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In order to synthesize the 13 oxidative phosphorylation proteins encoded by mammalian
mtDNA, a large assortment of nuclear encoded proteins is required. These include
mitoribosomal proteins and various RNA processing, modification and degradation
enzymes. RNA crosslinking has been successfully applied to identify whole-cell
poly(A) RNA-binding proteomes, but this method has not been adapted to identify
mitochondrial poly(A) RNA-binding proteomes. Here we developed and compared two
related methods that specifically enrich for mitochondrial poly(A) RNA-binding proteins
and analyzed bound proteins using mass spectrometry. To obtain a catalog of the
mitochondrial poly(A) RNA interacting proteome, we used Bayesian data integration to
combine these two mitochondrial-enriched datasets as well as published whole-cell
datasets of RNA-binding proteins with various online resources, such as mitochondrial
localization from MitoCarta 2.0 and co-expression analyses. Our integrated analyses
ranked the complete human proteome for the likelihood of mtRNA interaction. We
show that at a specific, inclusive cut-off of the corrected false discovery rate (cFDR)
of 69%, we improve the number of predicted proteins from 185 to 211 with our
mass spectrometry data as input for the prediction instead of the published whole-cell
datasets. The chosen cut-off determines the cFDR: the less proteins included, the lower
the cFDR will be. For the top 100 proteins, inclusion of our data instead of the published
whole-cell datasets improve the cFDR from 54% to 31%. We show that the mass
spectrometry method most specific for mitochondrial RNA-binding proteins involves
ex vivo 4-thiouridine labeling followed by mitochondrial isolation with subsequent in
organello UV-crosslinking.

Keywords: mitochondrial RNA, 4-thiouridine labeling and crosslinking, Bayesian data integration, mass
spectrometry, proteome

INTRODUCTION

Human mitochondrial DNA (mtDNA) has limited coding capacity, having only 37 genes coding
for 13 subunits of oxidative phosphorylation enzyme complexes, 22 transfer RNAs (tRNAs) and
2 ribosomal RNAs (rRNAs). In order to synthesize the 13 mtDNA encoded OXPHOS subunits, a
unique mtDNA replication, transcription and translation system is in place. This system requires
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the combined action of mtDNA, its structural RNA components
and as many as 250–300 nuclear-encoded gene products
(Pearce et al., 2017) that are translated on cytosolic ribosomes
and imported into mitochondria by dedicated outer- and
inner-membrane machineries. The majority of these imported
proteins are directly or indirectly involved in mitochondrial
translation. The mitoribosome alone already contains some
80 proteins, while its assembly requires additional factors
such as rRNA modifying enzymes. Likewise, mitochondrial
tRNAs, similar to cytosolic tRNAs, are heavily modified
and in addition need post-transcriptional processing and
maturation, as do mitochondrial mRNAs and rRNAs, as a
consequence of their initial synthesis as polycistronic transcripts.
Therefore, a functional mitochondrial gene expression system
requires the action of a large variety of mitochondrial RNA
interacting proteins.

So far, over 80 proteins of the mitochondrial gene expression
system have been implicated in mitochondrial diseases,
which led us to use comparative proteomic approaches
following various targeted purification strategies in order to
identify the proteins involved. In the past, we applied whole-
cell crosslinking combined with Twinkle helicase directed
purification of mitochondrial nucleoids (Rajala et al., 2015).
This method identified a large set of proteins associated not
only with mtDNA maintenance but also gene expression,
and did not allow us to distinguish a priori between for
example mtDNA maintenance proteins and RNA associated
proteins. Whole-cell RNA crosslinking in recent years has
identified large sets of cellular RNA binding proteins (Baltz
et al., 2012; Castello et al., 2012), including a substantial set of
mitochondrial RNA binding proteins (Zaganelli et al., 2017).
However, these approaches were not specifically targeted
to mitochondria.

Here we describe and compare two mass spectrometry based
approaches applied specifically to identify the mitochondrial
poly(A) RNA binding proteome: (i) using either whole-cell
crosslinking followed by mitochondrial and poly(A) mtRNA
isolation, or (ii) using crosslinking after mitochondrial isolation
(mitochondrial crosslinking) and followed by poly(A) mtRNA
isolation. Application of Bayesian statistics comparing our own
mass spectrometry data with published mass spectrometry
data sets made it apparent that mitochondrial crosslinking is
the most efficient method to specifically enrich mitochondrial
proteins known to interact with mtRNA and leads to the
lowest level of cytosolic protein contamination. In terms of
both relative and absolute number of identified mitochondrial
proteins, mitochondrial crosslinking outperformed whole-cell
crosslinking followed by mitochondrial isolation. Nevertheless,
the latter method still enriched more for mitochondrial
proteins when compared to published whole-cell RNA-
binding proteomes (Baltz et al., 2012; Castello et al., 2012).
We have used both methods to identify mitochondrial
poly(A)-RNA binding proteomes and have combined them
with various publicly available datasets, such as MitoCarta
2.0 and co-expression data, using Bayesian data integration
to obtain a statistically founded list of poly(A) mtRNA
interacting proteins.

MATERIALS AND METHODS

Reference Human Proteome
Throughout all analyses, the human proteome from the reviewed
UniProtKB/Swiss-Prot database release 2016_11 (The UniProt
Consortium, 2018) was used as the reference proteome. This
version consists of 20129 entries, in which each entry refers to all
protein products encoded by a single gene, so including isoforms
the database contains 42111 proteins. All used datasets were
mapped to the reference proteome, using the mapping table from
the same UniProt release, ambiguities were checked manually.

Cell Culture
HEK293e cells (ATCC CRL-1573) were grown in Dulbecco’s
modified Eagle’s medium (DMEM; Lonza BE12- 604F)
supplemented with 10% fetal calf serum (GE Healthcare) in
a 37◦C incubator at 5% CO2. Cells were frequently tested for
mycoplasma contamination and found to be negative. When
required, cells were incubated for indicated time periods with
indicated concentrations of ethidium bromide to deplete the
cells of mitochondrial RNA and/or for 18 h with 100 µM
4-thiouridine to enhance crosslinking efficiency. For whole-
cell crosslinking conditions, medium was removed from the
monolayer of living cells and cells were exposed to 302 nm UV
light for 1 min in a ChemiDoc instrument (Bio-Rad).

Mitochondrial Extraction
Cell pellets were resuspended in hypotonic buffer (4 mM Tris–
HCl pH 7.8, 2.5 mM NaCl, 0.5 mM MgCl2, and 2.5 mM
PMSF) and incubated for 6 min on ice. The swollen cells were
disrupted by 20 strokes with a Dounce homogenizer. Isotonic
levels were restored by the addition of 1/10 v/v hypertonic buffer
(400 mM Tris–HCl pH 7.8, 250 mM NaCl, and 50 mM MgCl2),
and pellets of nuclei and cell debris were discarded by low
speed centrifugation (1,200 × g). Mitochondria were obtained
by centrifugation of the remaining supernatant at 13,000 × g.
Mitochondria for mitochondrial crosslinking conditions were
further purified using a sucrose gradient of 1.0 M and 1.5 M.
After centrifugation for 20 min at 60,000 × g, the mitochondrial
layer was collected, resuspended in PBS, exposed to 302 nm
UV light for 6 min in a ChemiDoc instrument (Biorad) and
collected by centrifugation at 13,000 × g. Protein content of
mitochondrial pellets was measured using the Quick StartTM

Bradford Protein Assay Kit 2 (Biorad, 5000202) according to
manufacturer’s protocol.

Isolation of the mtRNA Interacting
Proteome
The magnetic mRNA Isolation kit (New England Biolabs,
S1550S) company protocol was followed in order to extract
poly(A) RNA, with the exception that all steps were performed
on ice and the incubation of samples with the beads was extended
for whole-cell crosslinking to 45 min. In case of whole-cell
crosslinking, purification was performed in three rounds to allow
all RNA species to bind. In short, mitochondrial pellets were lysed
and 2.5–5.5 mg of protein per condition was added to oligo(dT)
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beads. Stringent washes under denaturing conditions were
performed to get rid of non-crosslinked interacting molecules.
After elution of the poly(A) RNA with crosslinked proteins
attached, RNA was removed by RNase treatment [mitochondrial
UV-crosslinking (MXL): RNase A (Thermo Fisher Scientific,
EN0531), whole-cell UV-crosslinking (WCXL): RNase A & T1
(Thermo Fisher Scientific, AM2286)]. Remaining mitochondrial
RNA interacting proteins were concentrated with Amicon 3K
filters (Merck Millipore, UFC500396) and analyzed using SDS-
PAGE combined with Western blot and/or mass spectrometry.

SDS-PAGE and Western Blot Analysis
Proteins were separated by SDS-PAGE and transferred to a
nitrocellulose membrane. The blots were probed with primary
antibodies to known mitochondrial RNA-interacting proteins;
LRPPRC (Abcam, ab21864, 1:1000), POLRMT (Abcam, ab32988,
1:5000), SUV3 (kind gift of Dr. Roman Szczesny, 1:5000)
and GRSF1 (Sigma, HPA036985, 1:5000), bound by HRP-
conjugated secondary antibodies (Vector Laboratories, 1:10000)
and detected by ECL in a ChemiDoc instrument (Biorad).

Mass Spectrometry Analysis
Proteins were processed as described in the Supplementary
Materials and Methods and analyzed with LC-MS/MS in
a Q-Exactive mass spectrometer (Thermo Fisher Scientific).
Spectra were matched against the reference proteome including
isoforms using MaxQuant (version 1.5.0.25) (Cox and Mann,
2008). Further details can be found in the Supplementary
Materials and Methods.

Label-free-quantification (LFQ) intensities from the
MaxQuant ProteinGroups.txt output file were log2-transformed.
Infinite intensities (from missing values) were replaced with
the lowest log2(LFQ) measured and the mean of technical and
biological repeats was calculated. The difference in log2(LFQ)
intensity [=log2(fold-change)] between crosslinking and
control conditions (non-crosslinking for MXL and WCXL
and crosslinking with EtBr for WCXL_EtBr) was calculated
separately for each approach. This difference was used to
compare and combine our results with the reported fold-changes
of Castello et al. (2012) (we calculated the mean log2(FC) from
the three reported experiments 2× XL, 1× 4SU+ XL) and Baltz
et al. (2012) [we used the reported mean log2(FC)].

Data Integration
We integrated five datasets that describe different properties
of mitochondrial RNA interacting proteins to distinguish genes
encoding these proteins from other genes using a Bayesian
statistics approach. We have used this approach successfully to
identify genes involved in anti-viral immune responses (van der
Lee et al., 2015) and to identify proteins from the gametocyte life
stage in the malaria parasite (Meerstein-Kessel et al., 2018). We
chose Bayesian integration as it is the most transparent form of
data integration that still exploits the relative predictive values of
the various datasets and in which the individual contribution of
each dataset to a prediction can be observed. Table 1 provides
a summary of the datasets used in this study for the final
proteome presented, including MitoCarta 2.0 (Calvo et al.,

2016) that also used Bayesian data integration for mitochondrial
proteome prediction.

To assess the predictive value of each dataset, a positive
and a negative training set was constructed. The positive
set contained 24 genes that were included when interaction
with mitochondrial mRNA, tRNA or rRNA was described in
literature (Supplementary Table S1), structural components of
the mitochondrial ribosome were excluded as our focus was on
mitochondrial RNA metabolism and not on translation.

As publications providing evidence that a protein is not
mitochondrial and/or does not interact with RNA were scarce,
we used AND/OR logical combinations of genes associated with
four GO-terms (Ashburner et al., 2000; The Gene Ontology
Consortium, 2017); molecular function RNA binding GO-
term GO:0003723, cellular component mitochondrion GO-
term GO:0005739, biological process GO-terms for tricarboxylic
acid cycle (TCA) GO:0006099 and oxidative phosphorylation
(OXPHOS) GO:0006119. Associated genes were obtained with
the online AmiGO tool (Carbon et al., 2009) and were used
to create two categories of genes that were combined to form
the negative set of 248 genes. The first category contains 124
genes that are mitochondrial and unlikely to interact with
mitochondrial RNA. These genes are linked to the mitochondrial
GO-term and either the TCA or the OXPHOS GO-term, but
not to the RNA-binding GO-term. The TCA and OXPHOS GO-
terms were chosen as these are well-studied proteins groups that
are unlikely to additionally interact with mtRNA. The second
category consists of genes with the RNA binding GO-term, but
without the mitochondrial GO-term. In total 1617 genes fall in
this category, a large number compared to the 124 in the other
category. As we wanted to have an equal contribution of both
negative sets to our prediction we randomly selected 124 non-
mitochondrial RNA interaction proteins, which together with the
124 TCA/OXPHOS genes, form the negative training set.

For each human protein coding gene a score for mitochondrial
RNA interaction was calculated, the higher the score, the more
likely it is that the protein product interacts with mitochondrial
RNA. In order to calculate these scores, each dataset is separated
into several bins and for each bin the presence of training set
genes is counted. The log ratio of these counts determines the
score for all other genes in the respective bin. The integrated
mtRNA score is based on a sum of log ratios of the individual
datasets and is calculated as follows:

mtRNAscore = log2

(
PmtRNA

Pnon−mtRNA

)
+

n∑
i=1

log2

(
P
(
datai|mtRNA

)
P
(
datai|non−mtRNA

))

with
P
(
datai|mtRNA

)
P
(
datai|non−mtRNA

) = mtRNA_posi
mtRNA_negi

where mtRNA_pos and mtRNA_neg are the fractions of the
positive and negative training set genes in sample i, respectively.
If there were no training set genes found in a certain bin, that
positive or negative training set fraction was set to 0.5/’total
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TABLE 1 | Input datasets for Bayesian integration.

Dataset Description References Number of genesa Likelihood
mtRNA scorea,b

mtRNA interaction Average fold-change crosslinking with 4SU over
non-crosslinking from mitochondrial and whole cell crosslinking
experiments

This paper 275 4.16

Mitochondrial
localization

Human MitoCarta 2.0 likelihood scores of mitochondrial
localization

Calvo et al., 2016 2920 0.81

RNA binding
domain

The published list of Pfam domains that are known to be
RNA-binding or exclusively found in RNA-related proteins is
mapped to UniProt identifiers to determine which human
proteins contain an RNA binding domain.

Gerstberger et al., 2014;
Finn et al., 2016

1520 1.33

Co-expression with
mtRNA interactors

Weighted co-expression with known mtRNA interacting
proteinsc calculated using WeGET.

Szklarczyk et al., 2016 1500 0.82

PPI with mtRNA
interactors

Bioplex database of protein-protein interactions is used to
determine which proteins interact with known mtRNA
interacting proteinsc. Per protein the number of mtRNA
interacting proteins was counted.

Huttlin et al., 2017 1400 2.01

aBased on a combination of genes in all bins with a positive likelihood score. bKnown mtRNA interacting proteins versus non-mtRNA interacting proteins, see section
“Materials and Methods” for calculation. The larger the score, the higher the predictive value of the dataset. cMitochondrial RNA interacting protein list, 218 proteins,
contains proteins with both an RNA binding (GO:0003723)and a mitochondrial localization (GO:0005739) GO-term, excluding 24 positive set members and AKAP1 and
AUH to avoid circularity. Protein lists were downloaded using the online AmiGO tool (Ashburner et al., 2000; Carbon et al., 2009; The Gene Ontology Consortium, 2017).

number of negative set genes in the complete dataset’ to prevent
division by zero and allow calculation of the log ratio. The Oprior,
log2(PmtRNA/Pnon-mtRNA), is based on the estimation that
300 of the 20129 protein coding genes encode for a mitochondrial
RNA interacting protein, it does not affect the ranking of
potential mRNA interacting proteins. Proteins with the same
mtRNA score were ranked according to their fold-change in the
mtRNA interacting dataset.

To assess the performance a false discovery rate (FDR) was
calculated. As this FDR depends on training set genes and these
do not resemble the expected number of mtRNA genes versus
non-mtRNA interacting genes in the genome, the FDR was
corrected (cFDR) using the following formula:

cFDR =
1−specificity

1 − specificity + sensitivity · Oprior

The 211 proteins selected as part of the mtRNA interacting
proteome reported in this paper were found at a corrected false
discovery rate (cFDR) of 69% (mtRNA score of 1.69). This cut-
off score was based on the distribution of training set genes
(Figure 5C). The cFDR depends on the chosen cut-off as well as
the Oprior (see formula). A higher estimation of the number of
mitochondrial RNA interacting proteins would result in a lower
cFDR at the same cut-off (an Oprior of 1000 mtRNA interacting
proteins would result in a cFDR of 39%). Similarly a cut-off for
the top 100 instead of 211 with the same Oprior would result
in a cFDR of 31%. Do note that the ranking of the complete
human proteome, which does not dependent on the Oprior, is the
most informative result of this analysis, proteins high in rank are
most likely to interact with mtRNA and can for example be used
in conjunction with exome sequencing data from people with
congenital mitochondrial disease. However, in order to discuss
a specific set of proteins we have to set a cut-off.

Cross-Validation
To assess the ability of the integrated predictor to discriminate
known mtRNA interacting genes from other genes, a ten-fold
cross-validation was performed. The training sets (both negative
and positive) were subsampled ten times, thereby creating 10 sets
of 9/10th of the training sets genes. Each training set gene was left
out once in one of the ten sets. Data integration was performed
with each of these ten sets and the rank of the one-tenth left
out training set genes was retrieved. The ten-fold cross-validated
receiver operating characteristic (ROC) curves were constructed
based on those ranks.

Tools for Data Analysis
Plots, statistics and calculations were performed with the R
statistical package (R Core Team, 2015) and additional packages
gplots (Warnes et al., 2016), ggplot2 (Wickham, 2016), ROCR
(Sing et al., 2005), scales (Wickham, 2017), VennDiagram
(Chen, 2017) and reshape (Wickham, 2007). Venn diagrams
of three circles were made using the web application BioVenn
(Hulsen et al., 2008).

RESULTS

Validation of Crosslinking Methods
Various methods are conceivable to crosslink proteins to RNA
and at the same time enrich for those proteins that are associated
with mitochondrial RNA. We focussed on using either WCXL
followed by mitochondrial isolation or mitochondrial isolation
prior to MXL (Figure 1). We tested and compared these
methods for their yield, enrichment and specificity for known
mitochondrial RNA interacting proteins. The initial comparison
(Figure 2A and Supplementary Figure S1A) included no UV-
crosslinking as a negative control and either direct WCXL or
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FIGURE 1 | Overview of RNA crosslinking methodologies used.

WCXL of cells grown in the presence of a photo-activatable
ribonucleoside, 4-thio-uridine (4SU) to enhance crosslinking
efficiency. We verified these methods by Western blot analysis,
testing for several known mitochondrial RNA interacting
proteins. These results showed that 4SU labeling resulted in a
higher yield of the few examined proteins compared to direct
UV-crosslinking.

A second comparison involved normal WCXL with WCXL
following treatment with ethidium bromide (WCXL_EtBr),
which is expected to rapidly inhibit mitochondrial transcription.
Thus, this treatment can be expected to reduce mtRNA binding
proteins, while leaving contaminating non-mitochondrial RNA
binding proteins unaffected. Using quantitative RT-PCR for
several mitochondrial transcripts (Supplementary Figure S2A
and Supplementary Table S2), we chose 80 ng/ml ethidium
bromide (EtBr) to reduce mitochondrial transcript levels with
a 24 h treatment to avoid severe depletion of mtDNA
levels. Western blot analysis (Figure 2B and Supplementary
Figure S1B) was performed following EtBr treatment and
crosslinking with poly(A) RNA isolation in order to compare
WCXL_EtBr with WCXL. The results indicate that some
mitochondrial RNA interacting proteins, in particular SUV3 and
to a lesser extent GRSF1 and POLRMT, are more abundant in the
XL sample without EtBr compared to the XL sample with EtBr.
But LRPPRC is similar either with or without EtBr treatment.

However, a final statistical comparison of sensitivity and
specificity of methods to identify mitochondrial proteins requires
a non-targeted approach such as mass spectrometry.

Mass Spectrometry of Mitochondrial and
Whole-Cell Crosslinking Samples
We analyzed isolated poly(A) RNA WCXL and MXL samples
using shotgun mass spectrometry analysis of at least three
biological replicates and as many technical replicates of each

biological replicate and in addition two biological replicates
with three technical replicates of isolated poly(A) RNA
WCXL_EtBr samples. For each biological replicate, parallel
processed non-crosslinked samples were included as controls.
After mass spectrometry, label-free quantification values were
used to calculate the log2(fold-change) of crosslinked over non-
crosslinked samples (MXL and WCXL) or of crosslinked over
crosslinked EtBr treated samples (WCXL_EtBr) (see section
“Materials and Methods”). Proteins identified with a log2(fold-
change) above the log2(3) threshold were considered as enriched.

Mass spectrometry results (Supplementary Table S3)
confirmed the Western blot results, and showed that the
comparison of EtBr treated cells with non-EtBr treated
cells (WCXL_EtBr) identified only 30 enriched annotated
mitochondrial RNA-binding proteins compared to 105 with
MXL and 62 with WCXL (Supplementary Figure S2B). Thus,
for further analysis and the Bayesian integration of various
datasets we concentrated on the MXL and WCXL datasets.

Whole-cell UV-crosslinking identified in total 2.4 times more
proteins than MXL (Supplementary Table S3), while the number
of enriched proteins with an LFQ difference of at least log2(3) was
similar, 330 versus 398, respectively (Figures 3A,B, 4A). From
these enriched proteins only 97 are mitochondrial in WXCL,
222 in MXL, with an overlap between the two methods of 72
proteins (Figure 3A). Through comparison with other studies
using whole-cell crosslinking (Baltz et al., 2012; Castello et al.,
2012), we determined that 291 WCXL enriched proteins and
279 MXL enriched proteins appear to be RNA-binding, with
an overlap of 147 proteins (Figure 3B). For MXL, 56% percent
of the enriched proteins were mitochondrial and 26% were
mitochondrial and had an RNA GO-term, while the fractions for
WCXL were 29 and 19%, respectively (Figure 4A).

Volcano plot analysis (Supplementary Figure S3A) resulted
in 122 significant proteins in the MXL samples over NoXL
samples, with 84 mitochondrial proteins and 89 RNA GO-term
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FIGURE 2 | Yield of known mitochondrial RNA interacting proteins after
poly(A) RNA isolation is increased when cells are treated with 4-thiouridine
prior to whole-cell crosslinking and for some proteins decreased when cells
are treated with ethidium bromide. Representative western blots showing the
effect on protein yield of (A), 18 h treatment with 100 mM 4-thiouridine (4SU)
(n = 2), and (B), 4SU treatment either without or with 24 h treatment with
80 ng/mL ethidium bromide (EtBr) (n = 2 for LRPPRC, SUV3, and GRSF1,
n = 1 for POLRMT). To visualize that we start the poly(A) RNA isolation with
mitochondrial lysates of equal protein concentration, the mitochondrial lysates
prior to poly(A) RNA isolation are shown next to the isolated poly(A) RNA
samples. Samples of untreated cells are shown as negative control. Scans of
the entire western blot are available in Supplementary Figure S1.

containing proteins (overlap was 53 proteins). For WCXL
(Supplementary Figure S3B) slightly fewer proteins were
significant, 96, of which 92 contained a RNA GO-term and 24
were mitochondrial (overlap was 22 proteins). In total the human
proteome contains 180 mitochondrial proteins with an RNA GO-
term, so the sensitivity was 0.122 for the WCXL significant list
and higher for MXL, namely 0.294. The significant numbers
illustrate that information is lost when a statistical test and cut
off is applied, e.g., only 83 of the 222 mitochondrial proteins
identified with a fold change above three were part of the
significant MXL list, and therefore the raw versions of the data
[log2(fold-change), also below log2(3)] were used as input for
the Bayesian integration (see below), in which the statistics is
performed after the data integration.

The above analyses all show that MXL is better in the
identification of mitochondrial RNA interacting proteins than
WCXL. We nevertheless considered WCXL to be useful since
WCXL might better enable the identification of transiently

interacting and possibly lowly abundant proteins as crosslinking
was applied immediately on the plate prior to cell and
mitochondrial isolation. Cell and mitochondrial isolation might
cause stress and protein-RNA interactions might be lost or altered
because of this, making the detection of lowly abundant proteins
even more difficult.

Defining Conditions for Bayesian
Integration
To further quantify the relative value of the different MS datasets
for identifying mitochondrial RNA interacting proteins, we used
Bayesian data integration. This technique allows combining
highly variable datasets by assigning predictive values to each
dataset and using those in the final integration. Two training
sets were defined in order to calculate the predictive values.
(i) As a positive training set, we curated a set of 24 mtRNA
interacting proteins from published literature (Supplementary
Table S1). (ii) As a negative set, we used GO-terms to select
a set of 248 proteins that are highly unlikely to interact with
mtRNA, including mitochondrial proteins unlikely to interact
with RNA as well as cellular RNA interacting proteins unlikely
to be mitochondrial (see section “Materials and Methods). The
integration approach then uses the distribution of these training
set proteins over the input datasets to define a weighted mtRNA
score for all proteins of the human genome indicating the
likelihood of its interaction with mtRNA. As final prediction,
we integrated independent datasets (Supplementary Figure S4)
containing the following features of mtRNA interacting proteins
(Table 1); interaction with mtRNA (our MXL and WCXL mass
spectrometry data), mitochondrial localization [MitoCarta2.0
(Calvo et al., 2016)], containing RNA binding domain(s)
(Gerstberger et al., 2014; Finn et al., 2016), co-expression and
protein-protein interaction with mtRNA interacting protein(s)
[WEGET (Szklarczyk et al., 2016) and BioPlex 2.0 (Huttlin et al.,
2017), respectively]. The bin borders, number of genes in that
respective bin and the corresponding mtRNA score are listed in
Supplementary Table S4.

Comparison With Published Whole-Cell
RNA Binding Proteomes
In order to compare the enrichment for mitochondrial RNA
binding proteins by mitochondrial isolation prior to poly(A)
affinity purification with published whole-cell RNA binding
proteomes (Baltz et al., 2012; Castello et al., 2012), we had to
determine whether a measure of enrichment was shared by all
datasets. This was not straightforward as the inclusion criteria
for the various categories of the dataset published by Castello
et al. (2012) (1758 proteins) were based on either intensity fold-
change (FC) of an XL sample over a NoXL sample (available for
1246 proteins) or peptide counts (available for 1739 proteins).
The dataset published by Baltz et al. (2012) did not include
peptide counts and only includes a fold-change score for proteins
with a fold-change larger than three, no data was provided on
lower scoring proteins. Thus calculation of a p-value adjusted
for multiple testing in a similar way for all proteins in each
dataset was not possible. Although not all proteins of the Castello

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 November 2019 | Volume 7 | Article 283

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00283 November 14, 2019 Time: 13:36 # 7

van Esveld et al. Mitochondrial Poly(A) RNA Interacting Proteome

FIGURE 3 | Proteins enriched in our WCXL approach show substantial overlap with published RNA interaction proteomes, but less with a published mitochondrial
proteome compared to our MXL approach. (A) Proportional Venn diagram showing the overlap of proteins that are identified with a LFQ-intensity fold-change larger
than three in the mitochondrial oriented approaches MXL and WCXL with proteins that are part of MitoCarta 2.0 (Calvo et al., 2016). (B) Proportional Venn diagram
showing the overlap of proteins that are identified with a LFQ-intensity fold-change larger than three in the mitochondrial oriented approaches MXL and WCXL with
proteins that are part of either of the complete published whole-cell RNA-interacting proteomes (Baltz et al., 2012; Castello et al., 2012). The fold-changes per
proteins were calculated by dividing the average LFQ-values (n = 3 for MXL and n = 6 for WCXL) of crosslinking with 4SU by non-crosslinking.

dataset have a fold-change score, we decided to use the fold-
change of a XL sample over a NoXL sample to compare the
methods as this was the only common measure available for
all datasets. Thus, using available fold-change values only, we
applied several approaches to identify the method that appeared
best at predicting mitochondrial poly(A) RNA binding proteins.

The first approach showed distributions of positive and
negative training set proteins in the various datasets [i.e., MXL,
WCXL, WCXL_EtBr, and, what we hereupon will refer to as
the “Castello” dataset (Castello et al., 2012) and the “Baltz”
dataset (Baltz et al., 2012)] over log2(FC) values (Figure 4A). This
analysis showed that the log2(FC) values of MXL discriminate
best between positive and negative training set proteins, followed
by the WCXL dataset and the WCXL_EtBr dataset. The other
datasets had no discriminative power, which was expected, as
these did not apply a mitochondrial enrichment step.

Subsequently, we examined the frequency distribution of
four different categories of enriched proteins in each dataset:
mitochondrial proteins with an RNA GO-term, remaining
mitochondrial proteins, non-mitochondrial proteins with an
RNA GO-term and the rest of the proteins (Figure 4B). Enriched
proteins are defined as the proteins that are identified with a
fold-change of three or larger. This again showed that MXL had
the highest enrichment of mitochondrial proteins with, as well
as the highest enrichment of mitochondrial proteins without
an RNA GO-term. As also shown in Figure 4A this again
illustrated that the MXL method yielded the best mitochondrial
enrichment also compared to the WCXL method. This was also
evident from the volcano plots comparing both these methods
(Supplementary Figure S3). Based on these results we expected
that both mitochondrial proteins without RNA GO-term and

non-mitochondrial proteins with an RNA GO-term in the MXL
dataset would have the largest fraction of as yet unidentified
mitochondrial proteins with an mtRNA function.

Receiver operating characteristic curves based on the two
training sets further confirmed this, again showing that MXL
had the best predictive value for mtRNA interacting proteins
(Figure 4C). It had an area under the curve (AUC) closest
to 1. While MXL performed the best, it in total identified
fewer proteins (576) than other datasets (between one and two
thousand). WCXL contained information for 1377 proteins and
had also a good AUC, therefore MXL and WCXL were combined
to form the mtRNA interaction dataset used as input for the
Bayesian integration.

Bayesian Integration Defines a Set of 211
mtRNA Interacting Proteins
Based on the analysis above, we pursued Bayesian integration
using the combined MXL and WCXL datasets and four other
resources as indicated in Table 1. As expected, the integrated
score performed best (AUC of 0.968; Supplementary Table S3)
when compared with all other RNA-interaction input
combinations tested (Figure 5A). The integrated score using
the Baltz and Castello datasets gave an AUC 0.924. Even though
the Baltz and Castello datasets were suboptimal predictors
for mtRNA interacting proteins on their own since they were
not specific for mitochondrial proteins, their inclusion in data
integration did add predictive power (Figure 5A). With the
Bayesian integration using MitoCarta 2.0 as one of the input
datasets, in essence we performed an in silico enrichment for
mitochondrial proteins.
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FIGURE 4 | Mitochondria orientated protein-RNA crosslinking approaches
enrich for mitochondrial RNA interacting proteins compared to other
approaches (Baltz et al., 2012; Castello et al., 2012). (A) Barplot showing the
fraction and absolute number of proteins identified by our and published
approaches (with a LFQ-intensity fold-change larger than three) that are
annotated as being mitochondrial (Calvo et al., 2016) and/or interacting with
RNA (GO:0003723). The numbers for the complete human proteome are
included for reference. (B) Boxplot showing the ability of mitochondrial
protein-RNA crosslinking approaches to discriminate positive training set
members from negative set members based on LFQ-intensity fold-change.
“Pos” indicates a manually curated list of 24 mitochondrial RNA binding
proteins (no ribosomal proteins included), “Neg” indicates a GO-term based

(Continued)

FIGURE 4 | Continued
list of 124 mitochondrial non-RNA interacting proteins plus 124
non-mitochondrial RNA interacting proteins, and “Rest” indicate the remaining
human proteome (n = 19857). (C) ROC-curves comparing the performance of
the individual approaches to identify mitochondrial RNA interacting proteins.
For comparison the AUCs are indicated. The fold-changes per proteins were
calculated by dividing the average LFQ-values (n = 3 for MXL, n = 6 for WCXL
and n = 2 for WCXL_EtBr) of crosslinking with 4SU by non-crosslinking, or by
crosslinking with ethidium bromide and 4SU in case of WCXL_EtBr.

Based on a density plot of the prediction using our MXL
and WCXL mass spectrometry data (Figure 5B), we set the cut-
off at a cFDR of 69%. This resulted in an mtRNA interacting
proteome of 211 proteins at a sensitivity and specificity based on
the training sets of 0.958 and 0.968, respectively. Based on the 180
mitochondrial proteins with an RNA GO-term that are part of
the human proteome, the sensitivity of the predicted 211 proteins
would be 0.539, substantially higher compared to the sensitivity
of the significant hits in our mass spectrometry data alone
(sensitivity of 0.294 for MXL and 0.122 for WCXL, see above).
185 proteins were identified using Baltz and Castello as input
for the prediction and the same cut-off. Our final dataset of 211
proteins and the dataset of 185 proteins based on the published
whole-cell RNA binding proteomes showed considerable overlap
(Figure 5C), with a total of 115 commonly identified proteins.
The frequency distribution of the proteins identified with the
integration (Supplementary Figure S5), showed that the proteins
identified with the prediction using our mass spectrometry
data contained the highest fraction of both mitochondrial and
RNA interacting proteins, also when compared with individual
datasets (Figure 4B). It is therefore likely that – among the 211
mtRNA proteins – the set of mitochondrial proteins without
an RNA GO-term and the set of non-mitochondrial proteins
with an RNA GO-term will contain the largest fraction of as yet
unidentified mitochondrial proteins with an mtRNA function.

Identified Proteins
Our final set of 211 proteins contains 143 proteins that
are annotated as mitochondrial in MitoCarta 2.0 (Figure 6,
Supplementary Figure S5, and Supplementary Table S3),
including 68 mitoribosomal proteins (26 of which have no
RNA GO- term), 23 proteins of our positive training set (two
of which have no RNA GO-term), and 34 additional proteins
that have an RNA GO-term annotation. Forty-six proteins have
an established mitochondrial localization and function, but do
not have an RNA_GO annotation. An additional 67 proteins
are not known as mitochondrial but do have an RNA_GO
annotation. Given that our dataset has the highest percentage of
mitochondrial proteins (as discussed above), these 67 proteins
are candidates with possibly new mitochondrial RNA metabolism
related functions.

DISCUSSION

We developed and compared methods to isolate and identify
the mitochondrial poly(A) RNA-binding proteome. Our analyses
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FIGURE 5 | The prediction with the combination of MXL and WCXL as mtRNA interaction input dataset performs best compared to other tested combinations.
(A) ROC curves of 10-fold cross-validated predictions with as input mitochondrial localization, RNA binding domain, co-expression, PPI and the indicated mtRNA
interaction datasets. For comparison the AUCs are indicated. (B) Density plot of mtRNA score of the prediction with the combination of MXL and WCXL as mtRNA
interaction input, scores of individual training set members are indicated with a colored bar at the bottom of the graph. Arrow indicates the 0.69 cFDR cut-off.
(C) Proportional Venn diagram showing the overlap of predicted mtRNA interaction proteomes at 0.69 cFDR with the combination of MXL and WCXL as mtRNA
interaction input (211 proteins) or with the combination of Castello (Castello et al., 2012) and Baltz (Baltz et al., 2012) (185 proteins).

indicated that 4SU RNA labeling combined with mitochondrial
isolation, subsequent crosslinking and poly(A) RNA isolation,
scored best in terms of enrichment for mitochondrial RNA
binding proteins. It was followed by 4SU labeling, whole-
cell crosslinking, and subsequent mitochondrial and poly(A)
RNA isolation. Using Bayesian integration we combined our

mass spectrometry datasets with publicly available datasets to
give likelihood scores to proteins for their mitochondrial RNA
association. For the purpose of comparison with published
results that used similar methods to identify the whole-cell
poly(A) RNA-binding proteome (Baltz et al., 2012; Castello et al.,
2012), we used the same Bayesian integration methods and
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FIGURE 6 | Pie chart of the predicted 211 mitochondrial RNA interacting proteins, divided into categories based on their annotation as being mitochondrial (Calvo
et al., 2016) and/or interacting with RNA (GO:0003723).

applied thresholds and objective statistical criteria to compare
all methods and datasets. These comparisons suggest that by all
these criteria, the method of choice to identify mitochondrial
RNA binding proteins should be mitochondrial isolation prior
to RNA crosslinking and further RNA isolation. Whole-cell
crosslinking prior to mitochondrial isolation might inadvertently
crosslink RNA containing complexes to the mitochondrial
outer membrane, such as cytosolic ribosomes involved in
co-translational import of nuclear encoded mitochondrial
proteins (Lesnik et al., 2015). It might also alter the ability
to isolate mitochondria without too much cytosolic and/or
nuclear contamination.

We report a final set of 211 proteins as the predicted
mitochondrial RNA interactors, with a sensitivity of 0.958,
although the latter might be an overestimate because our
training set of 24 known mtRNA interacting proteins was
limited. This set includes 67 candidate proteins with an RNA
GO-term, but without mitochondrial localization annotation.
Nevertheless, these 67 contain potential contaminants, either
by their cellular abundance or their association with the
mitochondrial outer membrane. Obvious contaminants include
a number of cytosolic ribosomal proteins that might be
identified on the basis of co-translational import of a substantial
fraction of nuclear encoded mitochondrial proteins (Lesnik
et al., 2015). Overall, for very few proteins there is additional

independent evidence that implies a mitochondrial function.
SND1 was annotated to be a possible mitochondrial protein by
Zaganelli et al. (2017), while both DDX3X and S1 RNA binding
protein 1 (SRBD1) are annotated as possibly mitochondrial
in the MitoMiner database (Smith and Robinson, 2016). The
mitochondrial localization of SRBD1 was also suggested by
immunofluorescence data in Protein Atlas1 (Thul et al., 2017).
Further testing of these and other candidates could confirm their
mitochondrial involvement.

Some proteins identified in our final set have already been
validated to be involved in mtRNA metabolism in recent years.
The most recent example is GTPBP10 (Lavdovskaia et al.,
2018; Maiti et al., 2018), which during the preparation of the
current manuscript was reported to be involved in mitoribosomal
biogenesis. In addition, one of the surprising proteins identified
here is mitochondrial single-stranded DNA-binding protein
(mtSSB or SSBP1), which has traditionally been considered as an
mtDNA maintenance factor through its role in binding single-
stranded DNA during the process of mtDNA replication. Further
examination of the function of mtSSB has shown its involvement
in mtRNA granules and RNA processing (Hensen et al., 2019).
Moreover, in this same study we have shown that it also has bona
fide RNA binding activity using EMSA.

1www.proteinatlas.org
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Even though we set a threshold to achieve a prioritized list
of 211 proteins (cFDR 69%) with possible mitochondrial RNA
association, the use of whole cellular genome and proteome
datasets in the final Bayesian integration means that we obtained
likelihood scores for all proteins in the human proteome
(Supplementary Table S3). Because every protein gets a score
we can vary the threshold and therewith the cFDR, e.g., a
threshold at rank 100 has cFDR of 31% and at rank 150 43%.
The value of the cFDR depends in addition on the chosen
Oprior of 300 mtRNA interacting proteins, e.g., an Oprior
of 1000 mtRNA interacting proteins would result in a cFDR
of 39% at rank 211. Note that adjusting the cut-off or the
Oprior does not alter the ranking of the proteins, just the
estimation of the cFDR. By setting a threshold, information
on proteins outside the threshold is discarded, while ultimately
the ranking is the most important result from our analysis.
Between ranks 211 to 1000 we find additional proteins of
interest, including EXD2 (rank 412), evolutionarily conserved
signaling intermediate in Toll pathway (ECSIT) (rank 459),
C12orf73 (rank 736), and RPUSD2 (rank 982). ECSIT is a known
mitochondrial protein associated with respiratory chain complex
I (Vogel et al., 2007) and among others is involved in mROS
production (West et al., 2011) and mitophagy (Carneiro et al.,
2018). Our group found homology of the N-terminus of ECSIT to
the (organellar) RNA-binding pentatricopeptide repeat domains
(Elurbe and Huynen, 2016), suggesting an additional RNA-
binding function. The 3′−5′ exonuclease domain-containing
protein 2 (EXD2), acting on both DNA and RNA, was recently
published as a mitochondrial protein (Hensen et al., 2018; Silva
et al., 2018; Park et al., 2019). Silva et al. reported EXD2 as a
mitochondrial matrix or inner membrane ribonuclease involved
in among others mitochondrial translation, while Hensen
et al. and Park et al. show a mitochondrial outer membrane
localization. The other two proteins, uncharacterized protein
C12orf73 and RNA pseudouridylate synthase domain-containing
protein 2 (RPUSD2) are not known as mitochondrial proteins.
Immunofluorescent data of Protein Atlas (see text footnote
1; Thul et al., 2017) suggest among others a mitochondrial
localization for C12orf73 and MitoMiner (Smith and Robinson,
2016) predicts a mitochondrial localization for RPUSD2. While
there is no molecular function predicted for C12orf73, RPUSD2
is a valid pseudouridine synthase candidate that might be
required for RNA modifications (de Crecy-Lagard et al., 2019).
The above candidates are but a few examples and illustrate that
our ranked list can be considered a valuable resource for anyone
that has identified potential mtRNA binding proteins. Zaganelli
et al. (2017) used the overlap between the Baltz and Castello
datasets with MitoCarta 2.0 to define a set of 207 potential
mtRNA interacting proteins. However, in this case no strict
statistical or computational framework was used and no selection
criteria were applied to the Castello dataset. When we applied the
same criteria as used here with our mass spectrometry data in
Bayesian integration, we identified 185 proteins using the Baltz
and Castello datasets. With the future addition of new datasets
as they become available, our predictions should gain further
statistical strength, and increase the number of candidate proteins
and the likelihood that they interact with mitochondrial mRNAs.

Our current integration relied heavily on proteomics data and,
as is the case for many mass spectrometry methods, low abundant
and/or transiently interacting proteins could have been missed
and therefore score poorly in the final integration. For example,
one of our positive set members, MRM1, was not identified in our
MXL or WCXL mass spectrometry datasets and therefore did not
make the cut-off in our final list of 211 proteins. Furthermore, the
approach we chose was directed at poly(A) RNA. This suggests
that further improvements in mass spectrometry sensitivity and
performing alternative RNA isolation protocols can be expected
to further improve our prediction and identify more novel
proteins. In addition, further upscaling of the starting material
combined with purer mitochondrial fractions can possibly help
to identify novel protein candidates. We suggest that MXL should
be the method of choice to identify mitochondrial RNA binding
proteomes in various cell types and for example tissues from
mice for which 4SU exposure prior to mitochondrial isolation is
feasible. Alternatively, isolated mitochondria from animal tissues
can be directly UV crosslinked without 4SU treatment.
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