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Abstract: The loss of green spaces in urbanized areas has triggered a potential thermal risk in the
urban environment. While the existing literature has investigated the direct relationship between ur-
ban temperatures and health risks, little is known about causal relationships among key components
of urban sustainability and health risks, through a pathway involving urban temperature. This study
examined the multiple connections between urbanized land use, urban greenery, urban temperatures
and health risks in Harris County, Texas. The census tract-level health data from the 500 Cities Project
(Centers for Disease Control and Prevention) is used for analysis. Structural equation model analyses
showed that the urban temperature played a mediating role in associations between urbanized land
use, urban greenery and health risk. Urban vegetation is associated with a decrease in health risks,
while urban land use has associations with an increase in health risks. Findings suggest that proactive
policies tailored to provide rich urban greenery in a neighborhood can alleviate urban land use effects
on health risks.

Keywords: health risk; thermal environment; green infrastructure; structural equation model; land
use; urban environment

1. Introduction

The United States Environmental Protection Agency (EPA) reports that a total of
more than 11,000 people have died from heat-related causes in the past 40 years, which
is between 0.5 and 2 deaths per million people [1]. When considering underlying and
contributing causes of death, the death ratio has increased by more than threefold if we
compare the 2010s to the 1980s [1]. However, unlike other disastrous natural events—e.g.,
hurricanes and tornadoes–heat-related events are not considered a disaster incident by
the US Federal Emergency Management Agency (FEMA). With frequent extreme ‘killer
heat’ days, Sherman (2020) alerts cities to the need to develop plans for extreme heat [2].
Planning Magazine also warned planners to be “heat-ready,” which is just as crucial as
being storm-ready [3].

The United Nations forecasts that 70% of the world’s population will live in urban
areas by 2050 [4]. Urbanized areas often experience higher temperatures than outlying
areas, i.e., the urban heat island (UHI) [5]. The UHI further amplifies heat-related threats
to city dwellers. Research has suggested the adopting vegetation and bodies of water
through design and land use policies as solutions to address the UHI problem in cities [6–8].
Although such findings are helpful, their scope is limited to looking at the direct relation-
ships between UHI and selective urban features. Thus, it is vital to investigate the complex
interplay among different components to understand the connections among features
more clearly.
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This paper takes a comprehensive approach by highlighting the interwoven asso-
ciations among land use, urban greenery, temperature, and health risk using structural
equation modeling (SEM). Below are the detailed research questions:

Question 1: Which type of land use affects urban temperature, especially surface
temperature?

Question 2: What type of greenery features (e.g., tree canopy cover, tree height, and
glass cover) influences temperature?

Question 3: Does the thermal environment adversely affect public health?
Question 4: Are there associations between land use, urban greenery, temperature,

demographics, and health risk? If so, in which direction?
Harris County in Texas, where the Houston metropolitan area sits, experiences extreme

heat, which can lead to severe environmental and health-related problems. According to
the Heat Surveillance Monthly Report, heat-related illness and mortality events continued
to increase, from 150 cases to 256 cases during the three-year period from 2013 to 2016 [9].
Taking Harris County as the study area, we sought to elucidate the underlying meaningful
associations between urban land use, greenery characteristics, urban temperature, and
residents’ health—i.e., chronic disease.

2. Literature Review
2.1. Land Use Pathway for Urban Temperature and Health

Studies have reported that built-up areas are critical contributors to increases in
surface temperatures. Maloley (2009) analyzed land cover changes during the past two
decades in Canada’s Toronto area and found a significant effect of new development on
the increase in surface temperatures [10]. Other studies examined which land use types
have the most influence on urban temperatures. Jusuf et al. (2007) examined the effects
of land use on surface temperatures and found that commercial, residential, airport, and
industrial land uses created higher temperatures than parks [11]. Rinner and Hussain (2011)
analyzed various land uses (e.g., industrial, institutional, residential, open area, parks and
recreational spaces, and water bodies) related to the Toronto area’s surface temperature
and found that surface temperatures were higher for commercial and industrial land use,
characterized by a high proportion of built-up surfaces [12]. At the same time, parks and
recreational spaces had lower surface temperatures.

Health studies have found significant evidence showing close associations between
land use patterns and community health promotion [13,14]. These studies take a similar
perspective to that of the recent Smart Growth movement in urban planning. Compact
and diverse land use choices create more accessible destinations that encourage walking
trips as a way to promote a healthy lifestyle [15]. A modal shift from private vehicles to
walking and public transit has been encouraged by central planning policies. However,
the history of modern urban development has shown high-density land use and built
environments being the leading causes of rising urban temperatures. Research has revealed
that urban heat can increase mortality risks such as respiratory illness, heart disease, and
cardiovascular disease [16]. However, the link between land use and health risk through
urban temperature pathways is not yet clear. This study examines the associations between
various land uses and health risks, through urban temperature as the mediator.

2.2. Urban Greenery Pathway for Urban Temperature and Health

Among various land uses, green spaces—i.e., parks and open spaces—have received
attention in the literature due to the various potential benefits they can bring. Empirical
research has found evidence that green spaces improve urban environmental quality—
including air, noise, and temperature [17]. Green spaces also boost residents’ psychophys-
iological well-being through their therapeutic and stress-relieving effects [6]. Greenery
promotes healthy behaviors (i.e., walking in a neighborhood) [18], which foster substantial
social capital as an opportunity for walking and social interactions [19]. Research confirms
the benefits of strong social capital for psychological resiliency [20]. Gill et al. (2007)
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highlighted the critical role of green infrastructure as a vital adaptation strategy for climate
change in urban environments [21].

Such green benefits including social, psychological, and environmental aspects have
positively influenced community health. The literature suggests that residents living
in a community with an abundance of greenery tend to have better health (e.g., less
morbidity, less mortality) and well-being (e.g., happiness) [22]. They benefit from clean
air, more opportunities for physical activities, recovery from mental stress, and social
interaction [23,24]. Residents in a greener neighborhood had higher satisfaction with
their environment, which positively relates to mental health [25] and physical health [26].
Research reported that people in green environments—compared to those who are not—
have lower blood-pressure-related problems [6]. They are also less overweight/obese [27],
have lower morbidity and mortality ratios [19], and have fewer cardiovascular disease
cases [28].

Despite the numerous benefits of urban greenery, it is unclear which green features
contribute to urban temperature and health. The greenery studied is often limited to an
urban park or open space [29]. Although the value of parks and open spaces is immense,
other greenery features, such as street trees and grass in a neighborhood, could bring
more or less direct and significant benefits to residents. Greenery such as street trees,
plants, and grass alongside or on sidewalks may have significant potential to support
planning strategies for establishing more relaxed environments. At the same time, they
are still effective contributors to creating walkable and healthy neighborhoods. Our study
takes various greenery features into consideration and searches for specific urban greenery
features that alleviate urban temperatures and improve residents’ health.

2.3. Multiple Pathways among Land Uses, Green Spaces, Urban Temperature and Health Risk

The outdoor temperature (high or low) affects health directly and indirectly. High
urban temperatures, predominantly during heat waves, adversely influence health. Heat-
waves intrude on nervous system functions and can lead to the termination of vital rhythmic
activity as they obstruct the balance of nerve signals with abnormal electrolyte levels [30].
Heat exposure can also increase chronic disease risks—e.g., obesity, high blood pressure,
stroke, and asthma [31]. A chemical reaction in the atmosphere assisted by hot tempera-
tures worsens air quality, and this may cause outdoor discomfort relevant to asthma [32].
High temperatures can hinder outdoor physical activity [33] and might adversely impact
the body’s metabolism rate. Edwards et al. (2015) also confirmed reductions in physical
activities for every ten additional degrees of heat in young children in their longitudinal
cohort study [34]. A lack of such physical exercise might cause obesity and high blood
pressure [35]. While these reports have addressed the importance of thermal environments
from the community health viewpoint, empirical evidence needs to be provided.

In this study, we examine whether and how land use and green space are associated
with health risk through the pathway of urban temperature. The interwoven associations
among urban environmental aspects and health are thoroughly investigated.

3. Study Area

This study focused on Harris County (area: approximately 4602.41 km2), Texas, where
Houston sits. Figure 1 shows the geographic location of Harris County. With over two
million people as of 2010, Houston is the most populated city in Texas. The U.S. Census’s
estimated population of Houston (approx. 2.3 million) ranks it as the fourth-largest urban
area in the United States, after New York City (approx. 8.3 million), Los Angeles (approx.
4.0 million) and Chicago (2.7 million) [36]. The Houston-The Woodlands-Sugar Land
Metropolitan Statistical Area has grown significantly in recent decades from 1 million
residents in 1950 to 3.3 million in 1980 [37] and 7.1 million in 2019, with increased built-up
urban areas [36].
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the thermal environment’s effects on health risk.  

  

Figure 1. Location of Harris County in Texas.

Figure 2 shows the longitudinal trend of land use compositions (left) and tem-
perature (right) (data resources: the U.S. Geological Survey (USGS) and the Houston-
Galveston Area Council). The left chart shows the increase in developed land uses defined
by the National Land Cover Data (NLCD) while it shows the decrease in forest cover-
age over time in Harris County. The graph on the right shows the increased tempera-
tures during the same period. Hot temperatures make outdoor activities more difficult,
exacerbating discomfort.
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Figure 2. Land use and annual temperature variations in Harris County.

In terms of public health, chronic diseases are increasing and are the leading causes
of death in Harris County and in the nation [9]. In particular, the rates of obesity and
overweight have risen rapidly since the late 1980s, with a record high of 65% of people
being obese in Harris County in 2013. National rates of the same conditions have increased
from 56% to 70% over the same period, elevating the potential risk of developing other
health problems, such as heart-related disease, hypertension, arthritis, kidney disease,
stroke, asthma, and infertility [38]. Not only the obesity rate but other disease rates such
as chronic respiratory diseases (32%) and high blood pressure (32.4%) are also higher in
Harris County, Texas, than U.S. averages of 7.7% for chronic respiratory and 32% for high
blood pressure in 2016. These facts suggest that this study area is suitable for analyzing the
thermal environment’s effects on health risk.

4. Methodology
4.1. Data Sources, Factors and Variables

Four chronic diseases—obesity, high blood pressure, stroke, and asthma— were used
as the primary endogenous variables for the Health Risk factor. We obtained these data from
the 500 Cities Project sponsored by the Robert Wood Johnson Foundation and Centers for
Disease Control and Prevention (CDC) in 2015 (https://www.cdc.gov/500cities/index.htm
(accessed on 23 April 2021)). The 500 Cities Project initially used publicly available data on

https://www.cdc.gov/500cities/index.htm
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27 types of chronic diseases at the city and census tract levels. Each variable ranged from
0% to 100% of the population for each disease per census tract. Our research employed
chronic disease data from the 634 census tracts in Harris County, omitting the 152 census
tracts with no data reported.

For the Land Use factor, we adopted the parcel data from the Harris County Ap-
praisal District (HCAD). This included ten categories of land use type: single-family
residential, multi-family residential, commercial, office, public/institutional, industrial,
transportation/utility, park/open spaces, undeveloped, and agricultural uses. However,
we re-grouped them into five land use patterns based on similar environmental character-
istics to reduce statistical bias caused by the high degree of similarity between land uses.
Then, we calculated the percentage coverage by each category from all available land uses
per each census tract.

For the Urban Greenery factor, we applied an advanced geospatial analysis. Light
Detection and Ranging (LiDAR) was used for vegetation height, and high-resolution
Color-infrared (CIR) aerial photography data was used for the density of green space.
Proxy tree heights generated from the LiDAR were applied to cells with Normalized
Differential Vegetation Index (NDVI) value greater than 0.2, representing green space [39].
We estimated vegetation densities with the average tree height of each census tract. Heights
greater than 3.05 m (≈10 feet) were treated as trees (canopy), and others were considered
as grasslands covering all types of vegetation, such as grassland/herbaceous, shrub/scrub,
and pasture/hay [40]. We used the 2008 LiDAR and the 2014 CIR image data produced
by the Houston-Galveston Area Council (H-GAC). The CIR images were provided with a
3-m horizontal resolution, which can capture tree canopies in parks and along the streets.
Although there were discrepancies in data sources due to data availability issues, it did
not create any data construction problems because there has been little construction and
demolition in the study area.

Thermal environments, directly and indirectly, affect human comfort and health in
terms of heat-related mortality and morbidity. We measured two temperature variables—
average Daytime Land Surface Temperature (DLST) and average Nighttime Land Surface
Temperature (NLST)—using the MODIS (Moderate Resolution Imaging Spectroradiometer)
MOD11A2 product at 1-km spatial resolution (https://earthdata.nasa.gov/ (accessed on
10 January 2019)). Satellite-derived temperatures can be a way to remove uncertainty re-
garding missing information from weather monitoring stations. In this study, we employed
the average DLST and NLST measured in 2014.

Various demographic characteristics were also considered. A meta-analysis conducted
by Romero-Lankao et al. (2012) identified diverse socio-demographic variables supporting
the association between temperature and heat-related diseases [41]. Of these, we selected
three that could avoid multicollinearity between variables. First, a different racial distri-
bution could cause different exposure levels to health risk because of different physical,
mental, and social activity. Second, education level is also a key factor to determine poten-
tial exposure to health risk because it affects adaptive functional capability in terms of a
healthy lifestyle. Last, the elderly has been classified as a vulnerable population, imply-
ing that they could be affected by the thermal environment. All demographic data were
retrieved from the U.S. Census (2014 American Community Survey 5-year estimates) [42].

4.2. Statistical Analysis

We used the SEM analysis with Covariance Analysis and Linear Structural Equations
(CALIS), using the maximum likelihood method of parameter estimation with SAS 9.4.
The SEM is a hybrid model with a two-step process: first, a measurement model and then a
structural path model [43]. The measurement model was used to describe the relationships
between the latent factors and their indicator variables. A confirmatory factor analysis
(CFA) was used for the procedure. Three goodness-of-fit indexes determined the model fit
with the variables and factors and their interwoven associations. For more information, see
Table 2. We used five factors with 18 variables (Table 1) and the variance–covariance matrix

https://earthdata.nasa.gov/
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(n = 634). Among the factors, land use, urban greenery, and demographics were exogenous
factors, while temperature and health risk were endogenous factors in the suggested
SEM model.

5. Findings
5.1. Descriptive Statistical and Comparative Spatial Analyses

The descriptive analyses using the means and the spatial distributions of each variable
enabled us to examine Harris County’s circumstances in 2014 at the census tract level. A
summary of all factors and variables used in this research can be found in Table 1, with
simple descriptive statistics, units, and descriptions.

Table 1. Factors, Variables, and Descriptive Statistics.

Factor Variable Mean SD Min Max Description

Health Risk

Obesity 30.93 11.48 0 51.1 The population with obesity (%)
High Blood

Pressure 29.68 11.08 0 54.7 The population with high blood
pressure (%)

Stroke 2.82 1.59 0 8.5 The population with stroke (%)
Asthma 7.87 2.71 0 14.3 The population with asthma (%)

Land Use

Residential 55.76 17.54 0 98.76 Single-family and multi-family
residential land use (%)

Commercial 16.54 11.80 0 100 Commercial, office, and
public/institutional land use (%)

Industrial 7.09 9.19 0 65.77 Industrial land use (%)

Utility 2.69 6.72 0 97.53 Transportation and utility land
use (%)

Other 17.88 13.67 0 79.76

Other land use, i.e., parks, open
space, agricultural land,

undeveloped and unclassified
land use (%)

Urban Greenery

Tree Cover 13.33 8.88 0 0.626 Tree canopy cover (%)
Grass Cover 26.59 9.67 4.32 59.75 Grassland cover (%)
Tree Height 21.01 4.07 14.8 37.3 Average tree heights (m)

NDVI 0.45 0.08 0.25 0.24

Annual average vegetation
coverage based on land surface
reflection of satellite images (no

unit: 0–1 range)

Temperature DLST 30.01 1.38 23.92 32.29 Average annual daytime land
surface temperature (◦C)

NLST 17.83 0.65 15.67 19.01 Average annual nighttime land
surface temperature (◦C)

Demographics
Non-Whites 39.37 22.27 0 54.40 Non-whites (%)

Bachelor+ 18.87 17.60 0.30 67.68 People with bachelor’s or higher
degree (%)

65+ 9.64 5.18 0 30.50 People 65+ years old (%)

First, the percentage of the population with obesity or high blood pressure was
significantly higher than those with asthma or stroke. Second, the majority of Harris County
land use in 2014 was for residential use, followed by commercial and other land use (likely
to be green-related land use). Third, the mean value of the grass cover was close to double
that of tree cover. As for demographic characteristics, compared to national averages, the
county had more non-white, highly educated, and older population (compared to 26.2%
non-whites, 17.2% for bachelor or higher education attainment, and 13.7% people 65+
age-old, nationally).

Figure 3 visualizes the correlation matrix of variables as a heatmap. The map helps
to identify the incidence patterns as well as the anomalies among the variables. Yellow
means positive, and blue means negative. The stronger the color, the larger the correlation
magnitude. One outstanding finding was that all health risk variables turned out to be
positively correlated to each other (box A in red). In contrast, there seemed to be negative
correlations between temperature variables and urban greenery variables (boxes B in black).
However, the strengths of the associations of health risks with land use, urban greenery,
temperature, and most demographic variables (boxes C in white) were unclear.
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Figure 3. Correlation Heatmap.

To explore each factor’s local patterns, we further looked at the spatial distributions of
the variables. Figure 4 illustrates the spatial patterns of each urban greenery variable at
the census tract level. First, the NDVI—representing the vegetation coverage—had similar
spatial distributions to grass cover. The central east–west band with lower values for both
features is the Buffalo Bayou, a slow-moving river that flows through Houston. Second,
the spatial patterns of tree cover and tree height were similar, with the whole span of the
southern edge of the study area having lower values, while the northeastern areas had
higher values. There was approximately 13.3% more grass coverage than tree coverage in
the study area.

Figure 5 presents DLST and NLST. In 2014, the average DLST was 30.01 ◦C, and the
NLST was 17.83 ◦C in Harris County. Expectedly, the urban core temperature—for the
downtown Houston area—remained higher than the surroundings, even at nighttime. For
example, the urban core temperature was 8.37 ◦C higher in the daytime and 3.34 ◦C higher
in the nighttime than its surroundings.

Figure 6 maps the percentage of the population with each health risk variable per
census tract. Relatively high health risk areas are commonly observed in the northeast,
northwest, and southern directions from downtown Houston. The census tracts in both
orange and red for obesity and high blood pressure indicate that more than 40% of the
population had obesity and hypertension symptoms during the research year, which is a
very high percentage and indicates significant public health problems.
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5.2. Measurement Model

Table 2 lists the Goodness of Fit Indexes of three models—our initial theoretical
model, the measurement model, and the SEM model. Among various fit indexes, we
used the Goodness of Fit Index (GFI), the Bentler Comparative Fit Index (CFI), and the
Bentler-Bonett Normed Fit Index (NFI). With the lower risk of producing biased estimates
in small samples [44], researchers often use these indexes. Values over 0.9 on its index
indicate an acceptable fit. Since the initial theoretical model had a poor fit, we revised the
model. Hatcher (1994) suggests reassigning or altogether dropping an indicator from a
model rather than assigning it to two factors simultaneously (maintaining the unifactorial
characteristics of each indicator variable) [45]. After a series of modifications using the
CFA analysis, we found a model in which all fit indexes fell into a reasonable error of
approximation (Table 2). Therefore, the model was tentatively accepted as the study’s final
measurement model, and several tests were conducted to assess its reliability and validity
(Table 3).

Table 2. The goodness of fit indexes of three models.

Model N GFI CFI NFI

Initial theoretical model 634 0.58 0.67 0.66
Measurement model 634 0.90 0.91 0.90

SEM model 634 0.90 0.91 0.90
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Table 3. Factors and measures of the measurement model.

Factors and
Measurements

Standardized
Factor Loading

Convergent
Validity (t) a Reliability Variance Extracted

Estimate

Health Risk 0.946 b 0.854
Obesity 0.88 84.96 0.774

High Blood Pressure 0.96 149.60 0.922
Stroke 0.93 122.10 0.865

Land use 0.056 b 0.286
Commercial 0.66 9.60 0.436

Utility −0.37 −7.42 0.137
Urban Greenery 0.831 b 0.714

Tree Cover 0.93 34.00 0.865
Tree Height 0.75 27.07 0.563
Temperature 0.801 b 0.679

DLST 0.98 30.74 0.960
NLST 0.63 20.03 0.397

a All t-tests were significant at p < 0.001. b Denotes composite reliability.

The measurement model resulted in only nine indicator variables being significant
among the suggested 18 variables. Among the land use variables, only commercial and
utility were significant; for urban greenery, variables related to trees were significant;
and for health risk, all variables except asthma were found to be significant. The model
indicated that both the DLST and NLST variables were significant. However, none of the
demographic variables were validated in the associations with other latent variables. As a
result, we excluded all invalid variables and the demographic factor.

Table 3 shows the measurement model’s factors and indicators with the results from
the reliability and validity assessments. The Standard Factor Loadings for each variable
are presented in the second column of the table. The health risk, urban greenery, and
temperature factors showed higher than 70 Composite Reliability, which reflects the internal
consistency of the indicators measuring the given factor [46]. A Composite Reliability
value of 70 was considered as being the minimum acceptable level of reliability for the
instruments. Hatcher (1994) suggested the use of Variance Extracted Estimates to “assess
the amount of variance that is captured by an underlying factor in relation to the amount
of variance due to measurement error (p. 331)” [45]. Similar to reliability assessments, all
factors except land use reported higher than the acceptable level of 50. The findings could
be interpreted such that, for example, 85% of the variance was captured by the Health Risk
factor, and only 15% (1 − 0.85 = 0.15) was due to measurement error. As explained, most
reliability and validity test findings generally supported the factors and their indicators.
Although both the reliability and the variance extracted estimates did not advocate land use
and its indicator variables, both variables’ Convergent Validity (t-scores) were significant at
p < 0.001. This confirmed that the indicator variables—commercial and utility—effectively
measured the same construct—land use factor [43]. Therefore, the measurement model
was taken to proceed further in the structural path model estimations.

5.3. Structural Path Model (SEM Model)

Figure 7 shows the final SEM model with the estimated coefficients among all factors
and variables suggested by the measurement model. In the SEM model, we visualize
factors using ovals, and the variables have rectangular shapes. The exogenous factors are
on the left, while the endogenous factors are on the right to show the associations/effects
naturally flowing from left to right on the model. The R-squared values are also provided
outside of every endogenous variable to explain how much each endogenous variable
contributes to supporting a latent variable. The single-headed straight arrows represent
the associations’ directional strength, while the double-headed curved arrows show the
reciprocal correlations.
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The structural model shows the direct and indirect associations among factors. A direct
association appears as an arrow between temperature and health risk factors, between
land use and temperature factors, and between urban greenery and temperature factors.
Readers can also follow the indirect associations between factors through a mediating factor.
For example, health risk and land use factors are only associated indirectly via temperature
as the mediator. Similarly, an indirect association between health risk and urban greenery
can be found via temperature as the mediator. The direct association of health risk with
temperature had a positive effect of moderate strength (0.14). The findings show that
people who lived in an area with relatively higher nighttime and daytime temperatures—a
thermal environment—also showed higher incidences of obesity, high blood pressure, and
stroke. Outdoor activity relating to thermal discomfort could significantly contribute to
the increasing prevalence of these health risks. All estimated parameters, including direct,
indirect, and total effects, are summarized in Table 4.

Table 4. Estimated parameters in the final SEM model.

From Factor To Factor Direct
Association

Indirect
Association

Total
Association

Land use Temperature 0.39 0.39
Urban Greenery Temperature −0.43 −0.43

Land Use Health Risk 0.05 0.05
Urban Greenery Health Risk −0.06 −0.06

Temperature Health Risk 0.14 0.14

As mentioned above, both land use and urban greenery had indirect associations
with health risk through the mediating factor of temperature. The findings suggest that
land use indeed has a positive association with health risks. In particular, the area with
higher proportions of commercial and industrial land use reported higher daytime and
nighttime temperatures with a large effect size of 0.39 and higher incidences of health risks
with a small effect size of 0.05 (indirect effect calculated by multiplying 0.39 and 0.14). On
the other hand, urban greenery has negative associations with temperature and health
risks. Areas with higher tree canopy coverage and taller (mature) trees show significantly
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lower temperatures throughout the day. The effect size between urban greenery and
temperature was the greatest (−0.43) among all associations in the model. The findings
further contribute to the relationship between urban greenery and health risk—the indirect
association between these factors was −0.06 (calculated by −0.43 × 0.14). It is important
to note that these relations could never be disclosed using traditional linear regression
analysis because none of the mediating variables would be included. The advanced SEM
analysis handled the tasks perfectly, which is an additional contribution of this research to
current understanding in the field.

Lastly, the SEM model also showed a negative correlation (−0.23) between two exoge-
nous factors—land use and urban greenery. This link indicates that areas with commercial
and utility land uses often had a lower degree of tree canopy coverage and relatively
smaller trees in terms of height. For example, the vast majority of ground surfaces used for
commercial land use were covered by impervious pavements near parking lots, roadways,
and buildings, thereby reducing green spaces. In general, the implementation of utility
land use for transportation and conventional utility also reduced vegetation.

6. Discussion

Using publicly available secondary databases, we conducted a series of advanced
GIS analyses by applying remote sensing techniques. Using descriptive statistical and
spatial distribution analyses, we explained the trends of all variables to provide a gen-
eral understanding of the study area. All variables were then spatially joined together
at the census tract level to run an advanced statistical analysis. The SEM results re-
vealed interwoven relationships among land use, urban greenery, temperature, and health
risk factors.

This research’s most significant finding is the vital role of the temperature factor as
the mediator between both land use and urban greenery and health risks. The results show
that areas with higher commercial and industrial land use ratios with less tree canopy
and smaller trees were more likely to have relatively higher land surface temperatures
throughout the day. The associations further contribute to residents developing higher
incidences of obesity, high blood pressure, and stroke. Additional highlights can be stated.
Among various land use types, only commercial and utility uses turned out to be significant
types that contributed to increasing the land surface temperature regardless of the time of
day. Such land use types intensify the UHI effect through vast open grounds—e.g., parking
lots—often covered by impervious concrete surfaces. Air conditioning in commercial
buildings also differs dramatically from cooling in homes. Commercial buildings are
generally larger, use much energy, and ventilate a significant volume of heat. Hence, their
urban temperature impacts could be detrimental, considering the universal prevalence of
such land uses in the urban core.

This research further contributes to the literature by looking at different greenery fea-
tures separately—i.e., tree canopy cover, tree height, grass cover, and the NDVI. Although
grass coverage seems to be a dominant feature that determines the NDVI more than trees,
only tree cover (canopy) and height (size) were significant contributors to Harris County’s
land surface temperatures. Considering the positive effects of greenery on environmental
and health benefits, we suggest that proactive urban policies and additional actions to
plant more tall and leafy trees are pursued. Urban neighborhoods filled with abundant
green features with various tree types, maturities, and coverages would further promote
environmental sustainability as a related benefit, which could lead to a healthy community.
Another strength of this research is the broad applicability of its methods. Since we used
publicly available data searching for factors that contribute to public health, researchers
can apply the techniques in other areas. Advances in SEM analysis would add strength
to the research. Indirect relationships among factors cannot be projected using traditional
linear regression analysis. The other strength is the geographical unit of analysis. Previous
health literature often utilized aggregated information on a geographically large scale due
to the issue of privacy [47,48]. Therefore, their findings are difficult to suggest local health



Int. J. Environ. Res. Public Health 2021, 18, 5531 13 of 15

implications such as spatial patterns of health outcomes. In our research, we presented
the potentials of using census tract-level detailed data from the CDC. Since the findings
are specific to the environmental characteristics of Harris County, the implications are also
explicitly related to local health needs.

The research limitations could highlight directions for future research. First, inter-
estingly, none of the demographic characteristics was associated with any other factor in
this study. Perhaps the choice of demographic measures did not fit, or unknown variables
prevented us from understanding the associations between the demographic factor and all
other factors. Second, we did not take the temperature threshold or heat durations into
consideration. Since the study area is one of the hottest cities throughout the year in the
USA, we suspect that the temperature threshold and heat durations could influence the
residents’ health conditions in various ways. Third, our study is empirical research with a
specific interest in Harris County, TX. The model could be applicable in other cities with
similar characteristics–megacities. Future research with comparisons could be advanta-
geous. Lastly, we only used the LST as a representative variable of urban temperature
associated with health. However, we understand that many other meteorological variables
can be just as crucial to human health. With the increase in urban temperatures, changes
in other variables such as humidity, barometric pressure, precipitation, and UV radiation
can occur. Schneider and Breitner (2016) stated that the interplay of temperature with air
pollution is also critical. Future research to address these limitations is needed [49].

7. Conclusions

This study used satellite image and census tract-level health data to examine com-
plex associations among land use, urban greenery, surface temperatures, and health
risks. This study found that the urban land uses covered mainly by concrete surfaces
of building contributed to health risks whereas urban greenery such as trees along the
streets and between buildings were significant for decrease in health risks. The findings
of this research align with recent innovative initiatives, including the Sustainable Sites
Initiative (SSI, http://www.sustainablesites.org/ (accessed on 23 April 2021)), Leader-
ship in Energy and Environmental Design for Neighborhood Development (LEED-ND,
http://leed.usgbc.org/nd.html (accessed on 23 April 2021)), Enterprise Green Commu-
nities Criteria (https://www.enterprisecommunity.org/solutions-and-innovation/green-
communities/criteria (accessed on 23 April 2021)), and the Healthy Development Measure-
ment Tool (HDMT, www.thehdmt.org (accessed on 23 April 2021)). With the tremendous
efforts that have been made, understanding of the adverse impacts of UHIs have grown
substantially, and it seems this trend will continue in the future. For a more sustain-
able, well-connected, and healthy neighborhood, continuing efforts to address this issue’s
various aspects are needed.
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