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Dariusz Załuski 3 ID , Sebastian Jurczak 1 and Juliusz Perkowski 2

1 Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn,
Oczapowskiego 1A, 10-719 Olsztyn, Poland; tomaszkulik76@gmail.com (T.K.);
seba.jurczak@gmail.com (S.J.)

2 Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-637 Poznan, Poland;
kstuper@up.poznan.pl (K.S.-S.); mabu@up.poznan.pl (M.B.); julperk@up.poznan.pl (J.P.)

3 Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn,
Plac Łódzki 3, 10-727 Olsztyn, Poland; dariusz.zaluski@uwm.edu.pl

* Correspondence: katarzyna.bilska@uwm.edu.pl; Tel.: +48-895-233-834

Received: 13 February 2018; Accepted: 3 March 2018; Published: 5 March 2018

Abstract: Flavonoids are a group of hydroxylated polyphenolic compounds widely distributed in
the plant kingdom. Biosynthesis of these compounds involves type III PKSs, whose presence has
been recently predicted in some fungal species through genome sequencing efforts. In this study,
for the first time it was found that Fusaria produce flavonoids on solid YES medium. Naringenin,
as the central precursor of all flavonoids, was produced at highest quantities, followed by quercetin,
kaempferol, apigenin and luteolin. In plants, flavonoids are involved in the protection of cereals
to a wide range of stresses, including host defense against Fusaria. Under in vitro conditions,
strains of Fusarium culmorum and F. graminearum sensu stricto were incubated at levels of flavonoids
close to amounts produced by cereals in response to fungal infection. The amounts of exogenous
naringenin, apigenin, luteolin, kaempferol and quercetin were reduced and converted by fungi to the
other flavonoid derivatives. Treatment of fungi with naringenin derivatives led to the inhibition of
naringenin production. Correspondingly, the production of fungal-derived phenolic acids decreased
in flavonoid treated samples, although this effect appeared to be dependent on the strain, flavonoid
molecule and its concentration. Fusaria showed high variability in trichothecene production in
response to flavonoids. With emphasis on quercetin, mycotoxin accumulation in the media was
significantly decreased by luteolin, kaempferol, naringenin and apigenin. However, in some cases,
apigenin led to the increase of mycotoxin content in the media. Gene expression experiments of Tri
genes responsible for trichothecene biosynthesis (Tri4, Tri5 and Tri10) proved that the inhibition of
mycotoxin production by flavonoids occurred at the transcriptional level. However, the changes in
Tri transcript levels were not significant in most apigenin and all kaempferol-treated cultures. In this
study, a link was established between antioxidant and antiradical properties of flavonoids and their
effects on fungi.
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Key Contribution: Fusaria showed high variability in trichothecene production in response to
flavonoids. Fusaria produce flavonoids on solid YES medium.
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1. Introduction

The genus Fusarium encompasses a wide diversity of fungal pathogens of high agricultural,
economic and medical importance [1]. In cereal production, Fusaria cause severe diseases associated
with significant yield losses, including root and crown rot, Fusarium head blight (FHB) in barley and
wheat and Fusarium ear rot (FER) in maize. In addition to reducing yields, Fusaria also cause quality
deterioration by contamination of the grain with mycotoxins such as trichothecenes, which are a major
health concern for humans and animals [2].

Synthetic fungicides, principally from the azole class, play a prominent role in controlling Fusaria
in the field. However, the efficacy of azoles for disease control often remains contradictory, presumably
due to the difficulty of timing and targeting fungicides to heads [3] and the apparently increased
resistance of fungi to this fungicide class [4]. In addition, azole residues can disperse and persist in
the environment due to repeated use of these fungicides [5–7], which have a considerable impact on
ecosystem health and functionality [8].

The risk of human health and the environment has been lately of significant concern. In order to face
it the intensive research into development of novel and environmentally friendly disease management
strategies has been proposed [9]. Previous studies have indicated that plant-derived phenylpropanoids
may represent a break-through in the protection of crops against fungal pathogens [10,11]. This group
of plant secondary metabolites is synthesized through the phenylpropanoid pathway and can be
divided into two groups: Flavonoid phenylpropanoids (flavones, flavonols, flavanols, and flavanones)
and non-flavonoid phenylpropanoids (stilbenes, lignans and phenolic acids) [12]. The first group
encompasses nearly one hundred putative flavonoids which have been identified through metabolomic
approaches to play a role in resistance mechanisms against Fusaria. Many of these metabolites
correspond to glucoside derivatives of kaempferol and quercetin belonging to the flavonol class.
In addition, several compounds of the flavanol, flavanone (naringenin), flavone (apigenin and vitexin
derivatives) and anthocyanin classes were also highlighted [13].

The role of flavonoids in plant defense has been previously reviewed in Treutter [14,15],
Mierziak et al. [16], Gauthier et al. [13] and Atanasova-Penichon et al. [12]. Most of these compounds
are bioactive and contribute to defense mechanisms against abiotic and biotic stresses, environmental
interactions [17,18] and play an important role in physiological regulations and signaling [19].
While the production of these secondary metabolites has been well documented in plants, much less is
known about the biosynthesis of these compounds by fungi including plant pathogenic species [20].

Biosynthesis of flavonoids involves diverse enzymes with specialized activities [21,22]. The first
committed step of this pathway is catalyzed by chalcone synthase, belonging to well-studied plant type
III PKS. The process begins with the sequential condensation of three acetate units from malonyl-CoA
into a 4-coumaroyl-CoA molecule. Subsequently, cyclization reaction leads to the formation of an
aromatic tetraketide, naringenin chalcone [23] (Figure 1). Although type III PKSs are widely studied
in plants, their presence in some fungal species has mainly been predicted through recent fungal
genome sequencing efforts [23,24]. Limited gene expression studies supported the functionality of
the putative type III PKSs in Aspergillus oryzae [25]. Hypothetical chalcone synthase of F. graminearum
reference PH-1 strain (NRRL 31084) is available in the GenBank database [26] under accession number
XP_011320399, suggesting that the production of flavonoids can be widespread in the genus Fusarium.

The main mechanism of action of flavonoids results from their antioxidant properties [27–30],
owing to prevention or quenching of reactive oxygen species (ROS), generated by both the pathogen
and the plant during infection. The other roles of flavonoids in plant defense are associated with
reinforcement of cell walls restricting pathogen access to nutrients [14,15] and the inhibition of the
activity of plant cell wall degrading enzymes secreted by fungi [14,15]. Limited in vitro studies showed
that flavonoids display molecule-dependent growth inhibitory effects on fungi [31,32], including
Fusarium culmorum and F. graminearum sensu stricto (s.s.) [33–35]. However, their growth inhibitory
effect on Fusaria appears to be weaker than phenolic acids [12].
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Limited studies also indicated that flavonoids appear to interact directly with fungal secondary 
metabolism. Flavonoids have been shown to exert an inhibitory effect on mycotoxin production by 
fungi such as aflatoxin [36,37] and patulin production [38]. Inhibition of trichothecene biosynthesis 
by flavonoids was revealed by Desjardins et al. [39] and Takahashi-Ando et al. [40], who showed an 
inhibitory effect of flavones on cytochrome P450 monooxygenase-catalyzing conversion of 
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Figure 1. Schematic representation of biosynthesis of selected phenylpropanoids.

Limited studies also indicated that flavonoids appear to interact directly with fungal secondary
metabolism. Flavonoids have been shown to exert an inhibitory effect on mycotoxin production by
fungi such as aflatoxin [36,37] and patulin production [38]. Inhibition of trichothecene biosynthesis
by flavonoids was revealed by Desjardins et al. [39] and Takahashi-Ando et al. [40], who showed an
inhibitory effect of flavones on cytochrome P450 monooxygenase-catalyzing conversion of trichodiene
(the first chemical intermediate in trichothecene biosynthesis) to oxygenated trichothecenes [13].
A more recent study by Bollina and Kushalappa [35] showed that other flavonoids (naringenin and
quercetin) completely suppress trichothecene production of a single F. graminearum strain at early
stages of incubation on artificial media.

The main purpose of our research was to study the changes in phenylpropanoid (flavonoid
and phenolic acid) and trichothecene profiles via exposure to flavonoids. To achieve it, different
strains of F. culmorum and F. graminearum s.s. were incubated in the presence of different flavonoid
aglycones: naringenin, apigenin, luteolin, kaempferol and quercetin. These compounds were selected
because of their contribution to resistance to Fusaria in cereals [34,41,42] and their well-known
antioxidant properties [29,30]. Concentrations of flavonoids close to the amounts quantified in kernels
after Fusarium infection were also used [43]. The effect of treatment with these compounds was
assessed on fungal secondary metabolic profiles. It was found that exogenous flavonoids affected the
phenylpropanoid profiles of fungi. Production of flavonoids by Fusaria was also revealed here for the
first time. The impact of exogenous flavonoids on both trichothecene accumulation in the media and
the expression of Tri genes involved in trichothecene biosynthesis were also analyzed. An attempt was
made to establish a link between the antioxidant and antiradical properties of flavonoids and their
effects on fungi.

2. Results and Discussion

2.1. Production of Flavonoids by Fusaria

Previous in vitro studies showed that different strains of F. culmorum and F. graminearum s.s.
accumulate phenolic acids in the media [44,45]. In this study, we screened fungi for flavonoid production.
We found that besides phenolic acids, YES + fungal controls exhibited increased accumulation of
flavonoids (Supplementary File S1). Naringenin, as the central precursor of the other flavonoids [46],
was quantified at the highest levels (comprising 25.8–28.4% of the flavonoids produced by Fusaria).
In plants, naringenin can be converted to apigenin by flavone synthase [47] (Figure 1). Apigenin can be
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further hydroxylated by flavonoid 3′ hydroxylase to form luteolin [48]. The presence of both flavones
has been detected in fungal cultures. Apigenin comprised 15.9–17.9%, while luteolin reached 9.5–12.2%
of flavonoids. Besides flavones, Fusaria produced flavonols (kaempferol and quercetin), which were
quantified at higher levels than the first of the aforementioned class of flavonoids. Kaempferol,
which is converted from naringenin by flavonol synthase [22], reached 20.7–22.2%. Quercetin, which is
synthesized from kaempferol, yielded 21.9–25.3% of flavonoids. In plants, the formation of quercetin
involved cytochrome P450 flavonoid monooxygenase associated to a cytochrome P450 reductase,
which utilizes O2 and NADPH [49,50].

2.2. Reduction of Exogenous Flavonoids by Fusaria

The amounts of exogenous flavonoids (400 and 800 µg/g) were significantly reduced in fungal
treated cultures, as compared to uninoculated YES + flavonoid controls (Supplementary File S1).
This decrease was more evident in samples treated with increased levels (800 µg/g) of flavonoids.
Naringenin, the precursor of all flavonoids was efficiently converted by fungal strains to apigenin,
luteolin, kaempferol and quercetin. Similar results were obtained by Leonard et al. [49], who found
that exogenous supplementation of naringenin increase kaempferol and quercetin amounts in culture
media of Escherichia coli. The absence of naringenin, as the first precursor of flavonoid biosynthesis
pathway in flavone and flavonol treated samples, may indicate inhibition of chalcone synthase activity
by these compounds. Treatment of fungi with apigenin led to an increase of luteolin, kaempferol
and quercetin in the media, indicating its further efficient conversion. Corresponding results have
been found in samples treated with luteolin and kaempferol. However, it was found that besides the
formation of the products resulting from flavonoid conversion, fungi treated with luteolin, kaempferol
and quercetin accumulated increased levels of their parent metabolites. Luteolin-treated samples
exhibited increased levels of apigenin, while in kaempferol-treated samples increased amounts of both
flavones (luteolin and apigenin) were found. Unexpected formation of flavones and kaempferol was
also evident in quercetin-treated samples. The formation of the intermediate parent metabolites in
the presence of exogenous flavones and flavonols remains largely unclear. One can hypothesize that
the increase of the parent intermediates could result from insufficient conversion of fungal-derived
apigenin, luteolin and kaempferol, which could be produced by fungi at different stages of incubation.
On the other hand, the absence of fungal-derived naringenin does not suggest that the production of
these compounds occurred in the presence of flavones and flavonols.

2.3. Exogenous Flavonoids Affect Production of Phenolic Acids by Fusaria

The sum of fungal-derived phenolic acids decreased in flavonoid treated samples, however,
this effect appeared to be dependent on the strain, flavonoid molecule and its concentration
(Supplementary File S1). Among studied phenolic acids, chlorogenic and sinapic acid did not
accumulate in the presence of flavonoids, while p-coumaric, caffeic, ferulic and syringic acid could
be detected in samples treated with naringenin and apigenin. Higher diversity and quantity of
phenolic acids in naringenin and apigenin-treated samples could be explained by their relatively
lower antioxidant activities (Table 1). Interestingly, the accumulation of trans-cinnamic acid in luteolin,
kaempferol and quercetin-treated samples suggests their inhibitory effect on converting this first
intermediate of the shikimate pathway further.
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Table 1. A summary of the structures and characteristics of the studied flavonoids.

Subclass Compound
Substitution at Carbon Position Double Bond

C2-C3 Antioxidant Activity Antiradical
Activity 2

3 5 7 3′ 4′ VCEAC/L ABTS (µM
TROLOX/100 g)

Protection
Factor 1 (%)

Flavones
Apigenin - OH OH - OH + 190.4 297.5 0.99 0.7
Luteolin - OH OH OH OH + 483.5 589.7 4.24 n.t.

Flavonols
Kaempferol OH OH OH - OH + 450.7 540.3 2.49 93.5
Quercetin OH OH OH OH OH + 692.5 744.9 11.50 89.8

Flavanones Naringenin - OH OH - OH - 301.7 529.4 1.09 6.3
1—Antioxidant activity of flavonoids measured in lard oil by a Rancimat test (from Yang et al. [51]). 2—Antiradical
activities of flavonoids (3.3× 10−5 M) in a methanol solution of DPPH (1.6× 10−5 M) (from Burda and Oleszek [52]).

2.4. Effect of Flavonoids on Trichothecene Accumulation in the Media

The effect of flavonoids on mycotoxin production was evaluated by quantification of trichothecenes
in treated versus non-treated plates (YES + fungal controls). As typical for solid media [53], the strains
co-produced trichothecene compounds at different levels. In addition, all strains tested co-produced
lower amounts of trichothecenes not characteristic for their chemotypes (Supplementary File S2).
The decrease in mycotoxin accumulation was revealed in most flavonoid-treated plates. However,
this effect appears to be largely dependent on the strain, the flavonoid compound and its concentration
and appears to be dependent on the antioxidant and antiradical capacity of the assayed flavonoid.
The most dramatic reduction of trichothecene accumulation was reported for quercetin. This flavonoid
showed the highest antioxidant and antiradical properties compared to the remaining flavonoids
(Table 1). The reduction of trichothecene accumulation by quercetin ranged from 78.2 to 99.8%. A lower
reduction of mycotoxin accumulation was found in plates treated by both luteolin and kaempferol.
The former compound shows slightly higher antioxidant activity than the latter (Table 1). Luteolin
caused 49.6 to 99.8% reduction of mycotoxin accumulation, while the inhibitory effect of kaempferol
ranged from 24.2 to 99%.

Naringenin displayed reduction of trichothecene accumulation ranging from 40.9 to 99.7%,
except of one strain (MUCL 53469), where this reduction ranged from 10.2 to 40.3%. The inhibiting
effect of naringenin is close to results obtained for luteolin, which is rather unexpected when comparing
their antioxidant properties (Table 1). It is hypothesized that a high reduction of mycotoxin content by
naringenin might result from early conversion of naringenin to luteolin, kaempferol and quercetin by
fungi (Supplementary File S1), which more effectively interfere with mycotoxin production. However,
high reduction of mycotoxin content by naringenin may be explained by increased growth inhibition
reported during the early stage of incubation of fungi on the media (Supplementary File S2). The initial
stage of fungal incubation appears to be critical for the total mycotoxin accumulation in the media
due to the early activation and high expression of Tri genes in the first days of fungal incubation [54].
Changes in growth rate could also partially explain the observed weak inhibition of mycotoxin
production in apigenin treated plates. It was found that fungal growth was significantly stimulated in
3 of 12 samples treated with apigenin. In 2 of 3 growth-stimulated samples (CBS 173.31 treated with
400 and 800 µg/g) a 13.7 to 289.4% increase in the sum of trichothecenes was found, as compared to
YES + fungal control.

It is intriguing that two structurally similar compounds (apigenin and naringenin) exhibited quite
opposite effects on fungal growth. Apigenin derives from naringenin and differs from the latter by
forming a double bond in ring C of the flavonoid structure [47,48] (Table 1). To date, information from
literature on mechanisms underlying different biological activities of these flavonoids has been mainly
limited to describing their action on human targets [55]. Studies of Zhang et al. [56] showed that this
single bond is responsible for large differences in binding affinities of these two flavonoid compounds.
It has been demonstrated that single bond rendered naringenin is more flexible to bind to human
serum transferrin (Tf) (a single-chain iron-binding blood plasma glycoprotein) [56]. It is hypothesized
that the increased binding affinity of naringenin to specific fungal targets may explain its observed
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higher growth inhibitory effect on fungi. The link between fungal growth changes and mycotoxin
accumulation could not be confirmed based on luteolin and kaempferol treated cultures where, in all
7 growth-stimulated samples, a decrease in mycotoxin was reported. The weakest inhibiting effect
of apigenin on mycotoxin production is, however, in line with its lowest antioxidant and antiradical
properties as compared to other flavonoids tested (Table 1).

2.5. Effect of Flavonoids on the Expression of Tri Genes

The effect of flavonoids on mycotoxin production was tested at the transcriptional level by
quantification of Tri4, Tri5 and Tri10 transcripts on day 3 of fungal incubation. Gene expression results
are expressed as the relative transcript levels (Supplementary File S2).

Desjardins et al. [39] and Takahashi-Ando et al. [40] provided evidence that flavones are inhibitors
of cytochrome P450 monooxygenase responsible for the oxygenations of trichodiene at early stages
of trichothecene biosynthesis. P450 monooxygenase is encoded by Tri4, whose expression, as shown
in this study, was drastically reduced in 29 of 60 flavonoid-treated samples. The current results also
showed that flavonoids not only inhibit expression of Tri4, but also Tri5 gene encoding trichodiene
synthase, a terpene cyclase which converts farnesyl pyrophosphate to trichodiene, the hydrocarbon
precursor of trichothecenes [57]. Inhibition of Tri5 expression might be explained by suppressed
expression of the Tri10 gene, which coordinates expression of four trichothecene pathway-specific
genes (Tri4, Tri5, Tri6, and Tri101) and the isoprenoid biosynthetic gene for farnesyl pyrophosphate
synthetase (FPPS) [58]. However, it should be noted that inhibition of Tri5 activity occurred in most,
but not all, samples with reduced expression of Tri10 (Supplementary File S2). Except for kaempferol
treated samples, the effect of flavonoids on Tri gene expression corresponds to the observed differences
in mycotoxin profiles of the studied samples.

Among the tested flavonoids, quercetin (with the relatively highest antioxidant and antiradical
properties) showed the strongest decrease of Tri transcript levels, in some cases leading to the complete
inhibition of Tri gene expression. Both luteolin and naringenin showed strong inhibitory effect on
Tri gene activity, although their effects were largely dependent on the strain assayed. Among the
tested compounds, apigenin exhibiting the lowest antioxidant and antiradical properties displayed the
weakest inhibitory effect on mycotoxin production at a transcriptional level. Significant inhibition of
Tri gene expression was found in only 4 of 12 apigenin-treated samples (Supplementary File S2).

Surprisingly, the effect of kaempferol on Tri gene expression was not evident for all studied
samples, which is in contrast with its high reduction of trichothecene accumulation in the media
(Supplementary File S2). The above result may suggest a different mechanism of action of this
compound. Indeed, in contrast to the remaining compounds, kaempferol, has been found to be a more
potent hydroxyl than the superoxide radical scavenger [59]. It is hypothesized that the pronounced
ability of kaempferol to decrease hydroxyl radical concentration may play a key role in its different
activity towards fungal targets. The diverse mechanisms of action of flavonoids have been previously
highlighted in Treutter [14,15], who suggested that these compounds might target different components
and functions of fungal cells. Such targeting, including binding to enzymes and selected proteins
and/or chelation of metals necessary for enzyme activity, as shown in this study, dramatically affects
mycotoxin production by fungi with no significant impact on the activity of Tri genes.

In this study, it was found for the first time that flavonoids display variable effect on fungal secondary
metabolic profiles. The observed high variability is in line with previous reports demonstrating variable
effects of other plant resistance related compounds such as phenolic acids [44,45] and lignans [60] on this
group of toxigenic fungi. Notably, the in vitro results presented in this paper are in line with recent in
planta studies demonstrating that resistance to Fusarium diseases is closely associated with the promoted
biosynthesis of phenylpropanoids, including flavonoids [33,43,61,62]. It is believed that the results
obtained in this study may be significant in developing novel strategies to limit mycotoxins contamination
of food and feed.
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3. Materials and Methods

3.1. Fungal Strains

The six fungal strains used in this study (Table 2) are maintained in international fungal collections:
Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands, MUCL—MUCL Mycothèque
de l’Université catholique de Louvain, Louvain-la-Neuve, Belgium and ARS Culture Collection, USDA,
Peoria, IL, US. Detailed characteristics of the fungal strains are provided in the ToxGen database [63].

Table 2. List of fungal isolates used in this study.

Species Strain Trichothecene Genotype Origin, Host and Year of Isolation

F. culmorum

CBS 173.31, NRRL
26853 3ADON Canada, oat, 1927

MUCL 53469 3ADON Belgium, corn, 2007
CBS 139512 NIV Poland, wheat, 2003

F. graminearum s.s.

CBS 119173, NRRL
38369 3ADON USA, Louisiana, wheat, 2005

CBS 138561 15ADON Poland, wheat, 2010
MUCL 53455 NIV Belgium, corn, 2007

3.2. Medium and Culture Conditions

Flavonoid aglycones (Sigma–Aldrich, Saint Louis, MO, USA): Naringenin, apigenin, luteolin,
kaempferol and quercetin were dissolved in 10 mL of 96% ethanol and then added to the YES medium
to obtain the final concentrations: 400 µg/g and 800 µg/g. The flavonoid concentrations used in
this study are close to the amounts produced by plants in the response of Fusarium infection [43].
The flavonoids used in this study exhibited different antioxidant and antiradical capacities, which are
apparently defined by their structural characteristics [52] (Table 1).

The study incorporated three different controls: YES-only control (YES medium only), YES +
flavonoid controls (YES medium supplemented with either 400 or 800 µg/g of flavonoids) and six YES
+ fungal controls (fungal strains incubated on YES media). The control samples were supplemented
with an identical volume of 96% ethanol. Petri plates (Ø 80 mm) were inoculated from 6–8-week old
laboratory stock cultures maintained at 4 ◦C on PDA slants and incubated at 25 ◦C (in triplicate) in
the dark. For gene expression analysis, plates were incubated for 3 days for each condition, while for
chemical analysis (mycotoxin, flavonoid and phenolic acid determination) the plates were incubated
for 21 days. Growth inhibition tests were performed at an early stage of the incubation of fungi
on PDA medium (till the 6th day after inoculation) as previously described by Ponts et al. [64] and
Kulik et al. [60].

3.3. Determination of Flavonoids and Phenolic Acids in the Medium

0.20 g samples for analyses were weighed and placed in sealed 17 mL culture test tubes,
where alkaline and acid hydrolysis were conducted. To conduct alkaline hydrolysis, 1 mL of distilled
water and 4 mL 2 M aqueous sodium hydroxide was added to the test tubes. Tightly-sealed test
tubes were heated in a water bath at 95 ◦C for 30 min. After cooling (approx. 20 min), the test tubes
were neutralized with 2 mL 6 M aqueous hydrochloric acid solution (pH = 2). The samples were
then cooled in water with ice. Flavonoids were extracted from the inorganic phase using diethyl
ether (2 × 2 mL). The formed ether extracts were continuously transferred to 8 mL vials and acid
hydrolysis was then conducted. For this purpose, the aqueous phase was supplemented with a 3 mL
6 M aqueous hydrochloric acid solution. Tightly-sealed test tubes were heated in a water bath at
95 ◦C for 30 min. After being cooled in water with ice, the samples were extracted with diethyl ether
(2 × 2 mL). The produced ether extracts were continuously transferred to 8 mL vials, after which
they were evaporated to dryness in a stream of nitrogen. The samples were dissolved in 1 mL of
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methanol prior to analyses. The analysis was performed using an Aquity H class UPLC system
equipped with an Waters Acquity PDA detector (Waters, Milford, MA, USA). Chromatographic
separation was performed on an Acquity UPLC® BEH C18 column (100 mm × 2.1 mm, particle size
1.7 µm) (Waters, Milford, MA, USA). The elution was carried out in a gradient using the following
mobile phase composition: A: acetonitryl with 0.1% formic acid, B: 1% aqueous formic acid mixture
(pH = 2). The concentrations of flavonoids were determined using an internal standard at wavelengths
λ = 320 nm. Compounds were identified based on a comparison of retention time of the analyzed peak
with the retention time of the standard and by adding a specific amount of the standard to the analyzed
samples and a repeated analysis. The detection level was 1 µg/g. The retention times of the assayed
acids are as follows: kaempferol 6.11 min, luteolin 11.89 min, apigenin 16.43 min, chlorogenic acid
21.56 min, caffeic acid 26.19 min, syringic acid 28.05 min, naringenin 31.22 min, quercetin 39.58 min,
p-coumaric acid 40.20 min, ferulic acid 46.20 min, sinapic acid 48.00 min and trans-cinnamic acid
52.40 min, respectively. Fungal-derived phenolic compounds were determined in dried YES-only
control, YES + flavonoid controls, six YES + fungal controls and treated fungal cultures after a 21-day
incubation period (Supplementary File S1) as previously described in Kulik et al. [45].

3.4. Determination of the Antioxidant Capacity (VCEAC/L) and Radical Scavenging Activity (ABTS+)
of Flavonoids

VCEAC/L and ABTS+ assays of flavonoids were performed as previously described by
Kim et al. [65] and Re et al. [66], respectively. For ABTS+ generation from ABTS salt, 3 mM of K2S2O8

was reacted with 8 mM ABTS salt in distilled, deionized water for 16 h at room temperature in the
dark. The ABTS+ solution was then diluted with a pH 7.4 phosphate buffer solution containing 150 mM
NaCl (PBS) to obtain an initial absorbance of 1.5 at 730 nm. Fresh ABTS+ solution was prepared for
each analysis. The reaction kinetics were determined over a 2 h period with readings every 15 min.
Reactions were complete in 30 min. Samples and standards (100 ím) were reacted with the ABTS+

solution (2900 µm) for 30 min. Trolox was used as a standard. The results were also expressed as mg
Vitamin C equivalent antioxidant capacity per liter (mg VCEAC/L).

3.5. Analysis of Trichothecenes from Fungal Cultures

Trichothecenes were determined in fungal cultures treated and non-treated (YES + fungal controls)
with different flavonoids by GC-MS as previously described by Perkowski et al. [67].

3.6. Extraction of Total RNA and Preparation of cDNA

The total RNA was extracted from 3-day-old fungal cultures from mycelium grown on YES medium
treated and non-treated (YES + fungal controls) with flavonoids. Six biological replications were
prepared for each condition. Extraction of RNA and reverse-transcription were performed as previously
described in Kulik et al. [60,68]. cDNA samples were stored at −25 ◦C for transcript quantification.

3.7. Gene Expression Analysis

Tri4 and Tri5 genes which are responsible for the initial stage in the trichothecene biosynthetic
pathway were chosen for qPCR analysis, as previously described in Kulik et al. [60,68]. The analysis
also included the Tri10 gene responsible for regulation of multiple Tri genes [58]. Gene expression
analyses were performed as previously described in Kulik et al. [44,45]. The Ct values of the target Tri4,
Tri5, Tri10 and reference Ef1α gene were compared in the control and treated samples and normalized
relative to the Ct values obtained for the reference EF1α gene using the REST 2009 software [69].

3.8. Statistical Analyses

The significance of differences among quantities of flavonoids, phenolic acids and mycotoxins
and fungal growth was tested using t-Student test at p < 0.05. The t-Student test was also used to
evaluate differences in the growth of fungi in flavonoid-treated plates.
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