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A Mathematical Model for Storage 
and Recall of Images using Targeted 
Synchronization of Coupled Maps
P. Palaniyandi1 & Govindan Rangarajan2

We propose a mathematical model for storage and recall of images using coupled maps. We start by 
theoretically investigating targeted synchronization in coupled map systems wherein only a desired 
(partial) subset of the maps is made to synchronize. A simple method is introduced to specify coupling 
coefficients such that targeted synchronization is ensured. The principle of this method is extended 
to storage/recall of images using coupled Rulkov maps. The process of adjusting coupling coefficients 
between Rulkov maps (often used to model neurons) for the purpose of storing a desired image mimics 
the process of adjusting synaptic strengths between neurons to store memories. Our method uses both 
synchronisation and synaptic weight modification, as the human brain is thought to do. The stored 
image can be recalled by providing an initial random pattern to the dynamical system. The storage and 
recall of the standard image of Lena is explicitly demonstrated.

In this paper, we propose a mechanism for storage and recall of images that mimics the mechanisms used in the 
human brain. The mechanisms by which the human brain stores and recalls memory1 are still an active area of 
research. Two important mechanisms, which we focus on, include modification of synaptic weights1 and syn-
chronization2–4. In this work, we propose a model that uses both of these mechanisms whereas prior models pri-
marily used modification of synaptic weights. Existing mathematical models include neural network models1, 5–7,  
Gabor filters in the context of the visual system8 etc. In this paper, we investigate a model using coupled maps 
that provides an explicit method to store and recall visual images. We use Rulkov maps that have been extensively 
used earlier for modeling neurons9. Rulkov map is a 2-d map where one of the variables represents the membrane 
potential. By varying the parameters of the model, one can get different states of the neuron like spiking and cha-
otic bursts. Our model is, however, independent of the specific map that is used. We show, given an input image, it 
can be stored as a pattern of coupling strengths mimicking the patterns of synaptic weights that are hypothesized 
to be used in memory encoding. The storage and recall mechanism uses a technique that is a generalization of 
‘targeted synchronization’, a particular case of synchronization. In targeted synchronization, only a desired (tar-
geted) subset of maps is synchronized and this builds on the earlier work of Chen et al.10 on generalized Turing 
patterns. The paper by Chen et al. demonstrated how generalized Turing patterns (that is, Turing patterns that 
evolve with time) could be obtained using coupled maps.

The structure of the paper is as follows. The stability condition of synchronized state in terms of eigenvalues 
of the coupling matrix is discussed in Sec. 2. Then, in Sec. 3, we describe a general method to obtain coupling 
coefficients of a coupled map system such that it exhibits targeted synchronization within the desired subset of 
maps. In Sec. 4, the developed method is verified in coupled logistic maps by synchronizing a selected set of maps. 
By extending this technique, we store and recall images using coupled Rulkov maps in Sec. 5. A method is also 
developed for the storage/recall of image using multimode deviation in Sec. 6. Finally we summarize our results 
in Sec. 7.

Stability of the Synchronized State in Coupled Map Lattices
In recent times, synchronization of coupled nonlinear dynamical systems11, 12 has become an important area of 
research for their applications in different fields such as neural networks13–15, pattern formation10, 16, 17, to name 
a few. There has been two major strands of research in this area: Theoretical investigation of different types of 
synchronized states and applications of synchronization to different fields. In particular, special classes of syn-
chronizations such as partial synchronization wherein only a subset of the coupled systems exhibit synchrony18–20, 
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explosive synchronization wherein there exists a positive correlation between coupling strengths of the oscillators 
and their natural frequencies21, 22 have been studied extensively. Stability of the synchronous state11, 12, 16, 23, 24 and 
its relation to the size of the coupled systems25, 26 have also been well studied. Another active area of research 
is controlling coupled oscillators to exhibit periodic oscillations where required27. Applications of synchroni-
zation include encoding of information in the oscillatory network of oscillators28 and generation of different 
types of (generalized) Turing patterns by a suitable choice of parameters26, 29, 30. For example, it is shown in these 
papers that one can use coupled map lattices to generate generalized Turing patterns. Classic Turing patterns are 
obtained by destabilizing an equilibrium point and hence the time evolution of the resultant pattern is simple. 
Generalized Turing patterns are obtained by destabilizing more general states including chaotic states. Hence 
the temporal evolution of these patterns can be chaotic. Further, the coupling is no longer restricted to diffusive 
coupling.

In this section, we study the stability of the synchronized state of a system of coupled maps. Consider a glob-
ally coupled map lattices (CML), where each map is coupled to every other maps, represented by
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where xi(n) is the M-dimensional state vector of the ith map at the discrete time n, Gij represents the coupling 
strength between ith and jth maps, and N is the total number of maps in the CML. If we define the homogeneous 
synchronized state (synchronization manifold) as x1(n) = x2(n) = … = xN(n) = x(n), then the linearization of Eq. 
(1) around this state leads to
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where zi(n) denotes the deviation of the ith map from the synchronized state (x(n)) and J is the Jacobian matrix 
of order M. Following standard procedure23, we define an M × N matrix S(n) = (z1(n) z2(n) … zN(n)). This matrix 
is a collection of all the deviation variables and describes the dynamics of deviation from the synchronized state. 
The number of columns represents the number of maps (N) and the number of rows represents the number of 
variables in each map (M). Then Eq. (2) can be written more compactly as
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where GT is the transpose of the coefficient matrix of order N. Let ei be the eigenvector corresponding to the 
eigenvalue λi of G (i = 1, 2, …, N). Multiplying Eq. (3) by ei and replacing S(n)ei by the M-dimensional vector ui, 
it becomes
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1  is a weighted sum of deviation of each map from the synchronized state (with the 
corresponding components of ei as the weight factor). Thus Eq. (4) describes the dynamics of the weighted sum 
of deviations.

In order to investigate the stability of the synchronized state, we need an expression for the Lyapunov expo-
nent (μk) which can be written as23
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where hk represents the Lyapunov exponent of the isolated map. Intuitively, Lyapunov exponents represent the 
exponential rate of linear divergence from the synchronized state. The condition for the existence of homogene-
ous chaotic synchronized state (where all the maps are synchronized), that is, ∑ == G 0j

N
ij1  requires that one of the 

eigenvalues of the coupling matrix (G) should equal zero. This requirement is also reflected in Eq. (4) and it is the 
remaining eigenvalues that determine the stability of the synchronized state. Each such non-zero eigenvalue gives 
rise to M transverse Lyapunov exponents23 as in Eq. (5). A negative transverse Lyapunov exponent would corre-
spond to the case where any deviation in the corresponding direction from the synchronized state goes to zero 
asymptotically. For stability we require that all transverse Lyapunov exponents be negative. That is, 
μmax = hmax + ln|1 + (λi)/(N)| < 0 (for all non-zero eigenvalues) which is equivalent to the condition
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Targeted Synchronization using Single Mode Deviation
Having obtained stability conditions for the homogeneous synchronized state, we now prescribe a method for 
constructing the coupling matrix such that targeted synchronization is achieved. For this, we first need some 
preliminary results. We start by making one of the eigenvalues obtained above to fall outside the stability region 
of the homogeneous synchronized state and thereby allowing the system to deviate along the corresponding 
eigenvector (this is called single mode deviation). In particular we impose the following conditions on the eigen-
values and eigenvectors: (i) λ1 = 0 with the corresponding eigenvector e1 = (1, 1, …, 1)T, (ii) λ2 is chosen outside 
its stability region so that the original homogeneous synchronized state is unstable, and the corresponding eigen-
vector e2 is defined in such a way that the sum over all of its components is zero (This condition is to ensure that 
the net deviation of coupled map system from the synchronized state is zero); it is preferable to choose the value 
of λ2 to be close to the stability boundary to avoid numerical blow up, (iii) The remaining eigenvalues are assigned 
to a stable value −N which is the midpoint of the stable interval defined in Eq. (6) (this condition extinguishes 
the deviation of the system along all the eigenvectors other than e2 according to Eq. (4)), and the eigenvectors e3, 
e4,…, eN are chosen to be a set of random orthogonal vectors, (iv) All the eigenvectors, namely, e1, e2,…, eN are 
made orthogonal to each other.

Considering all the above conditions, we define a diagonal eigenvalue matrix D with diagonal elements given 
by (0, λ2, −N, …, −N), where λ2 is chosen outside the stability region. The general form of an orthogonal eigen-
vector matrix consistent with the above conditions is given by
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where o1, o2, …, oN−2 are random orthogonal vectors. Finally the coupling matrix is obtained by the similarity 
transformation10 as

= .−G eD e (8)1

The similarity transformation results only in a change of bases and the eigenvalues remain unchanged. In 
particular, the eigenvalues of G are identical to those of D and hence the stability characteristics also remain the 
same. When the homogeneous synchronized state is destabilized in the above manner, that is, when we use the 
coupling matrix (8) in Eq. (1), the deviation is only along e2. From the definition of u it is inferred that the devia-
tion of ith map in the CML is weighted with the corresponding component of e2, that is, e i

2. The crucial point is that 
the time evolution of each map is such that its deviation from the synchronized state is taking place by preserving 
their weight factors in u due to Eq. (4). In other words, the time evolution of the deviation of each map should be 
consistent with that of the weighted sum of the deviations. Hence
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where kj(n) is a proportionality constant corresponding to jth dynamical variable for all maps at a particular 
discrete time n.

We now use the above results for two purposes: (1) To achieve targeted synchronization wherein only a desired 
subset of maps are made to synchronize by means of setting the weight factors of deviations of these maps equal, 
that is, by assigning equal values to the corresponding components of e2. For instance, if we require to synchro-
nize p, q, and rth maps, then we set = = =e e e cp q r

2 2 2 , where c is a common weight factor for these three maps. 
Here c is also a measure of deviation of this targeted synchronous state of these maps from the average value 
x(n) = (x1(n) + x2(n) + … + xN(n))/N. If c is taken to be zero, the targeted synchronous state remains as x(n).

(2) More generally, to control the dynamics of each map in the coupled system in such a way that its deviation 
from x(n) contains the complete information about a particular pixel value of a given pattern/image. For example, 
if the jth map is assigned to carry the pixel value 156, then e j

2  (the weight factor of the deviation of jth map from 
x(n) in defining u) is set to 156. Similarly all components of e2 are assigned to have the corresponding pixel value 
in the given pattern during the determination of G that encodes the entire pattern. Since kj(n) is same for all maps, 
if one of the components of e2 is preassigned then all other components which bear the required pattern can be 
retrieved from the dynamics of the CML by inverting Eq. (9).

Targeted Synchronization in Coupled Logistic Maps
To illustrate targeted synchronization, we consider coupled logistic maps (CLM) by choosing f(x) = 1 − ax2 
in Eq. (1). The control parameter a is fixed at 1.9 so that it exhibits a chaotic oscillation. Logistic map (with 
the given parameter) was chosen only for illustration since it is a standard well-studied map. The method is 
applicable to maps of any dimension. For N = 9, the stability region of the synchronized chaos is found to be 
−14.205 < λ < −3.794. In order to construct a suitable coupling matrix G which ensures the targeted synchro-
nized state, we define a 9 × 9 diagonal eigenvalue matrix D with diagonal elements given by: (0, −3, −9, … −9).

In this example, we target the maps 1, 4 and 8 to synchronize with the average value x(n) ( = x1(n) + x2(n) + … 
+ x9(n))/9) by setting the corresponding components of e2 as 0. In principle, the remaining components may take 
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any values such that the sum of all components of e2 is zero. However, to make the study more general, we assign 
the value 10 identically to 2nd, 5th and 7th components of e2 to synchronize the corresponding maps to a value 
that is different from the average value x(n). Hence the resulting form of e2 is taken to be (0, 10, 42, 0, 10, −103, 
10, 0, 31)T. Substituting this eigenvector in Eq. (7) and following the procedure discussed above, we finally obtain 
the coupling matrix G that encodes this pattern. Using this G in Eq. (1) (with f(x) given by the logistic map), we 
find that the desired targeted synchronization is achieved within the sets of {1, 4, 8} with x(n) as the synchronized 
state. This is shown in Fig. 1. The set of maps {2, 5, 7} have a synchronized state different from x(n) as expected.

Image Storage and Recall using Coupled Rulkov Maps
In this section, we exploit the ability to control the dynamics of a particular map in the coupled map system to 
store a given pattern. We use Rulkov maps, which have been extensively used to model neurons. Rulkov maps cor-
respond to neurons and coupling strengths correspond to synaptic strengths. Just as the human brain is thought 
to store memories by changing the pattern of synaptic strengths between neurons, in our model, the image is 
stored by changing coupling strengths between Rulkov maps. This hints at the possibility that our model could 
also serve as a preliminary mathematical model of how the human brain stores and recalls images.

To store a one dimensional pattern described by e2, we start with the coupled maps (1) where the dynamics of 
each lattice site is described by the Rulkov map

α
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with a set of parameters α = 3.5, β = 0.0005 and σ = 0.001. We obtain similar behaviour with other sets of param-
eters, except that the stability region is different in these cases.

Before proceeding with image storage and recall, we first demonstrate that Rulkov maps also exhibit targeted 
synchronization. We use a system of 9 coupled Rulkov maps. As in the case of coupled logistic maps, we again 
target the maps 1, 4 and 8 to synchronize with the average value x1(n) = + + … +x n x n x n( ( ) ( ) ( ))/91

1
1
2

1
9 ). This 

is shown in Fig. 2.
We now illustrate the storage and recall of a simple 1-dimensional pattern represented by the set {142, 10, 200, 

58, 96, 3, 171}. For this purpose, we use a system of coupled Rulkov maps of size N = 9 with the coupling matrix 
determined by following the procedure described in Sec. 3. During the determination of the coupling matrix, it 
should be taken into account that the stability region for the synchronized state is −17.01 ≤ λ ≤ −0.99 and we 
should assign e2 = (142, 10, 200, 58, 96, 3, 171, −681, 1)T. It should also be noted here that two additional com-
ponents have been appended in e2, the first one is to make the sum of components of e2 zero and the second is to 
obtain the proportionality constant involved in Eq. (9), namely, k1(n) or k2(n). The diagonal elements of D is set 

Figure 1.  Targeted synchronization of coupled logistic maps where the synchronized value coincides 
with the average value x(n): (a and b) the synchronization of the first map with 4th and 8th maps, (c–f) the 
desynchronization of other maps (2, 3, 6 & 9) with the first map.
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to (0, 1, −9, −9, −9, −9, −9, −9, −9). Following the procedure outlined earlier, the given pattern is stored in the 
coupled Rulkov maps through a set of coupling coefficients, that is, as a coupling matrix G.

The deviation of ith map from the synchronized state x1(n), that is, = −z n x n x n( ) ( ) ( )i i
1 1 1  is evaluated using 

the map defined by the dynamical Eq. (10) for the purpose of usage in Eq. (9). Finally, the pattern recalled from 
the dynamics of coupled Rulkov maps using Eq. (9) and its splined (in x direction) image is shown Fig. 3. Here y 
axis represents time evolution of the pattern which is found to be invariant after transient. It has been verified that 
equal values in the components of e2 result in synchronization of the corresponding maps in the coupled dynam-
ical systems, that is, a set of maps bearing same pixel value exhibit targeted synchronization.

Image Storage and Recall using Multimode Deviation
So far, we considered only the single mode deviation of a coupled map system in the study of targeted synchro-
nization and image storage/recall. We now describe an effective method to encode and recall a p × p pixel image 

Figure 2.  Targeted synchronization of coupled Rulkov maps where the synchronized value coincides with 
the average value x1(n): (a and b) the synchronization of the first map with 4th and 8th maps, (c–f) the 
desynchronization of other maps (2, 3, 6 & 9) with the first map.

Figure 3.  Splined (in x direction) image of one dimensional pattern {142, 10, 200, 58, 96, 3, 171} decoded from 
the globally coupled Rulkov maps with α = 3.5, β = 0.0005, σ = 0.001 and N = 9.



www.nature.com/scientificreports/

6SCIeNTIfIC REPOrTS | 7: 8921  | DOI:10.1038/s41598-017-09440-6

using multimode deviations (where we destabilize the synchronized state along more than one eigenvector). This 
permits us to use a single globally coupled system, whose coupling coefficients have a 2-d topology, to encode a 
2-d image. It should be emphasized that this is a single globally coupled system of maps with a 2-d coupling topol-
ogy and not a sequence of 1-d maps. The method uses a coupled map system of size N = 2p + 1 (with a 2-d topol-
ogy defined by N × N coupling coefficients) to store p × p pixels. Encoding p × p pixels would normally require 
the system to be of size p implying that the coupling coefficient matrix should be of size p × p. However, for the 
purpose of decoding, as we shall see, the coupled system is taken to be of size 2p + 1, the minimum size required 
to both store and recall p × p pixels. In principle, this system can store p2 independent images.

In this method, we allow the coupled map system to deviate from its synchronized state along p of 2p + 1 
eigenvectors by choosing the corresponding eigenvalues to fall outside the stability region of synchronized state 
so that the diagonal elements of D become (0, λ2, λ3, λp+1, −(2p + 1), −(2p + 1), −(2p + 1)), where λ2, λ3, …, λp 
and λp+1 are all unstable eigenvalues. It is straightforward to obtain the coupling matrix G from (8) by choosing 
the (2p + 1) eigenvectors as follows. The first eigenvector is taken to be e1 = (1, 1, …, 1). The components of next 
p eigenvectors e2, e3, ep+1, corresponding to the p unstable eigenvalues, are specified as follows. The first p com-
ponents of the ith eigenvector (i = 2, …, p + 1) are taken to be the p pixels corresponding to the (i − 1)th row of 
the image. The next p components of each of these eignevectors are chosen randomly but with the condition that 
the eigenvectors are orthogonal to one another. Finally, a (2p + 1)th component is appended to each eigenvector 
such that the sum over all components of that eigenvector becomes zero. The last p eigenvectors (corresponding 
to the last p stable eigenvalues) are chosen to be random orthogonal eigenvectors. The coupling matrix G (of order 
N × N), obtained in this manner, directly stores a two dimensional pattern of pixel size p × p.

The image can be recalled from the evolution of the single globally coupled system as follows. The assumption 
that we made, namely, that the system can deviate along p eigenvectors from the homogeneous synchronized state 
introduces p extra constraints in the transverse evolution of each map. Because of these constraints, the deviation 
of the ith map is restricted to the directions of …e e e, , ,i i
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By solving an appropriate number of equations defined by (11), we can recall the pattern 
= … + = …e j p i p( ; 2, 3, , 1, 1, 2, , )j

i  from the dynamics of the coupled map as described below. It is important 
to note that k n( )m

j  is independent of i, that is, its value is the same for all maps. Thus, for a fixed m, the substitution of 
i = p + 1, p + 2, …, 2p in Eq. (11) gives rise to a set of p simultaneous algebraic equations for …k n k n k n( ), ( ), , ( )m m m

p2 3  
and +k n( )m

p 1 . This set of simultaneous equations has a unique solution, since each coefficient involved in these equa-
tions ( = … +e j p; 2, , 1j

i  and i = p + 1, p + 2, …, 2p) has a preassigned random value. The same procedure can be 
followed to obtain p − 1 other such sets of k evaluated at different discrete times after the transient. This gives us 

+ + … ++k n k n k n( 1), ( 1), , ( 1)m m m
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Our primary goal is to determine ej

i’s (j = 2, p + 1 and i = 1, 2, …, p) which actually represent the image that 
was encoded in G. To obtain, for example ej

1, j = 2, …, p + 1, we solve a set of p simultaneous equations obtained 
by setting i = 1 in Eq. (11) for p discrete times after discarding the transient. Similarly, ej

2; j = 2, …, p + 1 is deter-
mined by solving another set of p simultaneous equations obtained by substituting i = 2, for p iterations in Eq. 
(11). Following this procedure, we get all the remaining components of the eigenvectors ej, j = 2, 3, …, p + 1 thus 
permitting us to recall the image.

Figure 4.  Images of Lena: (a) Original image and (b) Image decoded from a globally coupled system of Rulkov 
maps with α = 3.5, β = 0.0005, σ = 0.001 and N = 1025.
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To illustrate this method, we consider the image of Lena with 512 × 512 pixels resolution. The size of the cou-
pled Rulkov map system is set to N = 2p + 1 = 1025 which gives the stability range of the synchronized state to be 
−1937.1 < λ < −112.1 for the parameter set α = 3.5, β = 0.0005, σ = 0.001. Following the procedure discussed 
above, we construct the coupling matrix G. The image is recalled from a set of 1025 coupled Rulkov maps which 
are coupled through G using Eq. (11). The final recalled image is found to be exactly the same as the original 
image as shown in Fig. 4.

Discussions
In this paper, using targeted synchronization and coupled Rulkov maps, we have explicitly demonstrated a math-
ematical model for storage and recall of realistic 2-d images. We used a single globally-coupled system with multi-
mode deviation for this purpose. Our model has its limitations. There is no guarantee that the final pattern can be 
predicted from the most unstable eigenvectors (modes) of the model since this is only a linear model. This would 
actually depend on the basin of attraction of the stored images in the full nonlinear map.

Next, we briefly discuss the relationship of our model to storage and recall of images in the brain. There has 
been much work on the mechanisms by which the brain encodes and decodes memories (images). The general 
contours of such mechanisms are well understood and involve long-term potentiation, synchronous firing of neu-
rons, and the pattern of synaptic weights1–4. Storage of images depends on the plasticity of synaptic connections. 
In particular, synchronous firing of a group of neurons can lead to an increase in the synaptic strengths between 
members of this group through long term potentiation. Storage of images occurs through this pattern of synap-
tic weights. This allows the brain to internally recreate the pattern of activity later and thereby recall the image. 
Further, it has been hypothesized31 that synchronization and synaptic plasticity may form a positive feedback 
loop where extended periods of synchronization mediated communication enhances synaptic strengths and the 
increased synaptic strengths in turn facilitate synchronization within the group.

Our model mimics two important aspects of image storage and recall in the brain as described above: syn-
chronization and synaptic modification of weights (which corresponds to changes in coupling strengths in our 
model). In this sense, our model could be thought of as a bio-inspired or a neuromorphic image encoding mech-
anism. But one could turn this around and hypothesize that the brain could conceivably use a similar coupled 
system of neurons as proposed by us to store and recall memories. Needless to say, our model can not be directly 
applicable. For example, Rulkov maps are an approximation for the real neurons. This approximation focuses 
on capturing only the dynamical behaviour of the neuron in a simple fashion at the cost of reproducing the 
detailed biophysical mechanisms9. In its defense, the all important dynamical behaviour of action potentials is 
well-captured by the approximation. It remains to be seen how a more realistic model of the neuron will impact 
our mechanism for storage and recall. Further, we have considered only a simplistic coupling between neurons. 
A more realistic synaptic coupling could also alter our conclusions and needs to be considered. Therefore much 
additional work would be required to clarify the applicability of our model to the human brain.

Data availability.  All data generated or analysed during this study are included in this published article.
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