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Background: Lack of anatomy recognition represents a clinically relevant risk in abdominal surgery. Machine learning (ML) methods
can help identify visible patterns and risk structures; however, their practical value remains largely unclear.
Materials andmethods: Based on a novel dataset of 13 195 laparoscopic images with pixel-wise segmentations of 11 anatomical
structures, we developed specialized segmentation models for each structure and combined models for all anatomical structures
using two state-of-the-art model architectures (DeepLabv3 and SegFormer) and compared segmentation performance of
algorithms to a cohort of 28 physicians, medical students, and medical laypersons using the example of pancreas segmentation.
Results: Mean Intersection-over-Union for semantic segmentation of intra-abdominal structures ranged from 0.28 to 0.83 and from
0.23 to 0.77 for the DeepLabv3-based structure-specific and combined models, and from 0.31 to 0.85 and from 0.26 to 0.67 for the
SegFormer-based structure-specific and combined models, respectively. Both the structure-specific and the combined
DeepLabv3-based models are capable of near-real-time operation, while the SegFormer-based models are not. All four models
outperformed at least 26 out of 28 human participants in pancreas segmentation.
Conclusions: These results demonstrate that MLmethods have the potential to provide relevant assistance in anatomy recognition
in minimally invasive surgery in near-real-time. Future research should investigate the educational value and subsequent clinical
impact of the respective assistance systems.

Keywords: artificial intelligence, laparoscopy, minimally invasive surgery, surgical anatomy, surgical data science, surgical
innovation

Introduction

Computer vision describes the computerized analysis of digital
images aiming at the automation of human visual capabilities,
most commonly using machine learning (ML) methods, in par-
ticular deep learning. This approach has transformed medicine in
recent years, with successful applications including computer-
aided diagnosis of colonic polyp dignity in endoscopy[1,2],
detection of clinically actionable genetic alterations in

histopathology[3], and melanoma detection in dermatology[4].
The availability of large amounts of training data is the defining
prerequisite for the successful application of deep learning
methods. With the establishment of laparoscopy as the gold
standard for a variety of surgical procedures[5–8] and the
increasing availability of computing resources, these concepts
have gradually been applied to abdominal surgery. The over-
whelming majority of research efforts in the field of Artificial
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Intelligence (AI)-based analysis of intraoperative surgical imaging
data (i.e. video data from laparoscopic or open surgeries) has
focused on classifying images with respect to the presence and/or
location of previously annotated surgical instruments or anato-
mical structures[9–13] or on analysis of surgical proficiency[14–16]

based on recorded procedures. However, almost all research
endeavors in the field of computer vision in laparoscopic surgery
have concentrated on preclinical stages, and to date, no AI model
based on intraoperative surgical imaging data could demonstrate
a palpable clinical benefit[17,18]. Among the studies closest to
clinical application are recent works on the identification of
instruments and hepatobiliary anatomy during cholecystectomy
for automated assessment of the critical view of safety[13] and on
the automated segmentation of safe and unsafe preparation zones
during cholecystectomy[19].

In surgery, patient outcome heavily depends on the experience
and performance of the surgical team[20,21]. In a recent analysis of
Human Performance Deficiencies in major cardiothoracic, vas-
cular, abdominal transplant, surgical oncology, acute care, and
general surgical operations, more than half of the cases with
postoperative complications were associated with identifiable
human error. Among these errors, lack of recognition (including
misidentified anatomy) accounted for 18.8%, making it the most
common Human Performance Deficiency overall[22]. Examples
of complications directly related to anatomical misperception are
iatrogenic lesions to the ureter in gynecologic procedures[23] and
pancreatic injuries during splenic flexure mobilization in color-
ectal surgery[24]. While AI-based systems identifying anatomical
risk and target structures would theoretically have the potential
to alleviate this risk, limited availability and diversity of (anno-
tated) laparoscopic image data drastically restrict the clinical
potential of such applications in practice.

To advance and diversify the applications of computer vision
in laparoscopic surgery, we have recently published the Dresden
Surgical Anatomy Dataset[25], providing 13 195 laparoscopic
images with high-quality[26], expert-reviewed annotations of the
presence and exact location of 11 intra-abdominal anatomical
structures: abdominal wall, colon, intestinal vessels (inferior
mesenteric artery and inferior mesenteric vein with their sub-
sidiary vessels), liver, pancreas, small intestine, spleen, stomach,
ureter and vesicular glands. Here, we present the first study based
on this dataset and present ML models to assist in precisely
delineating anatomical structures, aiming to reduce surgical risks.
Specifically, we evaluate the automated detection and localization
of organs and anatomical structures in laparoscopic view using
two state-of-the-art model architectures: DeepLabv3 and
SegFormer. To assess the clinical value of the presented ML
models, we compare algorithm segmentation performance to that
of humans using the example of delineation of the pancreas.

Methods

Patient cohort

Video data from 32 robot-assisted anterior rectal resections or
rectal extirpations were gathered at the trial center between
February 2019 and February 2021. All included patients had a
clinical indication for the surgical procedure recommended by an
interdisciplinary tumor board. Patients were not specifically
selected with respect to demographic or physical parameters (i.e.
age, sex, body mass index, comorbidities, previous surgical

procedures) or disease-specific criteria (i.e. indication, disease
stage). Respective details of the underlying patient cohort have
been published previously[25]. The procedures were performed
using the da Vinci Xi system (Intuitive Surgical, Sunnyvale, CA,
USA) with a standard Da Vinci Xi/X Endoscope with Camera
(8 mm diameter, 30 degree angle, Intuitive Surgical, Sunnyvale,
California, USA, Item code 470057). Surgeries were recorded
using the CAST system (Orpheus Medical GmBH, Frankfurt a.
M., Germany). Each record was saved at a resolution of
1920× 1080 pixels in MPEG-4 format.

Dataset

Based on the full-length surgery recordings and respective tem-
poral annotations of organ visibility, individual image frames
were extracted and annotated as described previously[25]. In brief,
three independent annotators with substantial experience in
robot-assisted rectal surgery created pixel-wise annotations,
which were subsequently reviewed by a surgeon with 4 years of
experience in robot-assisted rectal surgery. A detailed description
of the annotation process, including underlying annotation pro-
tocols as well as analyses of annotator agreement and technical
parameters, has been published previously[25]. To guarantee the
real-world applicability of ML models trained on the dataset,
images with perturbations such as blurring due to camera
movements, soiling of the lens, and presence of blood or smoke
were not specifically excluded. However, the annotation proto-
cols advised annotators to only annotate structures in soiled and
blurry images if the respective structures were clearly delineable.
The resulting Dresden Surgical Anatomy Dataset comprises
13 195 distinct images with pixel-wise segmentations of 11
anatomical structures: abdominal wall, colon, intestinal vessels
(inferior mesenteric artery and inferior mesenteric vein with their
subsidiary vessels), liver, pancreas, small intestine, spleen, sto-
mach, ureter, and vesicular glands. Moreover, the dataset com-
prises binary annotations of the presence of each of these organs

HIGHLIGHTS

• Machine learning models to reduce surgical risks that
precisely identify 11 anatomical structures: abdominal
wall, colon, intestinal vessels (inferior mesenteric artery
and inferior mesenteric vein with their subsidiary vessels),
liver, pancreas, small intestine, spleen, stomach, ureter, and
vesicular glands.

• Large training dataset of 13 195 real-world laparoscopic
images with high-quality anatomy annotations.

• Similar performance of individual segmentationmodels for
each structure and combined segmentation models in
identifying intra-abdominal structures, and similar seg-
mentation performance of DeepLabv3-based and
SegFormer-based models.

• DeepLabv3-based models are capable of near-real-time
operation while SegFormer-based models are not, but
SegFormer-based models outperform DeepLabv3-based
models in terms of accuracy and generalizability.

• All models outperformed at least 26 out of 28 human
participants in pancreas segmentation, demonstrating their
potential for real-time assistance in recognizing anatomical
landmarks during minimally invasive surgery.
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for each image. The dataset is publicly available via the following
link: https://doi.org/10.6084/m9.figshare.21702600.

For ML purposes, the Dresden Surgical Anatomy Dataset was
split into training, validation, and test data as follows (Fig. 1):
• Training set (at least 12 surgeries per anatomical structure):

surgeries 1, 4, 5, 6, 8, 9, 10, 12, 15, 16, 17, 19, 22, 23, 24, 25,
27, 28, 29, 30, 31.

• Validation set (3 surgeries per anatomical structure): surgeries
3, 21, 26.

• Test set (5 surgeries per anatomical structure): surgeries 2, 7,
11, 13, 14, 18, 20, 32.
This split is proposed for future works using the Dresden

Surgical Anatomy Dataset to reproduce the variance of the entire
dataset within each subset, and to ensure comparability regarding
clinical variables between the training, the validation, and the test
set. Surgeries for the test set were selected to minimize variance
regarding the number of frames over the segmented classes. Out
of the remaining surgeries, the validation set was separated from
the training set using the same criterion.

Structure-specific semantic segmentation models

To segment each anatomical structure, a separate convolutional
neural network for the segmentation of individual structures was
trained. Specifically, we trained and compared two different
architectures: a Deeplabv3[27] model with a ResNet50 backbone
with default PyTorch pretraining on the COCO dataset[28] and a
SegFormer[29] model pretrained on the Cityscapes dataset[30].
The networks were trained using cross-entropy loss and the
AdamWoptimizer[31] for 100 epochs with a starting learning rate
of 10 −4 and a linear learning rate scheduler, decreasing the
learning rate by 0.9 every 10 epochs. For data augmentation, we
applied random scaling and rotation, as well as brightness and
contrast adjustments. The final model for each organ was
selected via the Intersection-over-Union (IoU, Supplementary
Fig. 1, Supplemental Digital Content 1, http://links.lww.com/JS9/
A792) on the validation dataset and evaluated using the Dresden
Surgical Anatomy Dataset with the abovementioned training-
validation-test split (Fig. 1).

Segmentation performance was assessed using F1 score, IoU,
precision, recall, and specificity on the test folds. These parameters
are commonly used technical measures of prediction exactness,
ranging from 0 (least exact prediction) to 1 (entirely correct pre-
diction without any misprediction, Supplementary Fig. 1,
Supplemental Digital Content 1, http://links.lww.com/JS9/A792).

Combined semantic segmentation models

A convolutional neural network with a common encoder and 11
decoders for combined segmentation of the 11 anatomical
structures was trained. As for the structure-specific models,
DeepLabv3-based[27] and SegFormer-based[29] models were
used. For DeepLabv3, a shared ResNet50 backbone with default
PyTorch pretraining on the COCO dataset[28] was used. For each
class, a DeepLabv3 decoder was then run on the features
extracted from a given image by the backbone. Similarly, for
SegFormer, an encoder pretrained on the Cityscapes dataset[30]

was combined with 11 decoders.
As the images are only annotated for binary classes, the loss is

only calculated for every pixel in images in which the structure
associated with the current decoder is annotated. For images in
which the associated class is not annotated, only the pixels that

are annotated as belonging to another class are included in the
loss, for example pixels that were annotated as belonging to the
class ‘liver’ can be used as negative examples for the class ‘pan-
creas’. The remaining training procedure was identical to the
structure-specific model. The models were trained and evaluated
using the Dresden Surgical Anatomy Dataset with the above-
mentioned training-validation-test split (Fig. 1).

Segmentation performance was assessed using the F1 score,
IoU, precision, recall, and specificity on the test folds.

Evaluation of the semantic segmentation models on an
external dataset

To explore generalizability, structure-specific and combinedmodels
based on both architectures (DeepLabv3 and SegFormer) were
deployed to laparoscopic image data from the publicly available
LapGyn4 dataset[32]. Models were separately deployed for full-
scene segmentations, and their performance was visually compared.

Comparative evaluation of algorithmic and human
performance

To determine the clinical potential of automated segmentation of
anatomical risk structures, the segmentation performance of 28
humans was compared to that of the structure-specific and the
combined semantic segmentation models using the example of
the pancreas. The local Institutional Review Board reviewed and
approved this study (approval number: BO-EK-566122021). All
participants provided written informed consent to anonymous
study participation, data acquisition and analysis, and publica-
tion. In total, 28 participants (physician and non-physician
medical staff, medical students, and medical laypersons) marked
the pancreas in 35 images from the Dresden Surgical Anatomy
Dataset[25] with bounding boxes. These images originated from
26 different surgeries, and the pancreas was visible in 16 of the 35
images. Each of the previously selected 35 images was shown
once, the order being arbitrarily chosen but identical for all
participants. The open-source annotation software Computer
Vision Annotation Tool (CVAT) was used for annotations. In
cases where the pancreas was seen in multiple, non-connected
locations in the image, participants were asked to create separate
bounding boxes for each area.

Based on the structure-specific and the combined semantic
segmentation models, axis-aligned bounding boxes marking
the pancreas were generated in the 35 images from the pixel-
wise segmentation. To guarantee that the respective images
were not part of the training data, four-fold cross-validation
was used, that is the origin surgeries were split into four equal-
sized batches, and algorithms were trained on three batches
that did not contain the respective origin image before being
applied to segmentation.

To compare human and algorithm performance, the bounding
boxes created by each participant and the structure-specific, as
well as the combined semantic segmentation models, were com-
pared to bounding boxes derived from the Dresden Surgical
Anatomy Dataset, which were defined as ground truth. IoU
between the manual or automatic bounding box and the ground
truth was used to compare segmentation accuracy.
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Figure 1. Schematic illustration of the structure-specific and combined machine learning (ML) models used for semantic segmentation. The Dresden Surgical
Anatomy Dataset was split into a training, a validation, and a test set. For spatial segmentation, two sets of ML models – a structure-specific model with individual
encoders and decoders, and a combined model with a common encoder and structure-specific decoders – were trained for DeepLabv3-based and SegFormer-
based model architectures.

Kolbinger et al. International Journal of Surgery (2023)

2965



Results

ML-based anatomical structure segmentation in structure-
specific models

Structure-specific multilayer convolutional neural networks
(Fig. 1) based on two different semantic segmentation archi-
tectures termed DeepLabv3 and SegFormer, were trained to
segment the abdominal wall, the colon, intestinal vessels (inferior
mesenteric artery and inferior mesenteric vein with their sub-
sidiary vessels), the liver, the pancreas, the small intestine, the
spleen, the stomach, the ureter, and vesicular glands
(Supplementary Table 1, Supplemental Digital Content 1, http://
links.lww.com/JS9/A792). Table 1 displays technical metrics of
overlap between the annotated ground truth and the model pre-
dictions (mean F1 score, IoU, precision, recall, and specificity) for
individual anatomical structures as predicted by the structure-
specific algorithms on the test data.

Out of the analyzed segmentation models based on
DeepLabv3, performance was lowest for vesicular glands (mean
IoU: 0.28±0.21), the pancreas (mean IoU: 0.28±0.27), and the
ureter (mean IoU: 0.36±0.25), while excellent predictions were
achieved for the abdominal wall (mean IoU: 0.83±0.14) and the
small intestine (mean IoU: 0.80±0.18) (Supplementary Fig. 1,
Supplemental Digital Content 1, http://links.lww.com/JS9/A792).
In segmentation of the pancreas, the ureter, vesicular glands, and
intestinal vessel structures, there was a relevant proportion of
images with no detection or no overlap between prediction and
ground truth, while for all remaining anatomical structures, this
proportion was minimal (Fig. 2A). While the images, in which the
highest IoUs were observed, mostly displayed large organ seg-
ments that were clearly visible (Fig. 2B), the images with the
lowest IoU were of variable quality with confounding factors such

as blood, smoke, soiling of the endoscope lens, or pictures blurred
by camera shake (Fig. 2C). While overall segmentation perfor-
mance of both architectures was similar for structure-specific
models, SegFormer-based models showed a trend toward better
performance than DeepLabv3-based models in segmentation of
the pancreas, the spleen, and the ureter (Table 1, Fig. 2,
Supplementary Fig. 2, Supplemental Digital Content 1, http://
links.lww.com/JS9/A792).

To determine the models’ capabilities to operate in real-time
(frame rates of >20 frames per second), we determined their
inference times per image. For the DeepLabv3-based structure-
specific models, inference on a single image with a resolution of
640×512 pixels required, on average, 28 ms on an Nvidia
A5000, resulting in a frame rate of almost 36 frames per second.
In contrast, the SegFormer-based structure-specific semantic
segmentation models operated considerably slower at an infer-
ence time of 53 ms per image, resulting in a frame rate of 18
frames per second. This runtime includes one decoder, meaning
that only the segmentation for one anatomical class (organ or
structure) is included.

ML-based anatomical structure segmentation in combined
models

In contrast to structure-specific models, models with a mutual
encoder and organ-specific decoders could facilitate the identifi-
cation of multiple organs at once, with the potential benefit of
faster operation for multiple classes instead of sequential opera-
tion of several class-specific models. Therefore, combined models
for both semantic segmentation architectures – DeepLabv3 and
SegFormer – were trained using annotated images from the
Dresden Surgical Anatomy Dataset across anatomical structure
classes (Fig. 1, Supplementary Table 2, Supplemental Digital

Table 1
Summary of performance metrics for anatomical structure segmentation using DeepLabv3-based (A) and SegFormer-based (B)
structure-specific models on the test dataset (for each metric, mean and standard deviation are displayed).

Anatomical structure F1 score IoU Precision Recall Specificity

A. DeepLabv3 Abdominal wall 0.90± 0.10 0.83± 0.14 0.89± 0.14 0.93± 0.07 0.97± 0.04
Colon 0.79± 0.20 0.69± 0.22 0.80± 0.21 0.82± 0.21 0.97± 0.05
Inferior mesenteric artery 0.54± 0.26 0.41± 0.22 0.55± 0.25 0.67± 0.33 0.99± 0.01
Intestinal veins 0.54± 0.33 0.44± 0.29 0.70± 0.26 0.56± 0.36 1.00± 0.00
Liver 0.80± 0.23 0.71± 0.25 0.85± 0.21 0.81± 0.24 0.98± 0.03
Pancreas 0.37± 0.32 0.28± 0.27 0.59± 0.37 0.37± 0.36 1.00± 0.01
Small intestine 0.87± 0.14 0.80± 0.18 0.87± 0.16 0.91± 0.15 0.97± 0.04
Spleen 0.79± 0.23 0.69± 0.24 0.74± 0.22 0.90± 0.24 0.99± 0.01
Stomach 0.71± 0.24 0.60± 0.25 0.65± 0.25 0.89± 0.21 0.98± 0.02
Ureter 0.47± 0.30 0.36± 0.25 0.53± 0.28 0.57± 0.39 1.00± 0.00
Vesicular glands 0.40± 0.25 0.28± 0.21 0.37± 0.28 0.62± 0.35 0.97± 0.03

B. SegFormer Abdominal wall 0.91± 0.11 0.85± 0.15 0.90± 0.14 0.94± 0.09 0.98± 0.03
Colon 0.77± 0.21 0.66± 0.22 0.73± 0.22 0.87± 0.22 0.95± 0.07
Inferior mesenteric artery 0.60± 0.23 0.46± 0.21 0.58± 0.25 0.73± 0.29 0.99± 0.01
Intestinal veins 0.65± 0.25 0.52± 0.24 0.62± 0.27 0.76± 0.27 1.00± 0.00
Liver 0.83± 0.21 0.75± 0.24 0.82± 0.23 0.88± 0.18 0.98± 0.03
Pancreas 0.47± 0.32 0.37± 0.28 0.61± 0.36 0.48± 0.36 0.99± 0.01
Small intestine 0.89± 0.13 0.83± 0.17 0.87± 0.16 0.95± 0.10 0.97± 0.04
Spleen 0.85± 0.19 0.78± 0.21 0.80± 0.19 0.95± 0.16 1.00± 0.01
Stomach 0.75± 0.27 0.66± 0.28 0.76± 0.25 0.82± 0.29 0.99± 0.01
Ureter 0.58± 0.27 0.46± 0.24 0.53± 0.26 0.74± 0.32 0.99± 0.01
Vesicular glands 0.43± 0.26 0.31± 0.22 0.40± 0.28 0.63± 0.35 0.97± 0.03
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Figure 2. Pixel-wise organ segmentation with DeepLabv3-based structure-specific models trained on the respective organ subsets of the Dresden Surgical
Anatomy Dataset. (A) Violin plot illustrations of performance metrics for DeepLabv3-based structure-specific segmentation models on the test dataset. The median
and quartiles are illustrated as solid and dashed lines, respectively. (B) Example images from the test dataset with the highest IoUs for liver, pancreas, stomach, and
ureter segmentation with DeepLabv3-based structure-specific segmentation models. Ground truth is displayed as blue line (upper panel), model segmentations
are displayed as white overlay (lower panel). (C) Example images from the test dataset with the lowest IoUs for liver, pancreas, stomach, and ureter segmentation
with DeepLabv3-based structure-specific segmentation models. Ground truth is displayed as blue line (upper panel), model segmentations are displayed as white
overlay (lower panel). IoU, Intersection-over-Union.
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Content 1, http://links.lww.com/JS9/A792). Table 2 displays the
mean F1 score, IoU, precision, recall, and specificity for anato-
mical structure segmentation in the combined model.

The performance of the combined model based on DeepLabv3
was overall similar to that of structure-specific models (Table 1),
with highest segmentation performance for the abdominal wall
(mean IoU: 0.77±0.15) and the small intestine (mean IoU:
0.72±0.21), and the lowest performance for the pancreas (mean
IoU: 0.23±0.29), the ureter (IoU: 0.29±0.22) and vesicular
glands (IoU: 0.30±0.23) (Supplementary Fig. 1, Supplemental
Digital Content 1, http://links.lww.com/JS9/A792). In compar-
ison to the respective structure-specific models, the combined
DeepLabv3-based model performed notably weaker in liver seg-
mentation, while performance for the other anatomical structures
was similar. The proportion of images for which the combined
DeepLabv3-based model could not create a prediction or for
which predictions showed no overlap with the ground truth at all
was largest in the ureter, the pancreas, the stomach, the abdom-
inal vessel structures, and the vesicular glands (Fig. 3A). Similar to
the DeepLabv3-based structure-specific models, trends toward an
impact of segment size, uncommon angles of vision, endoscope
lens soiling, blurry images, and presence of blood or smoke were
seen when comparing image quality of well-predicted images
(Fig. 3B) to images with poor or no prediction (Fig. 3C). Similar to
the structure-specific models, segmentation performance of the
SegFormer-based combined segmentation model was, overall,
similar to that of DeepLabv3-based models. For segmentation of
the spleen, there was a trend toward weaker performance of
SegFormer-based models than DeepLabv3-based combined
models (Table 2, Fig. 3, Supplementary Fig. 3, Supplemental
Digital Content 1, http://links.lww.com/JS9/A792).

For the DeepLabv3-based combined models, inference on a
single image with a resolution of 640× 512 pixels required, on
average, 71 ms on an Nvidia A5000, resulting in a frame rate of
about 14 frames per second. As for structure-specific models of
both architectures, SegFormer-based combined semantic seg-
mentation models operated considerably slower at an inference
time of 102 ms per image, resulting in a frame rate of about 10
frames per second. This runtime includes all 11 decoders,
meaning that segmentations for all anatomical classes (organs or
structures) are included.

Performance of ML models on an external laparoscopic
image dataset

To evaluate model robustness on an external dataset, we deployed
the different organ segmentation models onto the publicly avail-
able LapGyn4 dataset[32] and qualitatively compared their per-
formance. Overall, the combined models better reflected true
anatomical constellations than the structure-specific models that
generally lacked specificity. With respect to model architecture,
the SegFormer-based segmentations were considerably more
robust than the DeepLabv3-based models. Common mispredic-
tions included confusion about liver and spleen, misinterpretation
of organs that were not part of the training dataset (i.e. the gall-
bladder), and poor segmentation performance on less common
images (i.e. extreme close-ups) (Fig. 4).

In summary, the SegFormer-based combined semantic seg-
mentation model resulted in robust segmentations reproducing
the true underlying anatomy. The remaining segmentation
models provided substantially less specific and less robust seg-
mentation outputs on the external dataset.

Table 2
Summary of performance metrics for anatomical structure segmentation using the DeepLabv3-based (A) and SegFormer-based (B)
combinedmodels (common encoder with structure-specific decoders) on the test dataset (for eachmetric, mean and standard deviation
are displayed).

Anatomical structure F1 score IoU Precision Recall Specificity

A. DeepLabv3 Abdominal wall 0.86± 0.11 0.77± 0.15 0.81± 0.15 0.95± 0.09 0.95± 0.04
Colon 0.75± 0.19 0.63± 0.21 0.71± 0.18 0.84± 0.23 0.95± 0.04
Inferior mesenteric artery 0.53± 0.25 0.40± 0.21 0.52± 0.22 0.68± 0.32 0.99± 0.01
Intestinal veins 0.46± 0.32 0.35± 0.27 0.70± 0.23 0.48± 0.36 1.00± 0.00
Liver 0.65± 0.34 0.57± 0.33 0.76± 0.23 0.69± 0.38 0.98± 0.03
Pancreas 0.32± 0.30 0.23± 0.24 0.61± 0.33 0.32± 0.35 0.99± 0.01
Small intestine 0.81± 0.19 0.72± 0.21 0.81± 0.17 0.87± 0.23 0.96± 0.03
Spleen 0.78± 0.24 0.69± 0.24 0.76± 0.18 0.89± 0.26 0.99± 0.01
Stomach 0.63± 0.32 0.53± 0.29 0.68± 0.23 0.74± 0.37 0.98± 0.02
Ureter 0.40± 0.28 0.29± 0.22 0.44± 0.27 0.56± 0.40 0.99± 0.01
Vesicular glands 0.42± 0.27 0.30± 0.23 0.41± 0.30 0.56± 0.36 0.98± 0.02

B. SegFormer Abdominal wall 0.76± 0.24 0.66± 0.24 0.78± 0.15 0.86± 0.28 0.92± 0.07
Colon 0.64± 0.27 0.52± 0.24 0.66± 0.19 0.78± 0.34 0.93± 0.06
Inferior mesenteric artery 0.40± 0.24 0.28± 0.18 0.37± 0.21 0.68± 0.38 0.97± 0.02
Intestinal veins 0.43± 0.33 0.33± 0.27 0.63± 0.24 0.52± 0.41 0.99± 0.01
Liver 0.62± 0.35 0.53± 0.32 0.76± 0.19 0.71± 0.40 0.95± 0.07
Pancreas 0.35± 0.32 0.26± 0.25 0.56± 0.28 0.43± 0.41 0.99± 0.01
Small intestine 0.78± 0.19 0.67± 0.20 0.74± 0.14 0.90± 0.23 0.94± 0.06
Spleen 0.71± 0.24 0.59± 0.23 0.65± 0.21 0.89± 0.25 0.99± 0.01
Stomach 0.65± 0.32 0.55± 0.29 0.71± 0.22 0.75± 0.36 0.98± 0.02
Ureter 0.38± 0.29 0.27± 0.23 0.43± 0.27 0.55± 0.40 0.99± 0.01
Vesicular glands 0.38± 0.25 0.26± 0.20 0.32± 0.25 0.66± 0.35 0.96± 0.03

AI, artificial intelligence; IoU, Intersection-over-Union; SD, standard deviation.
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Figure 3. Pixel-wise organ segmentation with the DeepLabv3-based combined model trained on the Dresden Surgical Anatomy Dataset across anatomical
structure classes with a common encoder and structure-specific decoders. (A) Violin plot illustrations of performance metrics for the DeepLabv3-based combined
segmentation model on the test dataset. The median and quartiles are illustrated as solid and dashed lines, respectively. (B) Example images from the test dataset
with the highest IoUs for liver, pancreas, stomach, and ureter segmentation with the DeepLabv3-based combined segmentation model. Ground truth is displayed
as blue line (upper panel), model segmentations are displayed as white overlay (lower panel). (C) Example images from the test dataset with the lowest IoUs for liver,
pancreas, stomach, and ureter segmentation with the DeepLabv3-based combined segmentation model. Ground truth is displayed as blue line (upper panel),
model segmentations are displayed as white overlay (lower panel). IoU, Intersection-over-Union.
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Performance ofMLmodels in relation to human performance

To approximate the clinical value of the previously described
algorithms for anatomical structure segmentation, the perfor-
mances of the DeepLabv3-based and SegFormer-based structure-

specific and the combined models were compared to that of a
cohort of 28 physicians, medical students and persons with no
medical background (Fig. 5A), and different degrees of experience
in laparoscopic surgery (Fig. 5B). A vulnerable anatomical

Figure 4. Comparison of DeepLabv3-based and SegFormer-based structure-specific and combined segmentation model performance on an external laparo-
scopic image dataset (LapGyn4). Models were deployed to the publicly available LapGyn4 dataset of non-semantically segmented images from gynecological
procedures in conventional laparoscopic technique. Model segmentations for each organ are displayed. For the structure-specificmodels, segmentations of the 11
individual segmentation models are overlayed in one image. The figure shows representative images from the dataset.
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structure[24] with – measured by classical metrics of overlap
(Tables 1 and 2) – comparably weak segmentation performance of
the trained algorithms, the pancreas was selected as an example.

Comparing bounding box segmentations of the pancreas of
human annotators, the medical and laparoscopy-specific experi-
ence of participants was mirrored by the respective IoUs
describing the overlap between the pancreas annotation and the
ground truth. The pancreas-specific segmentation models based
on DeepLabv3 (IoU: 0.29) and SegFormer (IoU: 0.37), as well as
the combined segmentation models based on DeepLabv3 (IoU:
0.21) and SegFormer (IoU: 0.32) outperformed at least 26 out of
the 28 human participants (Fig. 5C, D). Overall, these results
demonstrate that the developed models have clinical potential to
improve the recognition of vulnerable anatomical structures in
laparoscopy.

Discussion

In surgery, misinterpretation of visual cues can result in objecti-
fiable errors with serious consequences[22]. ML models could
augment the identification of anatomical structures during
minimally invasive surgery and thereby contribute to a reduction
of surgical risks. However, data scarcity and suboptimal dataset
quality, among other factors, drastically restrict the clinical
impact of applications in the field of surgical data
science[17,33–37]. Based on a robust public dataset providing
13 195 laparoscopic images with segmentations of 11 intra-
abdominal anatomical structures, this study explores the poten-
tial of ML for automated segmentation of these organs and
compares algorithmic segmentation quality to that of humans
with varying experience in minimally invasive abdominal
surgery.

In summary, the presented findings suggest that ML-based seg-
mentation of intra-abdominal organs and anatomical structures is
possible and has the potential to provide clinically valuable infor-
mation. At an average runtime of 71 ms per image, corresponding
to a frame rate of 14 frames per second, the combined DeepLabv3-
based model would facilitate near-real-time identification of 11

anatomical structures. In contrast, the SegFormer-based model is
further from real-time performance at a runtime of 102 ms per
image, resulting in a frame rate of less than 10 frames per second.
These runtimes mirror the performances of non-optimized versions
of the models, which can be significantly improved using methods
such as TensorRT from Nvidia. However, with respect to gen-
eralizability and robustness, we observed substantially more accu-
rate segmentation performance of the SegFormer-based models as
compared to the DeepLabv3-based models when deployed to an
external conventional laparoscopic dataset. Moreover, the struc-
ture-specific models exhibited a lack of accuracy and anatomical
coherence, which can be explained by their organ-specific training
process.

Measured by classical metrics of overlap between segmenta-
tion and ground truth, predictions were, overall, better for large
and similar-appearing organs such as the abdominal wall, the
liver, the stomach, and the spleen as compared to smaller and
more diverse-appearing organs such as the pancreas, the ureter,
or vesicular glands. Furthermore, poor image quality (i.e. images
blurred by camera movements, presence of blood or smoke in
images) was linked to lower accuracy of ML-based segmenta-
tions. Consequently, it is likely that a better nominal performance
of theMLmodels could be achieved through a selection of images
from the early phases of the surgery, in which such perturbations
are not present. However, we purposely did not exclude images
with suboptimal image quality, as the selection on image level
would introduce bias and thereby limit applicability. In this
context, selection on the patient level and on the image level is a
common challenge in computer vision[38], which can lead to
skewed reporting of outcomes and poor performance on real-
world data[34]. Overall, our findings on the influence of image
quality on segmentation performance imply that computer vision
studies in laparoscopy should be carefully interpreted, taking
representativity and potential selection of underlying training and
validation data into consideration.

Measured by classical metrics of overlap (e.g. IoU, F1 score,
precision, recall, specificity) that are commonly used to evaluate
segmentation performance, the structure-specific models and the

Figure 5. Comparison of pancreas segmentation performance of the structure-specific and the combined semantic segmentation models with a cohort of 28
human participants. (A) Distribution of medical and non-medical professions among human participants. (B) Distribution of laparoscopy experience among human
participants. (C) Waterfall chart displaying the average pancreas segmentation IoUs of participants with different professions as compared to the IoU generated by
the structure-specific and the combined semantic segmentationmodels. (D)Waterfall chart displaying the average pancreas segmentation IoUs of participants with
varying laparoscopy experience as compared to the IoU generated by the structure-specific and the combined semantic segmentation models. IoU, Intersection-
over-Union.
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combined models provided comparable segmentation perfor-
mances on the internal test dataset. Interpretation of such metrics
of overlap, however, represents a major challenge in computer
vision applications in medical domains such as dermatology and
endoscopy[39–41] as well as non-medical domains such as auton-
omous driving[42]. In the specific use case of laparoscopic surgery,
evidence suggests that such technical metrics alone are not suffi-
cient to characterize the clinical potential and utility of segmen-
tation algorithms[37,43]. In this context, the subjective clinical
utility of a bounding box-based detection system recognizing the
common bile duct and the cystic duct at average precisions of
0.32 and 0.07, respectively, demonstrated by Tokuyasu et al.,
supports this hypothesis[12]. In colorectal surgery, anatomical
misinterpretation during splenic flexure mobilization can result in
iatrogenic lesions in the pancreas[24]. In the presented analysis,
the trained structure-specific and combined ML algorithms out-
performed all human participants in the specific task of bounding
box segmentation of the pancreas, except for two surgical spe-
cialists with over 10 years of experience. This suggests that even
structures such as the pancreas with seemingly poor segmentation
quality (segmentation IoU of the best-performing model:
0.37 ± 0.28 in the test set) have the potential to provide clinically
valuable help in anatomy recognition. In this context, analysis of
additional anatomical risk structures (i.e. ureters and blood ves-
sels) and inclusion of more advanced personnel in future com-
parison studies will help better define the models’ capabilities in
comparison with (expert) surgeons. Notably, the best average
IoUs for pancreas segmentation achieved in this comparative
study were 0.37 (for the SegFormer-based structure-specific
model) and 0.36 (for the best human participant), which would
both be considered less reliable segmentation quality measures on
paper. This encourages further discussion about metrics for seg-
mentation quality assessment in clinical AI. In the future, the
potential of the described dataset[25] and organ segmentation
algorithms could be exploited for educational purposes[44,45], for
guidance systems facilitating real-time detection of risk and target
structures[19,43,46,47], or as an auxiliary function integrated with
more complex surgical assistance systems, such as guidance sys-
tems relying on automated liver registration[48].

The limitations of this work are mostly related to the dataset
and general limitations of ML-based segmentation: First, the
Dresden Surgical Anatomy Dataset is a monocentric dataset
based on 32 robot-assisted rectal surgeries. Therefore, the images
used for algorithm training and validation originate from one set
of hardware and display organs from specific angles. As a con-
sequence, given the lack of a laparoscopic image dataset with
similarly rigorous organ annotations, the generalizability and
transferability of the presented findings to other centers and other
minimally invasive abdominal surgeries, particularly non-robotic
procedures, could only be qualitatively investigated. Second,
annotations were required for training of ML algorithms,
potentially inducing some bias toward the way that organs were
annotated in the resulting models. With respect to annotation
quality, three individual annotations of each anatomical structure
were reviewed by a single surgical expert. This represents a major
limitation of the underlying dataset, which is reasoned in the
time-consuming and effortful annotation process, making the
inclusion of more expert surgeons unfeasible. Given that anno-
tations were based on specific annotation protocols, including
images[49] and all annotators had a medical background with
several years of experience in the field of human anatomy[25], the

quality of annotations can be considered high, despite the limited
experience of the reviewing surgeon (4 years of experience in
robot-assisted rectal surgery). This is particularly true when
comparing the underlying dataset with other datasets commonly
used in surgical data science that are often based on single
annotations carried out by individuals without domain
knowledge[17,26,50]. Still, the way that organs are annotated may
differ from individual healthcare professionals’ way of recog-
nizing an organ. This is particularly relevant for organs such as
the ureters or the pancreas, which often appear covered by layers
of tissue. Here, computer vision-based algorithms that solely
consider the laparoscopic images provided by the Dresden
Surgical Anatomy Dataset for the identification of risk structures
will only be able to identify an organ once it is visible. For an
earlier recognition of such hidden risk structures, more training
data with meaningful annotations would be necessary.
Importantly, the presented comparison to human performance
focused on the segmentation of visible anatomy as well, neglect-
ing that humans (and possibly computers, too) could already
identify a risk structure hidden underneath layers of tissue. Third,
the dataset only includes individual annotated images. In some
structures, such as the ureter, video data offers considerably more
information than still image data. In this context, it is conceivable
that incorporation of temporal aspects could result in major
improvements in both human and algorithm recognition
performance.

While the presented ML models show promise in improving
the identification of anatomical structures in laparoscopy, their
clinical utility still needs to be explored. Successful adoption of
new technologies in surgery depends on factors beyond segmen-
tation performance, runtime and generalizability, such as visua-
lization of intraoperative decision support[51], human–machine
interaction[52], and interface design. Therefore, interdisciplinary
collaboration is critical to better understand respective surgeon
needs. Moreover, prospective trials are needed to determine the
impact of these factors on clinical outcomes. The existing lim-
itations notwithstanding, the presented study represents an
important addition to the growing body of research on medical
image analysis in laparoscopic surgery, particularly by linking
technical metrics to human performance.

In conclusion, this study demonstrates that ML methods have
the potential to provide clinically relevant near-real-time assis-
tance in anatomy recognition in minimally invasive surgery. This
study is the first to use the recently published Dresden Surgical
Anatomy Dataset, providing baseline algorithms for organ seg-
mentation and evaluating the clinical relevance of such algo-
rithms by introducing more clinically meaningful comparators
beyond classical computer vision metrics. Future research should
investigate other segmentationmethods, the potential to integrate
high-level anatomical knowledge into segmentation models[38],
the transferability of these results to other surgical procedures,
and the clinical impact of real-time surgical assistance systems
and didactic applications based on automated segmentation
algorithms. Furthermore, seeing that the DeepLabv3-based
models outperform the SegFormer-based models in terms of
runtime but are lacking in accuracy and generalizability, future
research could focus on combining the two in order to harness the
best of both worlds.

Kolbinger et al. International Journal of Surgery (2023) International Journal of Surgery

2972



Ethical approval

All experiments were performed in accordance with the ethical
standards of the Declaration of Helsinki and its later amend-
ments. The local Institutional Review Board (ethics committee at
the Technical University Dresden) reviewed and approved this
study (approval numbers: BO-EK-137042018 and BO-EK-
566122021). The trial was registered on clinicaltrials.gov (trial
registration ID: NCT05268432). Written informed consent to
laparoscopic image data acquisition, data annotation, data ana-
lysis, and anonymized data publication was obtained from all
participants. Before publication, all data was anonymized
according to the general data protection regulation of the
European Union.

Sources of funding

This work has been funded by the Else Kröner Fresenius Center
for Digital Health (EKFZ), Dresden, Germany (project ‘CoBot’),
by the German Research Foundation DFG within the Cluster of
Excellence EXC 2050: ‘Center for Tactile Internet with Human-
in-the-Loop (CeTI)’ (project number 390696704) and by the
German Federal Ministry of Health (BMG) within the
‘Surgomics’ project (grant number BMG 2520DAT82).
Furthermore, FRK received funding from the Medical Faculty of
the Technical University Dresden within the MedDrive Start
program (grant number 60487) and from the Joachim Herz
Foundation (Add-On Fellowship for Interdisciplinary Life
Science). FMR received a doctoral student scholarship from the
Carus Promotionskolleg Dresden.

Author contribution

F.R.K., J.W., M.D., S.S., and S.B.: conceptualized the study; F.R.
K., F.M.R., andM.C.: collected and annotated clinical and video
data and contributed to data analysis; A.C.J., S.L., and S.B.:
implemented and trained the neural networks and contributed to
data analysis; J.W., M.D., and S.S.: supervised the project, pro-
vided infrastructure and gave important scientific input; F.R.K.:
drafted the initial manuscript text. All authors reviewed, edited,
and approved the final manuscript.

Conflicts of interest disclosure

The authors declare that they have no conflicts of interest.

Guarantor

Fiona R. Kolbinger and Sebastian Bodenstedt.

Data availability

The Dresden Surgical Anatomy Dataset is publicly available via the
following link: https://doi.org/10.6084/m9.figshare.21702600. All
other data generated and analyzed during the current study are
available from the corresponding authors on reasonable request.
To gain access, data requestors will need to sign a data access
agreement.

Code availability

The most relevant scripts used for dataset compilation are pub-
licly available via the following link: https://zenodo.org/record/
6958337#.YzsBdnZBzOg. The code used for segmentation
algorithms is available at https://gitlab.com/nct_tso_public/anat
omy-recognition-dsad.

References
[1] Wang P, Liu X, Berzin TM, et al. Effect of a deep-learning computer-aided

detection system on adenoma detection during colonoscopy (CADe-DB
trial): a double-blind randomised study. Lancet Gastroenterol Hepatol
2020;5:343–51.

[2] Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic
detection system increases colonoscopic polyp and adenoma detection
rates: a prospective randomised controlled study. Gut 2019;68:1813–9.

[3] Kather JN, Heij LR, Grabsch HI, et al. Pan-cancer image-based detection
of clinically actionable genetic alterations. Nat Cancer 2020;1:789–99.

[4] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of
skin cancer with deep neural networks. Nature 2017;542:115–8.

[5] Simillis C, Lal N, Thoukididou SN, et al. Open versus laparoscopic versus
robotic versus transanal mesorectal excision for rectal cancer: a sys-
tematic review and network meta-analysis. Ann Surg 2019;270:59–68.

[6] Zhao JJ, Syn NL, Chong C, et al. Comparative outcomes of needlescopic,
single-incision laparoscopic, standard laparoscopic, mini-laparotomy, and
open cholecystectomy: a systematic review and network meta-analysis of
96 randomized controlled trials with 11,083 patients. Surgery 2021;170:
994–1003.

[7] Luketich JD, Pennathur A, Awais O, et al. Outcomes after minimally
invasive esophagectomy: review of over 1000 patients. Ann Surg 2012;
256:95–103.

[8] Thomson JE, Kruger D, Jann-Kruger C, et al. Laparoscopic versus open
surgery for complicated appendicitis: a randomized controlled trial to
prove safety. Surg Endosc 2015;29:2027–32.

[9] Islam M, Atputharuban DA, Ramesh R, et al. Real-time instrument
segmentation in robotic surgery using auxiliary supervised deep adver-
sarial learning. IEEE Robot Autom Lett 2019;4:2188–95.

[10] Roß T, Reinke A, Full PM, et al. Comparative validation of multi-
instance instrument segmentation in endoscopy: results of the ROBUST-
MIS 2019 challenge. Med Image Anal 2020;70:101920.

[11] Shvets AA, Rakhlin A, Kalinin AA, et al. Automatic instrument seg-
mentation in robot-assisted surgery using deep learning. In: Proceedings –
17th IEEE International Conference on Machine Learning and
Applications, ICMLA 2018. Institute of Electrical and Electronics
Engineers Inc.; 2019.624–8.

[12] Tokuyasu T, Iwashita Y, Matsunobu Y, et al. Development of an
artificial intelligence system using deep learning to indicate anatomical
landmarks during laparoscopic cholecystectomy. Surg Endosc 2020;
35:1651–8.

[13] Mascagni P, Vardazaryan A, Alapatt D, et al. Artificial intelligence for
surgical safety: automatic assessment of the critical view of safety in
laparoscopic cholecystectomy using deep learning. Ann Surg 2022;275:
955–61.

[14] Jin A, Yeung S, Jopling J, et al. Tool detection and operative skill
assessment in surgical videos using region-based convolutional neural
networks. Proc - 2018 IEEEWinter Conf Appl Comput Vision, (WACV).
Lake Tahoe, NV, USA; 2018:691–9.

[15] Funke I, Bodenstedt S, Oehme F, et al. Using 3D convolutional neural
networks to learn spatiotemporal features for automatic surgical gesture
recognition in video. Med Image Comput Comput Assist Interv –

MICCAI 2019 Lect Notes Comput Sci 2019;11768:467–75.
[16] Lavanchy JL, Zindel J, Kirtac K, et al. Automation of surgical skill

assessment using a three-stage machine learning algorithm. Sci Rep 2021;
11:5197.

[17] Maier-Hein L, Eisenmann M, Sarikaya D, et al. Surgical data science –

from concepts toward clinical translation. Med Image Anal 2022;76:
102306.

[18] Kolbinger FR, Bodenstedt S, Carstens M, et al. Artificial Intelligence
for context-aware surgical guidance in complex robot-assisted onco-
logical procedures: An exploratory feasibility study. Eur J Surg Oncol
2023. https://doi.org/10.1016/j.ejso.2023.106996

Kolbinger et al. International Journal of Surgery (2023)

2973

https://doi.org/10.6084/m9.figshare.21702600
https://zenodo.org/record/6958337#.YzsBdnZBzOg
https://zenodo.org/record/6958337#.YzsBdnZBzOg
https://gitlab.com/nct_tso_public/anatomy-recognition-dsad
https://gitlab.com/nct_tso_public/anatomy-recognition-dsad
https://doi.org/10.1016/j.ejso.2023.106996


[19] Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intrao-
perative guidance: using semantic segmentation to identify surgical anat-
omy during laparoscopic cholecystectomy. Ann Surg 2022;276:363–9.

[20] Fecso AB, Szasz P, Kerezov G, et al. The effect of technical performance
on patient outcomes in surgery. Ann Surg 2017;265:492–501.

[21] Mazzocco K, Petitti DB, Fong KT, et al. Surgical team behaviors and
patient outcomes. Am J Surg 2009;197:678–85.

[22] Suliburk JW, Buck QM, Pirko CJ, et al. Analysis of human performance
deficiencies associated with surgical adverse events. JAMA Netw Open
2019;2:e198067.

[23] Adelman MR, Bardsley TR, Sharp HT. Urinary tract injuries in laparo-
scopic hysterectomy: a systematic review. J Minim Invasive Gynecol
2014;21:558–66.

[24] Freund MR, Kent I, Horesh N, et al. Pancreatic injuries following
laparoscopic splenic flexure mobilization. Int J Colorectal Dis 2022;37:
967–71.

[25] Carstens M, Rinner FM, Bodenstedt S, et al. The Dresden Surgical
Anatomy Dataset for abdominal organ segmentation in surgical data
science. Sci Data 2023;10:3.

[26] Joskowicz L, Cohen D, Caplan N, et al. Inter-observer variability of manual
contour delineation of structures in CT. Eur Radiol 2019;29:1391–9.

[27] Chen L-C, Papandreou G, Schroff F, et al. Rethinking Atrous
Convolution for Semantic Image Segmentation. 2017. Accessed 10
October 2022. https://arxiv.org/abs/1706.05587v3

[28] Lin TY, Maire M, Belongie S, et al. Microsoft COCO: Common Objects
in Context. Lecture Notes Comput Sci (including Subser Lect Notes Artif
Intell Lect Notes Bioinformatics) 2014;8693:740–55. Accessed 11
November 2022. https://arxiv.org/abs/1405.0312v3

[29] Xie E, Wang W, Yu Z, et al. SegFormer: simple and efficient design for
semantic segmentation with transformers. Adv Neural Inf Process Syst
2021;34:12077–90.

[30] Cordts M, Omran M, Ramos S, et al. The Cityscapes Dataset for
Semantic Urban Scene Understanding. Proc IEEE Conf Comput Vis
Pattern Recognit 2016.

[31] Loshchilov I, Hutter F. Decoupled Weight Decay Regularization. 7th
International Conference Learn Represent ICLR 2019. 2017. Accessed 9
November 2022. https://arxiv.org/abs/1711.05101v3

[32] Leibetseder A, Petscharnig S, Primus MJ, et al. LapGyn4: a dataset for 4
automatic content analysis problems in the domain of laparoscopic
gynecology. MMSys’18: Proceedings of the 9th ACM Multimedia
Systems Conference, 2018. Accessed 19 July 2021. https://doi.org/10.
1145/3204949.3208127

[33] Reddy CL, Mitra S, Meara JG, et al. Artificial Intelligence and its role in
surgical care in low-income and middle-income countries. Lancet Digit
Heal 2019;1:e384–6.

[34] Moglia A, Georgiou K, Georgiou E, et al. A systematic review on artificial
intelligence in robot-assisted surgery. Int J Surg 2021;95:106151.

[35] Anteby R, Horesh N, Soffer S, et al. Deep learning visual analysis in
laparoscopic surgery: a systematic review and diagnostic test accuracy
meta-analysis. Surg Endosc 2021;35:1521–33.

[36] Kuo RYL, Harrison CJ, Jones BE, et al. Perspectives: a surgeon’s guide to
machine learning. Int J Surg 2021;94:106133.

[37] Reinke A, Tizabi MD, Sudre CH, et al. Common Limitations of Image
Processing Metrics: A Picture Story. 2021. Accessed 13 May 2022.
https://arxiv.org/abs/2104.05642v4

[38] Jin C, Udupa JK, Zhao L, et al. Object recognition in medical images via
anatomy-guided deep learning. Med Image Anal 2022;81:102527.

[39] Renard F, Guedria S, Palma N, et al. Variability and reproducibility in
deep learning for medical image segmentation. Sci Rep 2020;10:13724.

[40] Powers DMW,Ailab. Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation. 2020. Accessed 16
October 2022. https://arxiv.org/abs/2010.16061v1

[41] Parikh RB, Teeple S, Navathe AS. Addressing bias in artificial intelligence
in health care. JAMA 2019;322:2377–8.

[42] Zhang Y, Mehta S, Caspi A. Rethinking Semantic Segmentation
Evaluation for Explainability and Model Selection. 2021. Accessed 27
July 2021. https://arxiv.org/abs/2101.08418v1

[43] Hashimoto DA, Rosman G, Witkowski ER, et al. Computer vision
analysis of intraoperative video: automated recognition of operative steps
in laparoscopic sleeve gastrectomy. Ann Surg 2019;270:414–21.

[44] Hu YY, Mazer LM, Yule SJ, et al. Complementing operating room
teaching with video-based coaching. JAMA Surg 2017;152:318–25.

[45] Mizota T, Anton NE, Stefanidis D. Surgeons see anatomical structures
faster and more accurately compared to novices: development of a pat-
tern recognition skill assessment platform. Am J Surg 2019;217:222–7.

[46] Ward TM,Mascagni P, Ban Y, et al. Computer vision in surgery. Surgery
2022;169:1253–6.

[47] Chopra H, Baig AA, Arora S, et al. Artificial intelligence in surgery:
modern trends. Int J Surg 2022;106:106883.

[48] Docea R, Pfeiffer M, Bodenstedt S, et al. Simultaneous localisation and
mapping for laparoscopic liver navigation : a comparative evaluation study.
In: Linte CA, Siewerdsen JH, editors. Medical Imaging 2021: Image-Guided
Procedures, Robotic Interventions, and Modeling. SPIE; 2021:8.

[49] Rädsch T, Reinke A, Weru V, et al. Labelling instructions matter in
biomedical image analysis. Nat Mach Intell 2023;5:273–83.

[50] Freeman B,Hammel N, Phene S, et al. Iterative Quality Control Strategies
for Expert Medical Image Labeling. Proc AAAI Conf Hum Comput
Crowdsourcing 2021;9:60–71.

[51] Shaalan D, Jusoh S. Visualization in Medical System Interfaces: UX
Guidelines. Proceedings of the 12th International Conference on Electronics,
Computers and Artificial Intelligence (ECAI) 2020, 1 June 2020.

[52] Henry KE, Kornfield R, Sridharan A, et al. Human–machine teaming is
key to AI adoption: clinicians’ experiences with a deployed machine
learning system. npj Digit Med 2022;5:97.

Kolbinger et al. International Journal of Surgery (2023) International Journal of Surgery

2974

https://arxiv.org/abs/1706.05587v3
https://arxiv.org/abs/1405.0312v3
https://arxiv.org/abs/1711.05101v3
https://doi.org/10.1145/3204949.3208127
https://doi.org/10.1145/3204949.3208127
https://arxiv.org/abs/2104.05642v4
https://arxiv.org/abs/2010.16061v1
https://arxiv.org/abs/2101.08418v1

