanian et al, 2019; Chatterjee & Duerkop, 2019;

Benler & Koonin, 2020; Filipiak et al, 2020). Importantly, quorum-

sensing mechanisms and communication via signalling molecules

are also increasingly implicated in phage–bacterium interactions,

including switching between lytic and lysogenic lifestyles (Le�on &

Bast�ıas, 2015; Silpe & Bassler, 2019).

Chronic infection is a distinct replication cycle characteristic of

“filamentous” phages belonging to the family Inoviridae (single-

stranded DNA phages; order Tubulavirales) (Fig 2B) (Secor et al,

2020; Mantynen et al, 2021). Unlike lytic and lysogenic cycles,

chronic infection leads to continuous virion production without lysis

of the bacterial cell (Loh et al, 2019). Filamentous phages are well

suited for the horizontal exchange of DNA and many encode impor-

tant virulence factors. The best understood filamentous phages

involved in lysogenic conversion of their hosts are those that infect

Vibrio cholerae (e.g. CTXø, encoding the cholera toxin) (Waldor &

Mekalanos, 1996; Karaolis et al, 1999) and Pf phages that infect

Pseudomonas aeruginosa promoting biofilm production in infected

bacteria (Secor et al, 2015). Filamentous phages are considered

unsuitable for therapy.

While lytic and lysogenic lifestyles and their impact on therapeu-

tic outcome have been extensively reviewed (Sulakvelidze et al,

2001), the impact of pseudolysogeny has not yet been defined. This

additional phage infection mode (Fig 2A), which some propose

should be defined altogether as a separate cycle (Mantynen et al,

2021), was first recognized in the early 1960s (Los & Wegrzyn,

2012), but as yet there is no unanimous definition for this phenome-

non and its molecular bases remain largely unexplored. Pseu-

dolysogeny has been defined as a “phage carrier” state (Ripp &

Miller, 1997) or, perhaps more accurately, as “stalled phage devel-

opment” (Los & Wegrzyn, 2012). In pseudolysogeny, neither multi-

plication nor synchronized replication of the phage occurs within

the host cell, but when conditions allow, the phage enters either a

“normal” lysogenic cycle or a lytic cycle.

Pseudolysogeny has been observed primarily in Gram-negative

species, generally when bacterial growth was limited (Los et al,

2003; Cenens et al, 2013; Latino et al, 2016), suggesting a role in

long-term phage survival in unfavourable conditions, perhaps by

providing many of the advantages of the lysogenic state while

avoiding chromosomal integration. Lytic phages are recognized by

their efficient killing activity in vitro (high lytic efficacy) and the

absence of classic lysogeny genes (integrases, repressor genes, etc.),

but there is no established genetic marker of pseudolysogenic capac-

ity, as it is not usually a feature of exponentially growing bacteria.

Replication of obligate lytic T4-like phages is completely inhibited in

nutrient-stressed E. coli, but it has been reported that under the

same conditions, a T4rI mutant (defective in the function of the

holin inhibitor) keeps producing viable virions (Los et al, 2003).

Bryan et al (2016) showed that T4 phages efficiently bind to and

infect, but fail to successfully lyse, E. coli in the stationary phase.

Under nutrient-limiting conditions in vitro, the lytic cycle still occurs

in a small subpopulation of infected bacterial cells (“scavenger

response”), fully resuming in the rest of the population only

upon nutrient addition with restoration of logarithmic growth.

P. aeruginosa and Yersinia enterocolitica can support pseudolyso-

genic infection with apparently obligate lytic myoviruses or podo-

viruses that provide bacteria with immunity from further

phage infection (superinfection exclusion) (Latino et al, 2016; Le�on-

Velarde et al, 2016). Thus, it seems that not all virulent phages are

truly obligate lytic viruses or, at least, that a replication pause may

occur in the lytic cycle. This provides advantages for both the virus

and the parasitized host cell, especially when the host bacterial

population is stressed, by preventing extinction of vulnerable bacte-

rial population on which the predating virus is dependent.

Temperate phages may also enter a pseudolysogenic state in

bacteria that are stressed or starved: the podovirus P22 can stably

persist in episomal form in Salmonella cells, asymmetrically segre-

gating upon cell division (Cenens et al, 2013). This is linked to the

specific phage-mediated and targeted depression of the host dgo

operon via the pid phage gene (Cenens et al, 2013) and suggests

some advantages of pseudolysogeny even in phages that have devel-

oped the capacity to integrate, perhaps as a more agile response to
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Figure 2. Phage replicative cycles.
(A) Modes of phage infection characteristic of tailed phages: (i) lytic cycle—phage replication immediately follows infection, with assembly and release of virions leading
to cell lysis. Each virion is free to start a new lytic cycle leading to a burst of “productive” infection; (ii) lysogenic cycle—phages can integrate into the bacterial
chromosome and replicate with it as prophages, until a lytic cycle is triggered; and (iii) pseudolysogeny—phage genomes persist in a episomal state within the host cell
before resolving into a lytic or lysogenic cycle. Episomal phages typically segregate asymmetrically during cell division, while a small fraction undergoes a productive
lytic cycle (scavenger response) favouring development of phage-resistant bacterial subpopulations. (B) Chronic infection cycles are characteristic of “filamentous phages”
(family Inoviridae) that continuously produce progeny released by extrusion without cell death/lysis. (C) Phage types by replication cycle: tailed phages that always lyse
bacteria upon infection are “virulent” or “obligate lytic”, while “facultative lytic” phages may also undergo pseudolysogeny. “Temperate” phages may have a lysogenic or
pseudolysogenic lifestyle until triggered to enter a lytic cycle, typically when the host bacteria experience stress conditions. Filamentous phages typically follow a chronic
productive cycle, though some have the capacity to also enter a lysogenic cycle.
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bacterial population stress. Other temperate phages, variably

defined as “phage-like plasmids” (Pfeifer et al, 2021) or “phage-

mids” (Kittleson et al, 2012), are found in the host as extra-

chromosomal elements that encode partitioning systems (Salje,

2010) and replicate within the cell cycle. In the well-studied P1

E. coli myovirus (Lobocka et al, 2004) and its many variants

(Walker & Anderson, 1970; Rosner, 1972; Venturini et al, 2019b),

ATP-dependent post-segregational killing promotes symmetrical

distribution of phage episomes via common plasmid partitioning

and maintenance mechanisms (Lobocka et al, 2004).

Although much remains to be investigated, it seems plausible for

pseudolysogeny to represent a route to both short- and long-term

phage survival through (i) physical protection from harsh environ-

mental conditions outside the host (e.g. UV-light, pH and tempera-

ture can drastically reduce the half-life of virions) (Jonczyk et al,

2011), and (ii) hibernation (replication pause) in unfavourable

conditions that threaten the host population (e.g. stationary phase

or persister populations) (Bryan et al, 2016).

A better understanding of the diversity and genetic regulation of

phage life cycles is paramount for successful therapeutic applica-

tions. Future progress will likely benefit from “multiomics”

approaches and investigation of these complex phenomena at a

single-cell level (Dang & Sullivan, 2014; Skurnik, 2022). Genetic

engineering approaches may also prove useful for redirecting phage

lifestyles to suit therapeutic goals (e.g. enhance lysis by elimination

of lysogeny genes in temperate phages (Dedrick et al, 2019)).

Multiplicity of infection and the concept of phage dosing
Self-amplification through progressive productive infection is a

unique distinction between phages and traditional (drug) antibiotics

with important clinical implications (Levin & Bull, 2004). Phage

growth parameters such as adsorption rate, latent period (duration

of infection cycle from replication to virion assembly) and burst size

(number of released virions per lysed cell) are commonly used to

quantify productive lytic infection in vitro (Levin & Bull, 2004;

Dennehy & Abedon, 2021). These parameters are specific to each

phage and can vary considerably, and as such have been the focus

of theoretical studies attempting to model lysis outcomes of

bacterium–phage pairs to inform therapeutic strategies (Bull et al,

2004; Levin & Bull, 2004; Wang, 2006; Heineman & Bull, 2007).

Modelling of in vivo dynamics, even for the simplest phage–bac-

terium interaction, must consider the availability of resources to

bacterial prey populations (Weitz et al, 2013), other mobile genetic

elements (Harrison et al, 2017), community effects (bystander

microflora) (Blazanin & Turner, 2021) and the spatial structures at

the site where predator and prey meet (Lourenço et al, 2020; Attrill

et al, 2021). Bacterial density directly affects adsorption rate and

phage replication duration, as well as opportunities for further viral

propagation. If target bacteria are slow-growing and sparsely sepa-

rated, the productive exponential infection may not proceed (Payne

& Jansen, 2001; Kasman et al, 2002; Levin & Bull, 2004; Heineman

& Bull, 2007; Abedon, 2011).

Multiplicity of infection (MOI) is the term used to indicate the

ratio of phages to bacteria in in vitro testing and is often applied

in vivo as a “dosing” concept. A MOI of > 10 may be more advanta-

geous in murine sepsis models (Yuan et al, 2019; Hesse et al, 2020),

and this has been used as a target for human dosing (Khatami et al,

2021), but this extrapolation is problematic because not all phages

administered reach their target and not all phages that adsorb to a

bacterial cell will infect it (Attachment mechanisms and receptor

specificity) (Abedon, 2016). Direct measurement of phage and

bacterial densities in vivo is not practical except for urine (Abedon,

1989; Khawaldeh et al, 2011; Dazbrowska & Abedon, 2019) or blood

(Petrovic Fabijan et al, 2020b) so that even once the target MOI is

defined and the amplification process can be monitored, these sam-

ples of convenience can only serve as surrogates for the site of infec-

tion in tissues. Therapy with antibiotic drugs leads to relatively

predictable relationships between tissue and blood concentrations,

which can be determined and used to optimize dosing. Evidence of

phage amplification derived from samples of convenience might

become a useful surrogate for successful delivery to site. However,

in vivo amplification appears to subside quickly, likely due to both

therapeutic “success” (i.e. elimination of prey populations) and host

control of the administered therapeutic virus by innate and acquired

immune responses (The eukaryotic host: phage-induced immune

responses). The pharmacodynamics and pharmacokinetics of phage

therapy are also subject to variable and possibly virus-specific tissue

penetration (G�orski et al, 2015; Dazbrowska & Abedon, 2019). Care-

ful monitoring of clinical sites and samples in the course of carefully

structured therapeutic regimens will therefore be extremely impor-

tant to lasting and robust therapeutic application (Abedon, 2011).

Attachment mechanisms and receptor specificity
Phage adsorption to the bacterial cell is a first and crucial step in

the infection process (Bertozzi Silva et al, 2016; Letarov & Kulikov,

2017). For “best” phage therapy (optimal lytic efficiency = optimal

bactericidal activity), the majority of virus–bacterium contacts should

lead to productive infection (Multiplicity of infection and the concept of

phage dosing), making the molecular interactions at the bacterial cell

surface a key aspect of therapeutic success (Nobrega et al, 2018).

Membrane-embedded proteins are common phage receptors, but phage

access to these receptors is highly regulated by various protective gly-

can structures such as peptidoglycan, capsule or lipopolysaccharide

(LPS) found on bacterial envelopes.

Phage tail machines as sophisticated infection devices

Although phage–bacterium interactions via capsid proteins have

been described (Casjens & Molineux, 2012), adsorption to the bacte-

rial cell envelope is most commonly mediated by sophisticated phage

tail machines that specifically recognize diverse bacterial cell surface

structures and are implicated in other important infection-aiding pro-

cesses (Chua et al, 1999; Letarov & Kulikov, 2017; Nobrega et al,

2018) (Fig 3). Three tail morphologies are known: short non-

contractile tails in the Podoviridae; long non-contractile tails in the

Siphoviridae; and long contractile tails in the Myoviridae (Acker-

mann & Prangishvili, 2012) (Fig 3A). Tailed phages have evolved to

deliver much larger genomes to their hosts than non-tailed phages

(Davidson et al, 2012) and are highly specialized in overcoming the

protective layers of Gram-negative and Gram-positive bacterial enve-

lope architectures (Fig 3B and C). For host recognition, tailed phages

use fibres, longitudinal, multimeric protein assemblies, or shorter

and more compact protein oligomers termed spikes.

Surface attachment and infection

Phage recognition of bacterial cell surface receptors is a well-

orchestrated process comprising several individual sequential steps
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(Broeker & Barbirz, 2017; Broeker et al, 2017). The diversity of

bacterial cell envelopes (Fig 3) has required tailed phages to

develop different strategies to initiate infection. This initial and often

reversible interaction with the primary receptors precedes subse-

quent “secondary receptor” binding, which leads to changes in the

tail machine that are irreversible (Casjens & Molineux, 2012).

Phages preferentially encounter as primary receptors all the exposed

surface structures on host bacteria, i.e. capsule, exopolysaccharide,

peptidoglycan or teichoic acids (Dunne et al, 2018), and in Gram-

negative target also LPS (Broeker & Barbirz, 2017). Flagella and

adhesins may also serve as primary receptors for some phages

(Esteves et al, 2021; Montemayor et al, 2021). Many primary recep-

tors are distal to the cell surface, and phages employ diverse active

mechanisms to approach the bacterial membrane. “Flagellotropic”

phages, for example, ride on flagella towards the host surface,

harnessing bacterial motility for infection progression (Tittes et al,

2021), and many tailed phages produce tailborne depolymerases to

specifically destroy the polysaccharide-based glycan protective

shields (Knecht et al, 2020). Many of the initial fibre- or spike-

mediated receptor interactions are reversible, which allows phage

particles to dissociate from the cell surface until they reach a site for

irreversible attachment.

Irreversible attachment to these secondary receptors can initiate

a cascade of steps that lead to permanent conformational rearrange-

ments in the phage tail assembly (Taylor et al, 2018), priming the

phage for DNA release. Conserved transmembrane proteins (e.g.

transporters and channels), efflux pumps and pilus portals often

serve as secondary receptors (Bertozzi Silva et al, 2016), with their

extracellularly exposed parts providing highly specific phage attach-

ment sites with numerous opportunities for bacterial adaptation to

halt the phage infection cycle, for example by mutation of outer

membrane extracellular loops (Porcek & Parent, 2015; Rocker et al,

2020). As shown for purified outer membrane proteins (Chiaruttini

et al, 2010; Evilevitch, 2018), binding to secondary receptors can
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trigger the phage molecular machine for DNA release in vitro, thus

rendering phage particles non-infectious. Gram-negative host-

specific phages incubated with protein-free LPS preparations typi-

cally lose their infectivity as contact with these receptor molecules

induces particle opening and DNA loss (Jesaitis & Goebel, 1955;

Lindberg, 1973; Andres et al, 2012; Broeker et al, 2019). How

entirely protein-free LPS preparations trigger DNA release in the

absence of a host cell remains to be elucidated (Andres et al, 2010;

Broeker & Barbirz, 2017). Cryotomography studies of phages

attached to bacteria have revealed the formation of channel-like

structures spanning the envelope that ensure the integrity of the cell

surface during phage genome transfer into the cytosol. However,

the molecular composition of these channels is not yet fully under-

stood (Hu et al, 2015; Farley et al, 2017; Wang et al, 2019); in some

cases, phages seem to extend their tails to reach the interior of the

cell, while in others, phage-synthesized ejection proteins recruit

other protein components from the bacterial envelope to facilitate

DNA movement.

Adsorption regulation—the unique role of bacterial surface glycans

In bacterial ecosystems, regulation of interactions with predatory

viruses takes place both at extracellular and at intracellular levels

(Hampton et al, 2020). As phage receptors, surface glycans (Fig 3)

modulate phage entry and are important in evolutionary adaptations

to phage infection (Phage–bacterium co-adaptation). Bacterial cell

surface glycans also face the human immune system and are often

described as important participants in so-called pathogen-associated

molecular patterns (PAMPs). Changes induced by phages thus affect

the innate immune response to pathogens (The eukaryotic host:

phage-induced immune responses), and phage-encoded enzymes

that remove protective glycan layers (e.g. depolymerases), exposing

underlying PAMPs at the envelope (Majkowska-Skrobek et al, 2018;

Liu et al, 2020; Volozhantsev et al, 2020), may directly enhance

clearance of bacteria by the innate immune system (Oliveira et al,

2019a).

In the presence of actively infecting phages, bacteria may alter

surface glycan structures through transcriptional control of glycosyl-

transferases. This “phase variation” is achieved by altered glycan

composition or LPS chain length or even by complete abrogation of

the assembly of protective capsule or O-antigens (Huan et al, 1997;

Seed et al, 2012; Cai et al, 2019; de Sousa et al, 2020; Whitfield et al,

2020). Similarly, prophages may alter bacterial surface glycan

composition via glycosylation or acetylation to exclude other phages

from infection (Cenens et al, 2015; Schmidt et al, 2016; Teh et al,

2020).

Phages bind bacterial surface glycans using specific tail proteins

(Broeker et al, 2017; Nobrega et al, 2018; Knecht et al, 2020). Many

host adsorption proteins are depolymerases that facilitate surface

access through O-antigen or capsular layers, this being an essential

step for infection by some phages (Broeker & Barbirz, 2017). The

glycan adsorptive capacity of these tail proteins also enables phages

to persist in glycan-rich niches, for example by binding heparan sul-

phates of mucins in the mammalian gut (Green et al, 2021). Phage

glycan depolymerases can strip off glycan coats without initiating

cell rupture, thereby avoiding critical concentrations of microbial

cell envelope fragments that may drive a damaging immune

response in clinical sepsis (Ryu et al, 2017). LPS-mediated sepsis

and septic shock are primary drivers of mortality in Gram-negative

infection (Opal et al, 1999), and several studies have shown that

pretreatment with phage depolymerases to degrade O-antigen

polysaccharides reduces pro-inflammatory responses and protects

mice from lethal sepsis (Liu et al, 2019; Oliveira et al, 2019b; Chen

et al, 2020).

Outer membrane vesicles (OMVs) also play a unique role in

controlling phages as they can effectively trap them, preventing host

infection (Schwechheimer & Kuehn, 2015; Reyes-Robles et al, 2018),

as shown for Salmonella phage P22 where only few phages eject

their DNA into the OMV lumen, with the majority of particles stal-

ling at the membrane (Stephan et al, 2020).

The specificity of these attachment mechanisms limits phage

clinical range, when compared to traditional antibiotics with broad-

spectrum activity against multiple bacterial species. This potential

therapeutic limitation is mainly being obviated by the use of phage

cocktails, but it can also be addressed via natural phage “training”

to broaden host range by successive passage (Yu et al, 2015;

Burrowes et al, 2019) or by formal synthetic biology approaches

(Chen et al, 2019; Dedrick et al, 2019). The use of enzybiotics (de-

polymerases or endolysins) is also being considered (Pires et al,

2016b; Olsen et al, 2018). Phage endolysins attack the peptidoglycan

layer of Gram-positive and Gram-negative envelopes (Fig 3), thus

acting less specifically than depolymerases (Broendum et al, 2018;

Sao-Jose, 2018; De Maesschalck et al, 2020; Mondal et al, 2020;

Chen et al, 2021; Linden et al, 2021; Murray et al, 2021). Impor-

tantly, the development of bacterial resistance to externally applied

endolysins is unlikely as these enzymes target cellular structures

essential for bacterial survival (Roach & Donovan, 2015). However,

all the outlined approaches crucially require the maintenance and

accessibility of well-curated and diverse phage banks, which are still

scarce (Nagel et al, 2022).

Phage–bacterium co-adaptation
The interaction between phages and bacteria is a major contributor

to the diversity and evolution of microbial populations, involving

fine-tuned, complex co-adaptation dynamics, with bacteria trying to

minimize susceptibility to phage infection as phages strive to retain

or regain it (D�ıaz-Mu~noz & Koskella, 2014; Koskella & Brockhurst,

2014; Seed et al, 2014). Bacterial adaptations are not without cost,

and both mathematical models and experimental observations sug-

gest that bacterial resistance to phage can be overcome (Levin &

Bull, 2004), but the development of bacterial phage resistance in

vivo has not been yet systematically researched (Hesse et al, 2020;

Gordillo Altamirano et al, 2021; Salazar et al, 2021).

Alteration of cell surface phage receptors (“adsorption resis-

tance”, through modification or masking or by synthesis of competi-

tive inhibitors; Attachment mechanisms and receptor specificity) is

arguably the most common adaptive response to phage predation;

CRISPR/Cas may be a close second (Doron et al, 2018; Ofir & Sorek,

2018; Alseth et al, 2019; Rostøl & Marraffini, 2019; Hampton et al,

2020). Bacterial susceptibility to phages may be modulated by hori-

zontal exchange of receptors mediated by OMVs (Tzipilevich et al,

2017) or more often by genetic modification of cell surface struc-

tures targeted by phages, which may affect both pathogenic poten-

tial and overall survival of target bacteria (Verma et al, 2009;

Capparelli et al, 2010; Chan et al, 2016; Markwitz et al, 2021). The

resulting fitness cost can increase bacterial vulnerability to both the

immune system and antibiotics (Le�on & Bast�ıas, 2015).
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Attempts to use phages to clear Klebsiella pneumoniae and

Acinetobacter baumannii infection in vivo have resulted in phage-

resistant capsular mutants that appear to be less virulent and more

susceptible to antibiotics (Verma et al, 2009; Gordillo Altamirano

et al, 2021), and therefore easier to eliminate. E. coli responds to

phage challenge by modification of LPS biosynthesis with concomi-

tant fitness loss and attenuation in a murine model of systemic

infection (Salazar et al, 2021). In K. pneumoniae, mutations in the

porin OmpK36 lead to increased antibiotic resistance and are poorly

tolerated in vivo (reduced growth rates) (Fajardo-Lubian et al,

2019), while in Shigella flexneri Omp-targeting phages have been

shown to lead to resistant mutants incapable of intracellular spread

(Kortright et al, 2022). As such, Omp-specific phages, for example,

might have particular value in managing these pathogens. Phage-

insensitive variants appear to be rarely isolated after phage adminis-

tration in the clinic, suggesting that the many varied outcomes

predicted and observed in vitro may be transient in vivo, with few

phage-resistant subtypes (“fittest” mutants) actually able to succeed

in nature (Bohannan & Lenski, 2000; Le�on & Bast�ıas, 2015; Hernan-

dez & Koskella, 2019; Aslam et al, 2020; Petrovic Fabijan et al,

2020b).

Conversely, phages may counterevolve to regain their infectivity

by modification of their own host attachment receptors (tails),

resulting in host range expansion (Salazar et al, 2021). In therapy,

the use of cocktails of multiple phages acting in synergy (to optimize

lysis of target bacteria) has been shown to both broaden target range

and minimize the occurrence of phage resistance (Abedon et al,

2021a). While the development of cross-resistance is also a possibil-

ity (Wright et al, 2018), mixtures of phages with different receptor

specificities are expected to exert multiple simultaneous selective

pressures on the target host (Schmerer et al, 2014) that come at

increased costs to bacterial fitness. Carefully “tailored” phage

combinations using original and “evolved” phages against the one

host have been shown to successfully target both the wild-type

strain and its variants (Yu et al, 2018; Aslam et al, 2020; Abedon

et al, 2021a; Salazar et al, 2021).

Phage attack can affect antibiotic susceptibility in target bacteria

(Ryan et al, 2012; Segall et al, 2019; Gordillo Altamirano et al,

2021), and the careful use of antibiotic–phage combinations may

also be useful in limiting the development of bacterial variants resis-

tant to both (Gu Liu et al, 2020 et al, 2020; Gordillo Altamirano

et al, 2021). As outlined in several recent exhaustive reviews (Segall

et al, 2019; Tagliaferri et al, 2019; Morrisette et al, 2020; Li et al,

2021), phage–antibiotic synergy (PAS) has been successfully

demonstrated in both Gram-positive and Gram-negative bacteria,

though many studies have focused on E. coli and P. aeruginosa

(Comeau et al, 2007; Allen et al, 2017; Chaudhry et al, 2017; Gu Liu

et al, 2020), and may have important clinical implications. How-

ever, synergy is not the only outcome of simultaneous exposure to

phages and antibiotics with addition, neutrality and antagonism also

possible.

The effects of phage–antibiotic combinations on target bacteria

depend on many factors including the specific antibiotic tested (re-

sults obtained with one antibiotic are not always replicated with

another antibiotic of the same class), the testing conditions (e.g.

type of media, bacterial growth (planktonic cells versus biofilm),

in vitro versus in vivo conditions), phage type (even very closely

related phages can give different outcomes), and timing of

administration (e.g. simultaneous or sequential) (Segall et al,

2019; Tagliaferri et al, 2019; Morrisette et al, 2020; Li et al, 2021).

Only recently, Gu Liu et al (2020) presented the first in-depth anal-

ysis of the mechanisms underlying the efficacy of phage–antibiotic

combinations against a highly virulent E. coli ST131 strain. Their

work clearly demonstrates the complexity of these interactions and

the urgent need for applying this type of comprehensive approach

to other bacterial species and antibiotic–phage combinations for

a clear understanding of possible outcomes to guide clinical

application.

Phage–bacterium co-adaptation is predicted to drive a stalemate

that favours bacterial survival in nature (Bohannan & Lenski,

2000; Koskella & Brockhurst, 2014; Fern�andez et al, 2018; Makala-

tia et al, 2021), and successful therapy requires us to contrive situ-

ations in which natural balances are tipped in favour of the phage

(Levin & Bull, 2004), the specifics of which will depend on the

interacting phage–bacterium pair and their immediate environ-

ment. Phage-resistant variants arising in vivo can be problematic

(Schooley et al, 2017), but phage-resistant bacteria are sometimes

less virulent (Olszak et al, 2019) or less antibiotic-resistant (Oech-

slin, 2018) than their parent (Ryan et al, 2012; Chaudhry et al,

2017). A detailed understanding of receptor specificities (Bertozzi

Silva et al, 2016) and co-adaptation trajectories both in vitro and

in vivo (Doron et al, 2018; Makalatia et al, 2021) must be devel-

oped in order to inform new mathematical models and “artificial

intelligence” (AI) solutions (Schmerer et al, 2014; Cowley et al,

2018; Hesse et al, 2020; Pirnay, 2020; Haines et al, 2021; Maffei

et al, 2021) to help deconvolute these natural biological and evolu-

tionary complexities.

Bacterial targets

Reduced growth states: stationary phase bacteria and L-forms
Bacterial pathogens have evolved to defend themselves effectively

against commonly encountered stressors in the mammalian host

(e.g. oxidative, nutritional and antibiotic). Given the ubiquity of

phages in nature and the aeons of co-evolution with bacteria, an

array of finely tuned and well-established defences against phage

attack are also to be expected. The physiological state of the bacte-

rial host population is an important determinant of phage replica-

tion (Infection cycles), and the exponential growth conditions used

for antibiotic and phage susceptibility testing in diagnostic laborato-

ries are probably rare in nature, with “stationary phase” growth

being common in chronic and relapsing infections (Gefen et al,

2014) (Fig 4).

The impact of bacterial stress on the lytic/pseudolysogenic path-

ways may be therapeutically important. Phages that ordinarily pseu-

dolysogenize stressed bacteria (Bryan et al, 2016) may be poor

choices for the management of some infections. Cell wall-deficient

“L-forms” are more metabolically active and faster growing than

stationary phase-walled cells (Mercier et al, 2014; Mickiewicz et al,

2019) but divide more slowly than exponential phase bacteria

(Fig 4), using a primitive mechanism that is independent of essen-

tial elements of binary fission (e.g. FtsZ) (Leaver et al, 2009). L-

forms can be induced by innate immune effectors, such as lyso-

zyme, and by exposure to cell wall targeting antibiotics (e.g. b-
lactams), to which they are completely resistant. This is important

8 of 20 EMBO Molecular Medicine 14: e12435 | 2022 ª 2022 The Authors

EMBO Molecular Medicine Carola Venturini et al



because cell wall targeting antibiotics are the mainstay of modern

infection therapy (Care, 2021) and because biofilms (Special states:

biofilms) and multi-drug-resistant infections, against which such

antibiotics often fail, are key indications for phage therapy. There-

fore, targeting L-forms with phages may be an important therapeutic

option. However, L-form susceptibility to phages has not yet been

well characterized except for a few reports, suggesting that the

capacity for efficient lysis of L-forms is retained at least by some

phages (Kawacka et al, 2020).

Special states: intracellular pathogens
Certain bacterial pathogens responsible for high rates of infection

and mortality (GBD Tuberculosis, 2018; Khalil et al, 2018; GBD

Non-Typhoidal Salmonella, 2019; GBD Antimicrobial Resistance,

2022) routinely replicate inside human cells including professional

phagocytes such as monocyte-derived macrophages (Ogawa & Sasa-

kawa, 2006) (Fig 5A). These bacteria are protected from the

immune system and from bactericidal agents in their intracellular

niches. In addition, intracellular bacteria can take advantage of the

biology of the host cell to disseminate to tissues beyond the site of

infection. Most antibiotics commonly used in medicine do not pene-

trate mammalian cells efficiently and are therefore ineffective

against intracellular pathogens (Abed & Couvreur, 2014; Kamaruz-

zaman et al, 2017). The few exceptions (e.g. quinolones, macrolides

and tetracyclines) (Carryn et al, 2003; Kamaruzzaman et al, 2017)

are widely used orally, and resistance to these is rising in target

pathogens (WHO, 2017). Phages could therefore be of value for the

treatment of intracellular infections.

The first evidence of phages crossing the eukaryotic cell barrier

dates back more than 50 years (Monsur et al, 1970), and it is known

that these viruses can penetrate human cells and even enter their

nucleus (Nieth et al, 2015; Lehti et al, 2017; Nguyen et al, 2017;

Zhang et al, 2017; Sweere et al, 2019). Phages may enter the eukary-

otic cell non-specifically by phagocytosis or pinocytosis, or through

receptor-mediated entry by binding specifically to cell surface struc-

tures like the neural cell adhesion molecule (NCAM; a major poly-

sialic acid carrier that mimics bacterial receptors) or to cell surface

integrins, or by antibody-mediated uptake when phages are opso-

nized by circulating immunoglobulins (Bodner et al, 2021; Goswami

et al, 2021) (Fig 5B).

Phages have been detected in early endosomes, endolysosomes

and the Golgi apparatus (Nieth et al, 2015; Lehti et al, 2017;

Zhang et al, 2017; Moller-Olsen et al, 2018), and can escape

eukaryotic vacuoles to reach bacteria replicating in the cytosol

(Nieth et al, 2015). Phage–bacterium interactions in subcellular

compartments are expected to be heavily modulated by the host

eukaryotic cell, potentially in ways that alter phage infectivity or

bacterial susceptibility as bacteria respond to intracellular stress

(e.g. low pH, reactive oxygen species and antimicrobial peptides)

and to nutrient depravation. Phages can certainly kill intracellular

bacteria (Zhang et al, 2017; Moller-Olsen et al, 2018), but further

investigation of how phages reach their intracellular targets will

be essential for designing successful therapeutic protocols.

Special states: biofilms
In many natural niches, including human body sites (e.g. respira-

tory and urinary tract), both Gram-positive and Gram-negative

bacteria live in complex sessile biofilm communities (Hall-Stoodley

et al, 2004), often polymicrobial. Bacterial biofilms are common in

chronic and persistent infections (Bjarnsholt, 2013) and on abiotic

surfaces such as medical devices (prosthetic joints, catheters, heart

valves) (Donlan, 2001; Petrovic Fabijan et al, 2019). Diverse compo-

nents (Smirnova et al, 2010) make up an extracellular matrix in

which bacteria are embedded, which gives stability and strength to

the growing biofilm (Flemming & Wingender, 2010). Biofilm forma-

tion and maturation are guided by the coordinated activity of

embedded bacteria, regulated by refined quorum-sensing mecha-

nisms in response to population density variation (Parsek & Green-

berg, 2005; Nadell et al, 2008). Bacteria in a biofilm exhibit different

metabolic activity and physiological state depending on their posi-

tion in the biofilm and on the age of the biofilm (Stewart & Franklin,

2008). Antibiotics are often ineffective against biofilm-mediated

infections as bacteria are physically protected from external agents

and more tolerant to antimicrobial challenge due to their modified

metabolism and often reduced growth states (Lebeaux et al, 2014;

Yan & Bassler, 2019).

The finger-like bacterial fimbriae and other adhesins that are

important in biofilm initiation (D�eziel et al, 2001; Pohlschroder &

Esquivel, 2015; Maldarelli et al, 2016; Delerue & Ramamurthi, 2021)

are also common phage receptors (Phage tail machines as sophisti-

cated infection devices). Phages have proven useful against bacteria

in biofilms (Abedon, 2019; Patey et al, 2019; Melo et al, 2020b;

Petrovic Fabijan et al, 2021), but the study of these systems is diffi-

cult (Abedon et al, 2021b; Pires et al, 2021). Although phages often

exhibit potent in vitro activity against bacteria in biofilms, effective

biofilm eradication may require combination strategies (Verma et al,

2009; Seth et al, 2013; Tkhilaishvili et al, 2018; Henriksen et al,

2019; Morris et al, 2019), with failures attributed to difficulties in

accessing target cells and the development of phage-resistant

subpopulations.

The biofilm matrix shields bacteria from phage attack by trap-

ping phage particles and preventing diffusion (Sutherland et al,
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Figure 4. Escherichia coli growth states.
Growth in optimal conditions (37°C; rich medium) of wild-type E. coli (blue
curve) and its L-forms (cell wall-deficient variants; orange curve). At reaching
stationary phase, bacterial metabolic activity and growth are slowed to near
nil.
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2004; Gonz�alez et al, 2018; Dunsing et al, 2019; Melo et al, 2020b),

and phage size and concentration have been shown to differentially

impact biofilm disruption ability (Gonz�alez et al, 2018). A biofilm

can protect phages from the eukaryotic immune system, and these

trapped viruses may in turn limit biofilm growth (Simmons et al,

2018; Hansen et al, 2019; Bond et al, 2021) so that in a stabilized

biofilm, bacteria and phages may coexist in dynamic equilibrium

(Fern�andez et al, 2018; Hansen et al, 2019; Pires et al, 2021). Bacte-

ria may produce matrix-degrading substances when challenged with

phages (Alcock & Palmer, 2021; de C�assia Oliveira et al, 2021) and

can also secrete phage-inactivating substances (Pires et al, 2021).

E. coli can halt phage invasion of mature biofilms through expres-

sion of curli fibres that affect biofilm architecture, hinder phage dif-

fusion and physically protect the bacterial cell surface (Price &

Chapman, 2018; Vidakovic et al, 2018; Bond et al, 2021). Also rele-

vant when considering phage therapy for chronic infections (Pires

et al, 2017) is the fact that older biofilms are often characterized by

thicker matrix and by subpopulations of bacteria that are less

metabolically active (Testa et al, 2019), these two factors alone miti-

gating the potential impact of phage therapeutic intervention.

Phage-produced lysins and depolymerases (Attachment mecha-

nisms and receptor specificity) are less sensitive to biofilm hetero-

geneity, bacterial metabolic state and physical barriers and may

have a role in matrix degradation (Olsen et al, 2018; Wu et al, 2019;

Rakov et al, 2021; Shahed-Al-Mahmud et al, 2021). Delivery of

phages or their derived enzymes together with antibiotics and/or

disinfectants may be synergistic, with disruption of the extracellular

matrix by phage enzymes and/or chemical antimicrobials expected
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Figure 5. Intracellular lifestyles of bacterial pathogens and barriers in the treatment of intracellular infections.
(A) Intracellular bacteria penetrate mammalian cells by endocytosis, phagocytosis or pinocytosis (1), and reside inside different subcellular compartments: the endosome
(2), the endolysosome (3; formed by fusion of the endosome with a lysosome) or the cytosol (5), after escaping endosome inclusion (4, light-blue dotted ring) (Cossart &
Sansonetti, 2004; Ray et al, 2009). (B) Free phages must cross the eukaryotic cell membrane by non-specific (a) or receptor-mediated (b) entry. Endocytosed phages may
then escape the vacuole (c, light-blue dotted ring) or remain in the endosome (blue ring) with eventual fusion to a lysosome (d). After cytosolic release (c) or lysosomal
fusion (d), viable phages may be released from the mammalian cell via exocytosis (e). * indicates bacteria that can replicate in more than one host cell compartment.
The exact details of how phages reach their intracellular targets are still largely unknown (?).
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to allow better access to subsequent antibiotics and phages (Chan &

Abedon, 2015; Ferriol-Gonz�alez & Domingo-Calap, 2020).

Bacteria in biofilms use much the same adaptation mechanisms

as free-living bacteria (Phage–bacterium co-adaptation) (Azeredo

et al, 2021). Added protection derived from the population density

in biofilms comes from quorum-sensing signalling to manage recep-

tor modulation (Moreau et al, 2017; Azeredo et al, 2021; Le�on-F�elix

& Villica~na, 2021), e.g. in E. coli (Høyland-Kroghsbo et al, 2013)

and P. aeruginosa (Høyland-Kroghsbo et al, 2017; Broniewski et al,

2021), and through modification of bacterial physiology (Qin et al,

2017).

The eukaryotic host: phage-induced immune responses
The natural immunogenicity of phages may result in both an innate

immune response (Petrovic Fabijan et al, 2020b; Khatami et al,

2021) and an adaptive immune response (e.g. phage-specific anti-

bodies) to viral nucleic acids (DNA or RNA) and proteins (capsid

and tail) (Gonzalez-Mora et al, 2020). The sustained phage viraemia

arising from therapeutic infusion (Dazbrowska & Abedon, 2019;

Petrovic Fabijan et al, 2020b) does not seem to present a safety risk

but may be associated with modulation of the human immune

response (G�orski et al, 2017b; Petrovic Fabijan et al, 2020b; Khatami

et al, 2021) by mechanisms that are as yet unclear. This topic has

been well reviewed (Popescu et al, 2021), but key aspects to high-

light include the following:

Phagocytosis

Non-specific phagocytosis of viral particles may play a major role in

the rapid clearance or neutralization of phages through the mamma-

lian host reticuloendothelial system (Merril et al, 1996) and promote

the presentation of antigens to T cells for the development of speci-

fic or adaptive immune response against phages themselves

(Dazbrowska & Abedon, 2019). Phage binding may also facilitate

phagocytosis of bacteria by macrophages or dendritic cells. Early

studies (D’Herelle, 1923; Nelson, 1928) showed that phage-resistant

bacteria are protected from this effect, and it has been suggested

that this “opsonization” process may be important for the eradica-

tion of pathogenic bacteria in vivo (G�orski et al, 2017b) and may

explain observations of reduced phage efficacy in neutropenic hosts

(Roach et al, 2017).

Inflammation

Minor pro-inflammatory responses ex vivo (Van Belleghem et al,

2017) and in treated patients (Khatami et al, 2021) have been attrib-

uted to LPS release into the system following bacterial lysis. How-

ever, the use of highly purified therapeutic phage preparations has

not been associated with significant inflammatory responses (G�orski

et al, 2012; Krut & Bekeredjian-Ding, 2018) so it is thought that

contaminating endotoxins in early therapeutic phage preparations

may have been primarily responsible for activation of Toll-like

receptor (TLR) signalling pathways and early reports of post-

infusion fevers (D’Herelle, 1930; Hashiguchi et al, 2010; Krut &

Bekeredjian-Ding, 2018).

Anti-inflammatory immune response

Highly purified (“GMP-grade”) phage preparations may induce the

expression of key anti-inflammatory genes, including IL-1RA and IL-

10 family cytokines (Van Belleghem et al, 2017). An apparent anti-

inflammatory profile has been demonstrated both in vivo (Van Belle-

ghem et al, 2017) and in vitro (Dhungana et al, 2021) and observed

in critically ill patients with infective endocarditis and sepsis receiving

adjunct phage therapy (Petrovic Fabijan et al, 2020b; Khatami et al,

2021). Other studies have shown a significant decrease in C-reactive

protein values, erythrocyte sedimentation rates and white cell counts

in patients treated with phage (Miedzybrodzki et al, 2009), although

these could equally be simple responses to reduced bacterial burden.

It is conceivable that phages evolved to attack human colonizers and

pathogens might also be able to survive attack by the immune sys-

tem, and while the immunomodulatory and anti-inflammatory mech-

anisms remain unclear, some studies suggest that phage interaction

with immune cells may also be directly implicated (G�orski et al,

2017a; Sweere et al, 2019).

Antiviral immune response

This has been well described in filamentous phages (Sweere et al,

2019). Pf phages can trigger maladaptive innate viral responses via

TLR3 and interferon-b production, and inhibition of TNF and phago-

cytosis, impairing bacterial clearance. It remains unclear, however,

whether widely used therapeutic tailed phages can trigger similar

antiviral responses.

Adaptive humoral immune response

Due to their immunogenic nature, phages can induce a strong

humoral response (phage-neutralizing IgG, IgM and, to a lesser

extent, IgA antibodies), which can impact phage bioavailability

in vivo and potentially hamper therapeutic success. The timing and

strength of the humoral antiphage immune response mainly depend

on phage immunogenic properties based on different structural pro-

tein composition (e.g. capsid proteins are known to be highly anti-

genic, for example the major capsid protein and outer capsid protein

(Hoc) in T4-like phages (Dazbrowska et al, 2014)), but are also

affected by the route of administration, dose and the patient’s

immune status (Zaczek et al, 2016; Lusiak-Szelachowska et al,

2017). Previous reports indicated that orally administered phages

induce no or very weak humoral response in healthy volunteers

(Sarker et al, 2012). In contrast, intravenously administered phages

induce a strong humoral response, which usually arises within

10 days of phage therapy initiation (Pescovitz et al, 2011; Lusiak-

Szelachowska et al, 2014; Petrovic Fabijan et al, 2020b), with strong

IgM induction in the first days of therapy, and high IgG levels

recorded between 7 and 14 days. While earlier studies from the

Hirszfeld Institute for Experimental Therapy (Poland) and the Eliava

Institute (Georgia) showed no significant correlation between clini-

cal outcome and level of antiphage antibodies (Lusiak-

Szelachowska et al, 2014), recent reports indicate that robust anti-

body response against certain phage types may limit phage efficacy

in vivo and lead to therapeutic failure (Dedrick et al, 2021).

Although our understanding of the influence of the humoral

immune response on phage bioavailability and therapeutic success

is limited, genetic engineering approaches (e.g. modification of

phage capsid proteins) may prove key to overcoming these

immunogenicity barriers (Hodyra-Stefaniak et al, 2020).

Phages that have evolved to protect their prey populations by

down-regulating the host immune response may prove to be difficult

choices in therapy. Conversely, phage-mediated immunomodulation

may be a good therapeutic trade-off in severe sepsis where
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attenuation of a lethal cytokine-mediated inflammatory response

may be the most important therapeutic goal.

Concluding remarks

In this review, we sought to highlight the main areas of phage and

bacterial biology that may directly relate to therapeutic outcome and

in need of further investigation (Table 1).

However, bringing phages into the pharmacopoeia requires

attention to several other areas that we have not fully discussed.

The limited host range of most therapeutic phages means that this

precision therapy needs well-curated and accessible phage sources,

which is a biobanking and information management challenge

(Nagel et al, 2022). The prioritization of target infections is key in

determining the content and purpose of such collections and will

vary with the intended use and the balance of research and commer-

cial sustainability agendas (commercial priorities in sustainable

phage production will differ from research priorities).

Modification of phages to enhance their therapeutic potential

(Pires et al, 2016; Brown et al, 2017; Chen et al, 2019; Kilcher &

Loessner, 2019; Monteiro et al, 2019) is complicated by the presence

of large proportions of uncharacterized genetic material (“dark mat-

ter”) in phage genomes, which must be experimentally addressed

(Hatfull & Hendrix, 2011; Wittebole et al, 2014; Hatfull, 2015; Philip-

son et al, 2018; Moreno-Gallego & Reyes, 2021).

The complexities of variable penetration into eukaryotic cells, tis-

sue layers and mammalian host compartments such as the gut have

also not been addressed in this review, but readers are referred to

others for this important topic (Barr et al, 2015; Dazbrowska &

Abedon, 2019; Hofer, 2019; Huh et al, 2019). We have also set aside

the difficulties of production and manufacturing protocols for GMP-

grade phage preparations: safe phage therapy involves not only

quality processing but also the careful selection of suitable produc-

tion hosts to ensure efficiency and avoid inadvertent gene

transduction. The ideal phages for formulation into therapy must

not only behave predictably in complex microbial niches but must

also be readily purified and stable in storage (Merabishvili et al,

2018; Moelling et al, 2018; Rohde et al, 2018; Pirnay et al, 2019).

The safety of phages for compassionate use means that there may

be some opportunities to “learn as we go”, but we must now pro-

ceed with eyes wide open, and we must be guided as much as possi-

ble by the basic physiology of the main actors, the phages and their

bacterial hosts.
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Table 1. Key biological aspects in phage–bacterium interaction that may affect clinical outcomes.

Biological
mechanism Biological role

Desired properties for
therapy Implications for therapy

Focus for improvement of
clinical outcomes

Phage
attachment

Infectivity (lytic activity) High lytic activity: large
burst size

Dosing and timing of administration Diverse banks of characterized
phages; genome engineering

Receptor
specificity

Infectivity (lytic activity; host
range)

Defined host range Targeting; clinical spectrum of
activity (target bacteria); resistance

Personalized therapy; curated
phage/bacteria banks; AI/machine
learning approaches; phage
cocktails; phage “training”;
genome engineering

Phage life cycle Infectivity (lytic activity);
transduction

High lytic activity; low
transduction rates

Bacterial killing efficiency;
transmission of virulence/resistance

Phage genomics; curated phage
banks; genome engineering

Bacterial cell
physiological
state/ density

Niche colonization and
invasion

High lytic activity; high
penetration

Dosing and timing of administration;
phage/antibiotic synergy; target
diseases

Smart delivery

Bacterial lifestyle Communal (biofilms);
intracellular

High penetration Penetration (target availability);
clinical spectrum of activity (type of
disease)

Smart delivery

Co-adaptation Microbial evolution Poor ability to elicit
resistance; stable high
infectivity

Resistance development Phage–phage and phage–
antibiotic synergy
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For more information
Online links to relevant sources

i International Society for Viruses of Microorganisms (ISVM) (international

non-profit organization dedicated to the advancement of the science and

utility of the viruses of microorganisms, including archaeal viruses, bacte-

riophages and the viruses of microbial eukaryotes)—http://www.isvm.org/

ii Phage Directory (curated database of phage laboratories, phages and host

strains to advance research and phage therapy)—https://phage.directory/

iii Phages for Human Applications Group Europe (international non-profit

organization to support phage research and phage therapy in Europe)—

P.H.A.G.E. vzw - Home (p-h-a-g-e.org)

iv Phage Australia (Australian national network of phage researchers and

clinician-scientists to professionalize phage therapy)—https://

phageaustralia.org/

v Center for Phage Biology and Therapy at Yale (newly established centre to

advance phage biology and develop phage therapy into a safe, effective,

scientifically sound and rational approach to infection control)—http://

www.yalephagecenter.com/

vi Centre on Innovative Phage Applications and Therapeutics (first dedicated

phage therapy centre in North America)—Center for Innovative Phage

Applications and Therapeutics (ucsd.edu)
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