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Abstract
Electron Microscopy (EM) image (or volume) segmentation has become significantly impor-

tant in recent years as an instrument for connectomics. This paper proposes a novel ag-

glomerative framework for EM segmentation. In particular, given an over-segmented image

or volume, we propose a novel framework for accurately clustering regions of the same neu-

ron. Unlike existing agglomerative methods, the proposed context-aware algorithm divides

superpixels (over-segmented regions) of different biological entities into different subsets

and agglomerates them separately. In addition, this paper describes a “delayed” scheme

for agglomerative clustering that postpones some of the merge decisions, pertaining to

newly formed bodies, in order to generate a more confident boundary prediction. We report

significant improvements attained by the proposed approach in segmentation accuracy

over existing standard methods on 2D and 3D datasets.

1 Introduction
Extracting the network structure among neurons in animal brain has gained prominence lately
in the field of neuroscience. Rapid advances in imaging technology, in particular Electron Mi-
croscopy (EM) techniques, have enabled us to trace neural bodies in unprecedented level of de-
tails. However, recording in such high resolution (at nanometer scale) generates massive
amount of data that is too large to annotate manually. Automated region labeling or segmenta-
tion is considered to be the most viable strategy for generating a dense reconstruction of neural
anatomy. Some recent efforts of such reconstruction yielded impressive results utilizing ma-
chine learning/computer vision tools such as image segmentation, and offered valuable biologi-
cal insights to the neuroscience community [1][2].

Image segmentation for natural scenes has a long history in computer vision literature [3]
[4][5]. In recent years, there have also been many fruitful attempts to automatically identify
meaningful regions in EM images using segmentation techniques [6][7][8][9][10][11]. Most of
these studies initially apply a pixelwise (we denote locations on both 2D and 3D EM data as
pixels in this paper) classifier to determine whether or not any particular pixel belongs to the
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cell boundary. The quantified confidence values of the pixelwise classifier are utilized to pro-
duce an initial (over-) segmentation through methods such as Watershed [12].

Different approaches resort to different methods to generate the final segmentation by
merging or clustering the over-segmented bodies to corresponding neuronal cells. Andres et.al.
[7] addresses this problem by searching the optimal subset of superpixel borders that form
closed surfaces. Several studies work with the watershed merge tree in order to identify the re-
gions to be combined for the final segmentation [13][14]. Some approaches applied agglomera-
tive or hierarchical clustering [8][10][15] for this purpose. For anisotropic datasets, where the
depth resolution (z-dimension) is coarser than the planar resolution (x, y dimensions), seg-
mented bodies on one section overlap with multiple regions in the adjacent sections. Therefore,
a complete 3D reconstruction needs to establish the correct correspondence, through an align-
ment or co-segmentation technique [9][11], among segmented regions across multiple planes.
In this study, we restrict ourselves only to segmentation on images for anisotropic data—the
subsequent alignment is out of the scope of this paper. For both isotropic and anisotropic re-
construction, the outputs of segmentation algorithms need to be corrected afterwards, either
manually [2] or by combining with a manually traced skeletonized representation [1].

Biologically, the interior of a neuron cell comprises several distinct sub-structures (or sub-
categories) such as cytoplasm, mitochondria, vesicles etc. An ideal binary pixel classifier—
which assigns a pixel to one of the two categories: cell boundary and cell interior—should label
all locations within these sub-categories to cell-interior class. Several past studies [16][17][18]
[19] recommend increasingly complex pixelwise detector models to attain a binary prediction
output. In contrast, some recent works [15][11] represent the sub-categories (cytoplasm, mito-
chondria etc.) of cell body by multiple classes and apply relatively simpler classifiers (in terms
of model size, learning time and convenience) for this multiclass classification problem. The re-
sults of [15][11] suggest that using prior domain knowledge to divide a problem into multiple
components can achieve high segmentation quality with simpler classifier models requiring
less computation.

However, we believe the methods of [15][11] do not exploit the full benefit of multiclass pre-
dictions on EM data. Regardless of the quality of multiclass pixel classifier output, the algo-
rithms in [15][11] do not distinguish between regions of one sub-structure (e.g., cytoplasm)
from those of another (e.g., mitochondria) at the superpixel level. That is, the classification is
divided into multiple sub-classes in pixel-level, but the subsequent fusion or superpixel cluster-
ing step does not utilize this additional information to compute the final segmentation. This
often leads to sub-optimal performances by these methods. For example, Fig 1 shows an EM
image (plane in a 3D volume) and the corresponding pixel predictions for the mitochondria
sub-class. By not using this sub-class prediction explicitly in the clustering step, the final output
of [15] failed to merge many regions into the correct cell (marked by ‘S’) and connected some
of them to wrong cells (marked by ‘M’).

This paper introduces a context-aware scheme for combining over-segmented regions by
utilizing the prior knowledge of sub-classes. We adopt an agglomerative or hierarchical cluster-
ing framework [8][10] due to its advantages such as low space, time complexity and flexibility
to tune for over/under segmentation. We develop a two-pass agglomeration policy where the
(estimated) cytoplasm regions are grouped together in the first phase and then the remaining
mitochondria bodies are absorbed into the cell cytoplasm. In these two stages, the superpixels
are agglomerated based on different merge criteria that are defined by different contexts, which
is why we call it context-aware agglomeration. Our proposed context aware approach signifi-
cantly reduces the false split and merge errors (example shown in Fig 1) provided fairly accu-
rate sub-structure detection. In addition, this strategy substantially reduces the training data
requirement, as well as the predictor model complexity, which in turn offers significant
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increase in learning speed. The findings of this study further inspired us to design an interactive
training algorithm [20] for region boundary predictor that does not require exhaustively la-
beled groundtruth. Generating such an exhaustive annotation is considered to be a bottleneck
for neural reconstruction [21].

We also propose a modified version of the hierarchical clustering algorithm to cluster the
superpixels in both phases of the context-aware framework. The proposed clustering method
emphasizes on minimizing under-segmentation errors since these errors are conventionally

Fig 1. Improved segmentation accuracy by context-aware approach on FIBSEM data. (a) one plane of input volume, (b) mitochondria detection on that
plane, (c) the output of GALA [15] (context oblivious), and (d)the output of proposed context aware method. The segmented region labels are overlaid on the
image using random artificial colors. S and M on images indicate locations of false split and merge respectively

doi:10.1371/journal.pone.0125825.g001
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costlier to correct than the over-segmentation errors [8]. In order to minimize the number of
false merges, we ‘delay’ the merge decisions on a certain type of boundaries to be resolved at a
later time. Compared to the traditional agglomerative scheme of [10], the proposed modifica-
tion reduces the number of false merges significantly. We also attempt to analyze why our ag-
glomeration approach performs better than the Global multicut scheme [7] on the dataset used
for our experiments.

The paper is organized as follows. We define the problem in Section 2 and briefly describe
the existing clustering segmentation algorithms in Section 2.1. Then we explain the proposed
delayed agglomeration scheme in Section 2.2. This delayed strategy is employed in both the
stages of our context-aware algorithm discussed in Section 2.3. Section 3 reports our experi-
mental setup, both quantitative and qualitative results and their analyses. We conclude and dis-
cuss our findings further in Section 4.

2 Methods
A formal definition of the problem we are addressing assumes an initial over-segmentation,
comprising N superpixels {S1, S2, . . ., SN}� S, of an EM image or volume withM neurites
(neuronal regions) where N�M. Let L(S) be the neurite region that S actually belongs to. Our
goal is to correctly assign these N superpixels such that each Si, i = 1,2, . . ., N is assigned to its
corresponding L(Si).

We denote a boundary between two superpixels (i.e., oversegmented regions) by a pair of re-
gions e≜ {Si, Sj} and the set of all such boundaries by E. In a graph representation, each of the
regions Si is considered to be a node and the boundary or face between two regions is regarded
as an edge—a notation we will be using throughout the paper. Also, let the boundary label map
B:S × S! {0,1} assign a 1 to a boundary that actually separates one neurite region from anoth-
er and a 0 to the boundary incorrectly generated due to over-segmentation. The problem of
correctly merging Si to its corresponding L(Si) is similar to a clustering problem where the
number of clusters cannot be computed a priori. Following [8][10][15], we adopt an agglomer-
ative approach for superpixel clustering.

In our context-aware scheme, the set of superpixels is divided into two subsets: 1) the Sc of
potential cytoplasm superpixels, and 2) the set Sm of potential mitochondria superpixels. The
set of cytoplasm superpixels is clustered first with the proposed delayed agglomeration algo-
rithm. Agglomeration of the mitochondria superpixels is also performed by the proposed de-
layed method, but with a different merge criterion. In order to assist the reader to comprehend
the novelty of the proposed approach, we introduce the prior studies on agglomerative cluster-
ing for EM segmentation [8][10][15] in Section 2.1. Afterwards, Sections 2.2 and 2.3 discuss
the delayed agglomeration and the context- aware framework respectively.

2.1 Prior Works on Agglomerative Clustering for EM Segmentation
Several existing EM segmentation approaches [8][10][15] tackled the problem of superpixel
clustering by agglomerative hierarchical clustering, as described in Table 1 Algorithm 1. These
methods assume a superpixel boundary estimator h:S × S! R that assigns real valued confi-
dences to all edges in E. This boundary estimator may represent the real-valued prediction of a
classifier distinguishing true boundaries from the false ones [10], or compute the mean value of
boundary pixel probabilities [8] or return the overlap percentage between borders of two adja-
cent superpixels. The value of h({Si, Sj}) 2 [0, 1] indicates how confident the estimator is about
the existence of a true boundary between Si and Sj: a large h({Si, Sj}) implies the estimator is
very confident that the boundary {Si, Sj} is correct while a small value implies the boundary was
probably generated as an artifact of over-segmentation and therefore is false. Given such a
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function h, the hierarchical clustering algorithm iteratively merges cell boundaries in the in-
creasing order of confidence values h(e) (Line 1 in Table 1 Algorithm 1) until a stopping criteri-
on is satisfied, e.g., h(e)> δ where δ is a pre-defined threshold. After each merge, it updates the
neighborhood structure of the merged superpixel, i.e., the neighbors of the absorbed region be-
come the neighbors of the (newly) merged cell.

Each time a superpixel border is dissolved in standard agglomerative clustering, it modifies
the characteristic representations of the pixels within the superpixels and on the boundary.
This demands the confidences of the estimator function h(e) on these boundaries be recom-
puted (Line 1 in Table 1 Algorithm 1). The edges, for which h(e) decreases due to a merge, re-
ceive higher priority to be dissolved than it had before. The proposed delayed agglomeration
strategy modifies this step and postpones merging these edges for a later time.

2.2 Proposed Delayed Agglomerative Clustering
Our adaption of segmentation commences with the boundary with lowest estimator confidence
and repeatedly dissolve edges with in ascending order of h(e). Recall that, h(e) may measure
the prediction of a superpixel boundary classifier, or the mean probability values on boundary
pixels, or the fraction of overlap between the borders of two superpixels. After two regions
have been joined due to a merge, the boundaries of the combined region is updated and the es-
timator function h is applied to recompute the new confidences. The edges for which h(e) de-
creases are set aside to be considered at a later stage. They are reexamined after all the borders,
initially generated by over-segmentation process, have been checked.

This method is described in Table 2 Algorithm 2. After region Rj is absorbed into Ri, we do
not immediately consider all the new boundaries {Ri, Rb} between the recently merged Ri and
its updated neighbors Rb. We maintain a set of edgesW and insert the new edge {Ri, Rb} only if
its confidence increases from that of {Rj, Rb} after Rj is absorbed into Ri (Line 2 in Table 2 Algo-
rithm 2). The faces, for which h({Ri, Rb}) decreases from previous value, are kept aside until
there are no members left inW and the modified confidence on {Ri, Rb} is less than the agglom-
eration threshold (Line 2 in Table 2 Algorithm 2). Once all e 2W have been considered for
merge andW is empty, these boundaries repopulate the listW (Line 2 in Table 2 Algorithm 2)
and renew the agglomeration process which continues until there exists no e such that h(e)�
δ.

Effectively, the proposed strategy ‘delays’ the merging of new edges {Ri, Rb} resulting from a
merge: either due to an increase in h({Ri, Rb}) or deliberately if h({Ri, Rb}) decreases. To avoid
propagating wrong decisions made on smaller superpixels to the larger ones, this design post-
pones the merge decisions on the newly formed bodies for a later time. Our analyses support

Table 1. Algorithm 1: Existing Agglomerative Segmentation.

Input: S1, S2, . . ., SN and confidence function h.

Output: R1, R2, . . ., RN0

1 forall the i do Ri = Si;

2 Repeat

3 e* � {Ri, Rj} = mine 2 E h(e);

4 Merge Rj to Ri and update E;

5 forall the Rb 2 Nbr(Rj) do

6 Recompute h({Ri, Rb});

7 until h(e) � δ;

doi:10.1371/journal.pone.0125825.t001
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that deferring decisions on these edges significantly reduces false merges during
agglomeration.

2.2.1 Time Complexity. Asymptotically, the running time of the delayed algorithm re-
mains the same as the traditional agglomerative clustering in the worst case. Instead of adding
the adjacent boundaries to the priority queue, the delayed algorithm stores them in a separate
list. Later, building a queue from this list would require O(n1) time where the length n1 of new
list must be smaller than that of the previous one (which contains all edges): n> n1.

Our implementation is tuned to reduce the running time of delayed agglomeration. Notice
that, a subset of adjacent boundaries is not pushed back or updated into the queue (Line 13 of
Table 2 Algorithm 2). We may as well apply a simple trick to avoid updates at each merge alto-
gether: instead of increasing key of the edges with increased h value (Line 11 of Table 2 Algo-
rithm 2), we can postpone the check and increase the key until it becomes a candidate for
merge (Line 7 of Table 2 Algorithm 2) or in Line 6 when it being considered to be inserted into
W. Thus, we can reduce the computation by O(dnlogn) where d is the degree of S2 and n is the
queue size.

2.3 Proposed Context-aware Segmentation
The proposed context-aware agglomeration is composed of two different phases. We separate
the set Sm of potential mitochondria superpixels from the set Sc of potential cytoplasm super-
pixels assuming the existence of an effective mitochondria superpixel detector (e.g., [22]). The
regions in Sc are agglomerated first by the proposed delayed policy. Motivated by [6][10][15],
a Random Forest (RF) [23] classifier hc is trained to act as the boundary predictor function for
clustering the set Sc of cytoplasm superpixels. During hc training, mitochondria-cytoplasm
borders are treated the same way as cell membrane.

In the second step, the mitochondria-cytoplasm edges are merged in the same delayed
scheme as explained in Section 2.2, but with a different estimator function hm. In order to ab-
sorb mitochondria into corresponding cells, we apply the delayed-agglomeration algorithm

Table 2. Algorithm 2: Delayed Agglomerative Segmentation.

Input: S1, S2, . . ., SN and confidence function h.

Output: R1, R2, . . ., RN0

1 forall the i, edge e do Ri = Si, Flag(e) = ACTIVE;

2 Repeat

3 W = {e 2 E | Flag(e) = ACTIVE};

4 if W empty then

5 forall the e:Flag(e) = DELAY do

6 if h(e) Within range then Flag(e) = ACTIVE;

7 e* � {Ri, Rj} = mine 2 W h(e);

8 Merge Rj to Ri, i.e., Ri = {Ri[Rj}, and update W;

9 forall the Rb 2 Nbr(Ri) do

10 if h({Ri, Rb}) > h({Rj, Rb}) then

11 Flag({Ri, Rb}) = ACTIVE;

12 else

13 Flag({Ri, Rb}) = DELAY;

14 until h(e) � δ;

doi:10.1371/journal.pone.0125825.t002
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with a small alteration. The set of candidate edgesW only contains the edges between mitochon-
dria and cytoplasm, that is,W = {{Sc, Sm} j type(Sc) = Cyto, type(Sm) = Mito, Flag({Sc, Sm}) =
ACTIVE};mitochondria-mitochondria edges are not considered for agglomeration. Biologically,
each mitochondrion should reside within a cell body. Therefore, boundary confidence for mi-
tochondria merging should reflect how much a mitochondrion is contained within a cyto-
plasm. In order to quantify this, we define the overlap ratio ρ({Sm, Sc}) to be the fraction of the

total boundary of Sm which separates Sm from Sc: rðfSm; ScgÞ ¼ lengthðfSm ;ScgÞP
i
lengthðfSm ;SigÞ

. For any edge

{Sm, Sc} with a mitochondria superpixel Sm and a cytoplasm superpixel Sc, the confidence is de-
fined as hm({Sm, Sc}) = 1−ρ({Sm, Sc}).

In effect, the mitochondria superpixels are combined with the cytoplasm superpixels in the
descending order of the overlap ratio between these two types of regions. That is, a mitochon-
dria superpixel is merged into the adjacent cytoplasm region with the largest overlap between
their boundaries. The combined cytoplasm-mitochondria superpixel created by such merge
then identifies the next mitochondria superpixel with the largest overlap to absorb in the next
step. We show snapshots of this process, at different values of ρ(Sm, Sc) in Fig 2. It is worth not-
ing that, for 3D segmentation, the overlap is computed across many different planes on which
the two cells are neighbors to each other.

3 Results
We have applied the proposed method to EM images of two different modalities: isotropic Fo-
cused Ion Beam Scanning Electron Microscope (FIBSEM) data and anisotropic serial section
Transmission Electron Microscopy (ssTEM) data. For both types of input data, the image (vol-
ume for the isotropic data) is first over-segmented for the agglomeration to be applied on. In
the following sections, we explain our over-segmentation process and the error measures used
to evaluate segmentation performance before reporting the results on FIBSEM and ssTEM data
in Sections 3.3 and 3.4 respectively.

3.1 Over-segmentation and training
We learn a classifier to assign each individual pixel into multiple categories, such as cell bound-
ary, cytoplasm, mitochondria and mitochondria boundary, using the interactive tool Ilastik

Fig 2. Merging mitochondria into cytoplasm. The figure shows mitochondria superpixels absorbed into
cytoplasm superpixels up to different values of overlap ratio ρ(Sm, Sc)

doi:10.1371/journal.pone.0125825.g002
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[24]. Our pixelwise detector is a Random Forest (RF) classifier [23] trained on a few sparse
samples from the dataset. The locations with lowest pixelwise cell boundary prediction are uti-
lized as markers for the Watershed algorithm [12] to produce an over-segmentation of the
image/volume. Unless otherwise specified, the same pixel prediction and watershed regions are
provided as input to all (competing) methods.

The set Sm of probable mitochondria superpixels is populated with all regions possessing
mean mitochondria probability (estimated by our pixelwise RF classifier trained by Ilastik)
above a certain threshold. The rest of the superpixels constitute the set Sc of possible cytoplasm
regions. The training set for superpixel boundary classifier hc consists of all boundaries among
members of Sc as well as the mitochondria-cytoplasm borders. Similar to [6][15], each super-
pixel edge is represented by the statistical properties of the multiclass probabilities estimated by
Ilastik. The statistical properties include mean, standard deviation, 4 quartiles of the predic-
tions generated for the data locations on the boundary, two regions it separates as well as the
differences of these region statistics. All of these features can be updated in constant time after
a merge—a property which improves the efficiency of the segmentation algorithm substantial-
ly. The code and example dataset are publicly available at https://github.com/janelia-flyem/
NeuroProof.git.

3.2 Segmentation error measures
We report segmentation error of both types, namely under- and over-segmentation, separately
because one of these errors (under-segmentation) is costlier than the other. Split versions of
variance of information (VI) [25] and Rand Error (RE) [10] were selected to evaluate segmen-
tation errors. Given a groundtruth (GT), GT = {g1, . . ., gM}, and a segmentation (SG), SG = {r1,
. . ., rP}, we compute the over-segmentation (OE) and under-segmentation (UE) errors by split-
ting the terms in VI and RE. For split-VI, the over and under-segmentation are quantified as
follows.

VIOE ¼ HðGT j SGÞ ¼ �
X

i;j

jgi \ rjj
Z

log
jgi \ rjj
jgij

: ð1Þ

VIUE ¼ HðSG j GTÞ ¼ �
X

i;j

jri \ gjj
Z

log
jri \ gjj
jrij

: ð2Þ

In these equations, j � j denotes the size, \ denotes the intersection between two regions and Z
is a normalizing constant. From information theoretic perspective, these two terms are condi-
tional entropies defined over a set GT given SG, and vice versa.

We also quantify segmentation error by average percentage (× 10−5) of pairs of voxels falsely
merged and split by any method. Formally, the over-segmentation (OE) and under-segmenta-
tion (UE) is computed based on the following formula.

REOE ¼ % pixel pairs within same cluster in GT but different cluster in SG: ð3Þ

REUE ¼ % pixel pairs within same cluster in SG but different cluster in GT: ð4Þ

3.3 Segmentation Performances-FIBSEM data
Dataset: The first set of experiments was conducted on isotropic datasets from fruit fly visual
system imaged at 10 nm isotropic resolution using FIBSEM technology. This data is segmented
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as a volume (i.e., 3D segmentation) and both the voxelwise multi-class predictor and the super-
voxel boundary classifier are learned on one 2503 volume and applied on two 5203

test volumes.
Competing methods: We have compared the following algorithms in this study: 1) LASH:

Standard agglomeration with an RF supervoxel classifier learned based on the iterative proce-
dure of [10]. 2) LASH-D: LASH classifier with delayed agglomeration (proposed extension). 3)
GALA [15]: an agglomerative method with repetitive learning phases like LASH, except it ac-
cumulates the training sets of multiple phases. 4) CADA-F: Proposed two stage delayed ag-
glomeration with standard RF learned using training set accumulation similar to GALA. 5)
CADA-L: Proposed delayed agglomeration with a depth-limited RF (depth = 20) learned with-
out training set accumulation. 6) Global Multicut: the optimization framework for finding a
closed-surface segmentation proposed in [7]. For [7], the boundary confidences were generated
by the CADA-L predictor.

Performance evaluation: In order to compare different supervoxel clustering schemes, we
trained (on one 2503 volume) and segmented two 5203 volumes 5 times and averaged their
scores. We plot the average VIUE and VIOE respectively on x and y-axis respectively in plots on
the left column of Fig 3 and for test Volumes 1 and 2. Similarly, we show the average REUE and
REOE errors on x and y-axis respectively on right columns of Fig 3. In these figures, an ideal al-
gorithm should achieve a zero value for both over and under-segmentation. For all algorithms
except the Global multicut method, each point in a plot refers to the boundary confidence
threshold δc 2 [0.1,0.2] which was used as stopping criterion for cytoplasm merging. For [7],
we instead changed the value of the bias parameter in weight calculation within the range
[0.2,0.9].

As the plots show, both the delayed agglomeration and two-phase segmentation process at-
tained significant improvement over past methods: compare the performance of LASH (red +)
with LASH-D (black x) and that of GALA (cyan �) with CADA variants (green square and blue
circle). Compared to the rest of the techniques, the two variants of proposed methods, namely
CADA-L and CADA-F, appear to achieve the most favorable segmentations by reducing the
over-segmentation steeply without increasing the false merge numbers much. During segmen-
tation, the delayed version decreases the time needed for segmentation approximately 5 times
among the agglomerative approaches.

It is also worth mentioning that, in a two stage segmentation scheme, the performance of a
depth limited RF (i.e., CADA-L, green square), learned without accumulating training set over
multiple passes, is very similar to that of the standard RF (CADA-F, blue circle) trained over
cumulative learning passes. Training full-depth RF (CADA-F) with multiple passes needed sev-
eral hours whereas training a depth limited single iteration (CADA-L) required� 5 minutes.

Fig 4 shows three sample planes from the test volume 1. In the following plot in Fig 5, we
show example outputs of the methods LASH-D, GALA [15], Global multicut [7] and CADA-L
on these planes. Three columns correspond to three planes, and each row presents the outputs
of the aforementioned methods. The segmentation labeling is overlaid with artificial (randomly
selected) colors. We have selected the parameter that results in the lowest false merges (under-
segmentation) with a false split (over-segmentation) error below 0.7 for all except the proposed
CADA-L for which we selected the lowest over-segmentation (error value approx 0.56). The re-
sults are largely compatible with the quantitative ones. All the three methods, especially Global
Multicut, leave many false boundaries intact. The false-splits are not limited to cytoplasm mito-
chondria borders, both Global and GALA over-segmented some cytoplasm regions as well. By
separating these two sub-classes within cell bodies, the proposed method CADA-L was able to
eliminate the false merges between them.
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Runtime comparison: In Table 3, we report the running times of the context oblivious stan-
dard agglomerative clustering used in LASH [10]; the context-oblivious delayed agglomerated
clustering used in LASH-D, GALA [15]; the context-aware delayed agglomeration used in
CADA-L, CADA-F; and the Global Multicut [7] method. Both the standard and delayed ag-
glomeration were executed up to the same threshold δ = 0.2. The context-aware method exe-
cutes two phases of agglomeration, which is why CADA required more time than LASH-D.
The Global multicut algorithm utilizes the solution of an optimization problem (requires

Fig 3. Segmentation error in terms of split-VI and split-RE on two FIBSEM volumes. Top: Test volume 1 and bottom: Test volume 2. Left column shows
split-VI error: VIUE in x-axis, VIOE in y-axis; right column shows split-RE: REUE in x-axis, REOE in y-axis. Each curve is the average of results in 5 trials. Each
point represents either a stopping point for clustering or bias parameter for [7].

doi:10.1371/journal.pone.0125825.g003
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optimization packages like CPLEX or Gurobi) in order to find the edges to merge for produc-
ing the final segmentation.

All the algorithms, except CADA-L and Global Multicut, perform standard agglomeration
multiple times (we repeated 5 times) in order to obtain extensive training sets for superpixel
boundary learning. Both CADA-L and Global method exploited the same classifier learned
from the initial set of boundaries existed in the over-segmented data (without training set
augmentation).

In the following subsections, we analyze why the proposed strategies improve the segmenta-
tion performance over the existing approaches.

3.3.1 Context-aware vs Context-oblivious agglomeration. It is perhaps intuitive that tra-
ditional context-oblivious agglomeration will result in higher degree of over-segmentation
than the context-aware method. The mitochondria-cytoplasm borders indeed have strong fea-
ture similarity with cell membranes and consequently superpixel boundary predictors cannot
distinguish between these two types of borders perfectly. Recall that, for segmentation, we need
to dissolve the mitochondria-cytoplasm border but retain the cell boundaries. In order to sub-
stantiate our claim, we trained a superpixel boundary classifier in context-oblivious fashion (0:
false cell membrane, 1:true cell membrane) and computed its confidences on these two types of
boundaries. Fig 6 shows the histogram of confidence levels for actual cell boundaries and mito-
chondria-cytoplasm borders in red and blue respectively. If we wish to minimize false merges
among neurons, we have to stop agglomeration at a lower value (δ� 0.3). The overlap between
the two distributions in the range 0.1* 0.5 suggests that many of the mitochondria borders
will not be merged and will lead to over-segmentation.

In addition, due to appearance dissimilarity, the distribution of same features computed on
cytoplasm and mitochondria will be substantially different from each other. Combining these
two types of feature value distribution will impede the identification of false boundaries be-
tween cytoplasm superpixels such as the one in the lower left corner of the output of GALA in
Fig 1.

In practice, mitochondria from two different cells could also lead to false merges. Often the
mitochondria regions from two cells are closely located to the cell membrane, or other mito-
chondria regions from neighboring cells, blurring the boundary. Figs 1 and 5 show several such
locations where the existing techniques failed to avoid false merge.

3.3.2 Global multicut vs Proposed. The split-VI plot in Fig 7 show that both variants of
the proposed CADA algorithm generates significantly low under and over-segmentation errors

Fig 4. Sample planes from the test volume 1.

doi:10.1371/journal.pone.0125825.g004
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Fig 5. Qualitative results on test volume 1. Three columns show segmentation outputs overlaid with random colors on three planes of the FIBSEM volume.
The rows, from top to bottom, show the output of LASH-D, GLobal multicut [7], GALA [15] and the proposed method CADA-L. Some significant over-
segmentation errors and under-segmentation errors are marked in yellow rectangles and red ellipses respectively.

doi:10.1371/journal.pone.0125825.g005
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than those of Global [7] method in clustering cytoplasm regions only (mitochondria not
merged). In order to analyze why this happens, we save the initial confidences (predictor confi-
dence at the beginning of agglomeration) of hc(e) on all e that

• were incorrectly split (over-segmented) by the Global method,

• were correctly merged by proposed algorithm.

These boundary predictions were plotted on x-axis of Fig 8. The y-axis of Fig 8 corresponds
to confidences hc(e) at the time e was correctly merged by the proposed method. The threshold
on boundary confidences to stop agglomeration was δc = 0.2.

Note that, the agglomerative process correctly reduced the confidences of many false
boundaries that received a high score by the predictor at the beginning (high x value but low y
value). This refinement is possible through the evolution of the superpixels in the agglomera-
tive process—an advantage the Global method of [7] cannot benefit from. The Global method
[7], in comparison, generated many more false positive boundaries as depicted by the

Table 3. Runtime for different algorithms.

Method Run time (min)

LASH: Standard Agglomeration, context-oblivious 5.35 ± 0.2

LASH-D: Delayed Agglomeration, context-oblivious 2.72 ± 0.06

CADA: Delayed Agglomeration, context-aware 4.69 ± 0.02

Global multicut 7.13 ± 1.1

doi:10.1371/journal.pone.0125825.t003

Fig 6. Distribution of predicted boundary confidences on cytoplasm-mitochondria borders (blue) and
correct cell boundaries (red). The plot is clipped at y = 1500 for better visualization. Notice the overlap
between these two distributions within confidence range [0,0.6].

doi:10.1371/journal.pone.0125825.g006
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Fig 7. Split-VI of cytoplasm segmentation of two FIBSEM volumes. Left column: test volume 1, right column: test volume 2. Each curve is the average of
results in 5 trials. Each point represents either a stopping point for clustering or bias parameter.

doi:10.1371/journal.pone.0125825.g007

Fig 8. Left: False splits (over-segmentation) of Global method corrected by proposed CADA-L. Each point corresponds to a false boundary that Global
method failed to dissolve. The x-axis labels indicate the predictor confidence at the beginning of the proposed agglomeration and y-axis plots the predictor
confidence at the point it was merged accurately by the agglomeration. Right: False merges (under-segmentation) of Standard agglomeration corrected by
delayed method—x-axis: boundary indices, y-axis: predictor confidence. The confidences computed for the same correct edge in traditional agglomeration
and in the proposed delayed version is plotted in blue square and red ‘+’. The confidences on many true boundaries were increased by the
delayed approach.

doi:10.1371/journal.pone.0125825.g008
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rectangular enclosed region of Fig 8 (left). If several boundaries within a chain of supervoxel
faces receive very high predictor confidences, then, by construction, the Global method tends
to retain the another boundary e within the same chain with a low hc(e). Such tendency may be
the reason behind the high concentration of false splits with low hc within the rectangular re-
gion in Fig 8 (left).

3.3.3 Delayed vs standard agglomeration. In order to illustrate the improved accuracy at-
tained by the delayed agglomeration over the standard one, we collected all faces that were in-
correctly dissolved by standard agglomeration algorithm (LASH) and examine their confidences
under a delayed scheme (LASH-D) operating at δc = 0.14 The confidences (clipped to 0.25) of
these 534 edges generated by standard and delayed agglomeration are plotted in Fig 8 (right) in
blue square and red + respectively. The proposed delayed agglomeration accurately increased
the confidences hc of many of these faces, among which, 41 exceeded the threshold of 0.14
(green line) and avoided a false merge. In addition to these common supervoxel edges, the stan-
dard and delayed algorithms independently generated 163 and 4 more incorrect
merges respectively.

3.4 Segmentation Performances-ssTEM data
This section reports the 2D segmentation results that our method and others produced on a
different data modality, namely ssTEM images. These images were part of those generated for
the work of [2] and were collected from the authors. Fifteen 500 × 500 images were used for
training both the pixel and superpixel boundaries. We follow the techniques and 2D versions
of features described in Section 3.1 for ssTEM data. The same pixel prediction and watershed
regions are provided as input to all competing methods. The segmentation is performed on
each image without connecting them across planes. Fig 9 plots the average of split-VI and split-
RE errors over 15 images of size 1000 × 1000 of the proposed CADA-L and GALA [15]

Fig 9. Segmentation errors on TEM data. Left column shows split-VI error: VIUE in x-axis, VIOE in y-axis; right column shows split-RE: REUE in x-axis, REOE

in y-axis. The curves are averages of errors on 15 1000 × 1000 images. The results of Global method [6] were too poor to plot.

doi:10.1371/journal.pone.0125825.g009
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methods. Our method CADA-L produces less over-segmentation than GALA [15] in almost
all threshold values. The result of the Global method [7] were too poor to show on this plot—
lowest over-segmentation error at 4.11 with 0.13 under-segmentation average.

In Fig 10, we show input images and the segmentation results (overlaid on the image) of
GALA and our methods at the same under-segmentation error. Examining the qualitative out-
put in Fig 10, GALA seems to struggle to absorb the mitochondria regions despite multiple
learning iterations and even merges two cells in one occasion. While a more accurate mito-
chondria predictor could potentially reduce the segmentation errors of the proposed method,
context-invariant algorithms such as GALA would be less effective around mitochondria

Fig 10. Qualitative comparison of GALA and proposedmethod segmentation on TEM data. The segmentation outputs are overlaid with random colors
on the grayscale images. Top row: input, middle GALA and bottom: proposed CADA-L. Significant over-segmentation errors and under-segmentation errors
are marked in yellow rectangles and red ellipses respectively.

doi:10.1371/journal.pone.0125825.g010
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regions. Compared to GALA, CADA-L used less than half of the training examples (42.46%)
collected without training iterations (i.e., significantly more efficient in training).

4 Discussion
We argue that, due to considerable ambiguity in appearances, it is only rational for an EM seg-
mentation algorithm to be context-aware in each of its stages, i.e., in both pixel and superpixel
levels (and in alignment for anisotropic data). The results reported in this paper support our
claim that a context-aware clustering of sub-classes such as cytoplasm and mitochondria can
improve segmentation accuracy significantly given fairly accurate sub-class detection. Our ex-
amination of both isotropic and anisotropic data suggests cell structures cannot be meaningful-
ly identified without mitochondria regions and it is non-trivial to combine detection with a
segmentation that ignores it (e.g., [7]) in order to produce the final segmentation. Our analysis
also illustrates how a delayed agglomerative procedure benefits from the intermediate bound-
ary probabilities and improves the efficiency of the segmentation process significantly.

In addition to reducing the over- and under-segmentation errors, one of the variants of our
classifier, namely CADA-L, can be trained considerably faster than those in other methods be-
cause CADA-L demands substantially fewer training examples and no training iterations. A
context-oblivious strategy gain significantly (compare LASH-D with GALA in Fig 3) by accu-
mulating training set over multiple iterations. However, in context-aware approach, one does
not benefit much by accumulating the training set (CADA-F in Fig 3) over a classifier trained
from a single iteration (CADA-L). One possible explanation is that previous context oblivious
strategies require the extra iterations to mitigate the impact of the noise introduced by mito-
chondria superpixels. This explanation implies that detecting the sub-classes, and considering
them separately as necessary, is perhaps the key to train a boundary classifier accurately
and efficiently.

We further investigated this conjecture and developed a semi-supervised active learning al-
gorithm to train the supevoxel boundary classifier with as few as< 20% of the total examples
[20]. The requirement of exhaustive labels is a critical bottleneck for automatic EM segmenta-
tion, especially for reconstructing larger brain regions, or whole animal brain, where one may
anticipate the necessity to train several different classifiers [21]. The interactive training of both
pixels (using Ilastik [24] for example) and superpixel boundaries (using [20]) holds the prom-
ise of removing the need for such complete groundtruth and paves the for scaling up the EM
reconstruction algorithms.

We have applied our context aware algorithm to segment 216 FIBSEM volumes of 5203 vox-
els each, with a 10nm isotropic resolution, from the Medulla region of fly retina. To our knowl-
edge, this is an attempt to reconstruct one of the largest volumes for such animal. Compared to
the result of [15] on two of the 5203 blocks, our segmentation resulted in an estimated 30% re-
duction in subsequent manual correction time. In addition, our segmentation was sufficiently
accurate for regions that pertains to Post-synaptic densities (PSD), i.e., the synaptic partners of
a cell. During the manual annotation of these PSDs, the output of our segmentation method as-
sisted the experts to improve their performances [26].
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