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Abstract: Idiopathic inflammatory myopathy (IIM) is hard to diagnose without a muscle biopsy.
We aimed to identify a metabolite panel for IIM detection by metabolomics approach in serum
samples and to explore the metabolomic signature in tissue samples from a mouse model. We
obtained serum samples from IIM patients, ankylosing spondylitis (AS) patients, healthy volunteers
and muscle tissue samples from IIM murine model. All samples were subjected to a targeted
metabolomic approach with various statistical analyses on serum and tissue samples to identify
metabolic alterations. Three machine learning methods, such as logistic regression (LR), support
vector machine (SVM), and random forest (RF), were applied to build prediction models. A set
of 7 predictive metabolites was calculated using backward stepwise selection, and the model was
evaluated within 5-fold cross-validation by using three machine algorithms. The model produced an
area under the receiver operating characteristic curve values of 0.955 (LR), 0.908 (RF) and 0.918 (SVM).
A total of 68 metabolites were significantly changed in mouse tissue. Notably, the most influential
pathways contributing to the inflammation of muscle were the polyamine pathway and the beta-
alanine pathway. Our metabolomic approach offers the potential biomarkers of IIM and reveals
pathologically relevant metabolic pathways that are associated with IIM.

Keywords: idiopathic inflammatory myopathy; biomarker; polyamine pathway

1. Introduction

Idiopathic inflammatory myopathy (IIM) is a rare inflammatory disease characterized
by immune-mediated myositis that leads to progressive proximal muscle weakness and
is accompanied by various extramuscular manifestations, including skin rash, arthritis,
and interstitial lung disease [1]. The incidence and prevalence of IIM remain unclear, but
a systemic review reported the incidence as ranged from 1.16 to 19/million/year and its
prevalence ranged from 2.4 to 33.8 per 100,000 inhabitants [2]. Moreover, the incidence of
IIM is gradually increasing, which may reflect the advances in diagnostic technologies.

In 1975, Bohan and Peter suggested the diagnostic criteria of IIM, especially polymyosi-
tis (PM) and dermatomyositis (DM), which is predominantly used despite several limita-
tions [3,4]. The recent discovery of myositis-specific auto-antibodies (MSAs) and myositis-
associated auto-antibodies (MAAs), which are expressed in up to 60% of IIM patients,

Metabolites 2022, 12, 1004. https://doi.org/10.3390/metabo12101004 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo12101004
https://doi.org/10.3390/metabo12101004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-4435-6864
https://orcid.org/0000-0001-6975-8627
https://orcid.org/0000-0001-9270-8273
https://doi.org/10.3390/metabo12101004
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo12101004?type=check_update&version=1


Metabolites 2022, 12, 1004 2 of 14

have majorly advanced the diagnosis of IIM [5]. However, the disadvantages of this tech-
nique include its lack of wide availability and the fact that approximately 40% of IIM
patients are antibody-negative [6]. Therefore, a muscle biopsy may be necessary if the
diagnosis cannot be confirmed on the basis of clinical and laboratory findings. However,
histopathologic findings are often indefinite for the diagnosis because of the patchy distri-
bution of inflammatory foci in muscle tissue or due to the use of medication prior to the
pathologic diagnosis.

C protein-induced myositis (CIM) is a murine model of polymyositis (PM) that is
induced by a single immunization with recombinant skeletal muscle C protein fragments
in a C57BL/6 mouse. Infiltration of CD8+ T cells is the primary mechanism of muscle
injury, and increased levels of interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-α
are crucial indications for the development of CIM. Consequently, the CIM model is used
to study the pathology of PM for its comparable disease mechanism [7–9].

Previous studies reported genetic and environmental risk factors associated with IIM,
including muscle weakness and damage to immune and non-immune mechanisms [10].
The metabolome, a set of metabolites, can be applied to discover biomarkers and describe
interactions among genotype, diet, and environmental factors to elucidate the molecular
mechanisms in IIM [11]. Furthermore, tissue metabolomics allows informing the localized
effects of environmental factors and complex interactions that occur at the direct site of
pathogenesis [12]. Metabolic alterations have been reported in IIM patients, describing
metabolic dysregulation in serum and muscle tissues [13]. Key metabolic pathways, includ-
ing anaerobic metabolism, oxidative defect, and muscle catabolism, were evaluated through
metabolomics [13]. However, none of the previous studies remained serum biomarkers
using metabolomics to classify IIM or aid in diagnosis. This study was conducted with
the aim of identifying the metabolite panel as a potential biomarker for differentiating IIM
from controls or disease controls and exploring the metabolic signature of IIM pathology
by using a mouse model.

2. Materials and Methods
2.1. Study Participants

Patients were recruited from Seoul National University Hospital from March 2010 to
February 2020. Patients with IIM who were 19 years or older and diagnosed according
to probable or definite PM or DM based on the Bohan and Peter criteria were eligible for
inclusion [3,4]. Patients with other rheumatic diseases were excluded. The reference group
was composed of patients with ankylosing spondylitis (AS), and the healthy control group
included participants without any immune-mediated disease. AS is a chronic inflammatory
autoimmune disease that mainly affects spine joints, causing severe, chronic pain, and IIM
is a chronic inflammatory disease of unknown etiology that may affect the skin, muscles,
and lungs. These two autoimmune diseases have different etiopathogeneses as well as
clinical and genetic characteristics. In this study, we compared and analyzed the serum of
AS patients as a disease control. The diagnosis of AS was based on the 1984 Modified New
York Criteria for AS.

We obtained serum samples of the participants once at the enrollment date. Infor-
mation on demographics, including age, sex, and body mass index (BMI, kg/m2), was
collected from all participants. In addition, the following information was collected from
IIM patients: clinical manifestations at IIM onset, including proximal muscle weakness,
skin rash, dyspnea, dysphagia, Raynaud’s phenomenon, and arthralgia; previous treatment
history of glucocorticoids, intravenous immunoglobulin, or immunosuppressive agent use;
laboratory results including white blood cell count, creatinine kinase, aldolase, myoglobin,
lactate dehydrogenase, erythrocyte sedimentation rate, and C-reactive protein at the sam-
pling date and positivity of antinuclear antibodies and anti-Jo-1 (anti-histidyl-transfer RNA
synthetase antibody). The results of the diagnostic tests for myositis, including electromyo-
graphy, muscle biopsy, chest computed tomography, and pulmonary function test, were
also retrieved.
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Written informed consent was obtained from all participants before their enrollment in
the trial. This study was approved by the institutional review board of the Seoul National
University Hospital (study identification number: g1103-151-357 and 1902-120-1013) and
was conducted in accordance with the Declaration of Helsinki.

2.2. Induction of C Protein-Induced Myositis

C57BL/6 mice were purchased from OrientBio (Sungnam, Korea). Female mice (age 8
to 10 weeks) were immunized intradermally with 200 µg C-protein fragments emulsified in
complete Freund’s adjuvant containing 100 µg heat-killed Mycobacterium butyricum (Difco,
Franklin Lakes, NJ, USA) [7]. The immunogens were injected at multiple sites over the back
and into the foot pads, and 250 ng pertussis toxin (Sigma-Aldrich, St. Louis, MO, USA)
diluted with 0.03% Triton X was injected intraperitoneally. Mice were sacrificed on day
14 after immunization, and the sera and proximal muscles (hamstring and quadriceps) of
both hind legs were harvested.

2.3. Histological Analysis

Hematoxylin and eosin-stained 10-µm sections of the proximal muscles were examined
histologically for the presence of mononuclear cell infiltration and necrosis of muscle
fibers. The histologic severity of inflammation in each muscle block was graded as Grade
1, involvement of a single muscle fiber; Grade 2, a lesion involving 2–5 muscle fibers;
Grade 3, a lesion involving 6–15 muscle fibers; Grade 4, a lesion involving 16–30 muscle
fibers; Grade 5, a lesion involving 31–100 muscle fibers; and Grade 6, a lesion involving
>100 muscle fibers. When multiple lesions with the same grade were found in a single
muscle section, an additional 0.5 points was added to the grade. The histologic grading
was based on a method that was modified from that of Sugihara et al. [7]. All experiments
were done under specific pathogen-free conditions. The animal experiment was approved
by the Institutional Animal Care and Use Committee of Seoul National University Hospital
[IACUC No. 15-0058-C1A1].

2.4. Mass Spectrometry-Based Targeted Metabolomics Assay

Metabolomics analysis of human and mouse samples was performed using the
Biocrates AbsoluteIDQ p180 platform (Supplementary Figure S1). This high-throughput
metabolome platform combines a flow-injection analysis and liquid chromatography
method that enables the quantification of amino acids, acylcarnitines, sphingomyelins
(SMs), lysophosphatidylcholines (lysoPCs), phosphatidylcholines (PCs), hexoses, and bio-
genic amines. These assays were analyzed using API 4000 QTRAP (AB Sciex, Framingham,
MA, USA) equipped with an Agilent 1200 series high-performance liquid chromatog-
raphy (HPLC) system (Agilent Technologies, Santa Clara, CA, USA) and an AB SCIEX
5500 QTrap mass spectrometer (AB Sciex, USA) equipped with a Waters ACQUITY ultra-
performance liquid chromatography (UPLC) I-Class (Waters, Milford, MA, USA) with
electrospray ionization. The concentration of each metabolite was measured in ng/mL. The
calibration standards, internal standards, quality controls, and 10 µL of human and mouse
samples were applied onto the 96-well extraction plate and dried under nitrogen gas. After
derivatization, all metabolites were extracted for mass spectrometry analysis.

2.5. Data Processing and Normalization

Two batches, including all human and mouse samples, were normalized by MetIDQ
software with standardized quality control to adjust the batch effect. After normalization,
data were analyzed with MetaboAnalyst 5.0. A missing value refers to an observed value
that is below the limit of detection or the absence of a metabolite. Metabolites with 50%
missing values were excluded, and the remaining missing values were imputed with 1/5
of the minimum positive value of each variable.
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2.6. Statistical Analysis

Multivariate, univariate, cluster and enrichment pathway analyses were performed in
MetaboAnalyst 5.0. Significant metabolites were selected with a false discovery rate (FDR)
adjusted p-value less than 0.05 by using the Kruskal-Wallis one-way analysis of variance
(ANOVA) followed by Dunn’s post hoc test for human serum samples and by using the
non-parametric t-test for mouse samples. Model and machine learning analyses were
performed using R software (version 4.2.0). The number of significant metabolites was
reduced by backward stepwise selection. A predictive model was established using logistic
regression (LR), random forest (RF), and a support vector machine (SVM). The receiver
operating characteristic (ROC) curve was used for the evaluation of model performance.
Additionally, network analysis was processed with an FDR-adjusted p-value, fold change
and fold change direction by using MetaMapp and was visualized using Cytoscape.

2.7. Protein Extraction and Western Blot Analysis

Skeletal muscles were extracted using a lysis buffer containing 20 mM Hepes-NaOH
(pH 7.0), 0.15 M NaCl, 10% glycerol, 1% Nonidet P-40, 1 mM EDTA, 1 mM EGTA, 10 mM
β-phosphoglycerate, 1 mM sodium vanadate, 5 mM NaF, 1 mM trichostatin A, and 20 mM
nicotinamide, along with a mixture of protease inhibitor and phosphatase inhibitor (Sigma
Aldrich, St. Louis, MO, USA). The lysates were centrifuged to remove debris, and the
supernatants were used for immunoblot analysis. The final protein concentrations were
determined using the Bradford protein assay (Bio-Rad, Hercules, CA, USA). The protein
extracts were subjected to SDS-PAGE gel (8–15%), and NuPAGE Novex 4–12% Bis-Tris gel
electrophoresis (Invitrogen) and electrophoresis were carried out using sodium dodecyl
sulfate-10% polyacrylamide gels electrophoresis (SDS-PAGE). The separated proteins were
transferred to a polyvinylidene difluoride membrane. The membrane was incubated
overnight at 4 ◦C with primary antibodies (ODC-1 (Abcam), SMOX (Abcam), tubulin (cell
signaling)) and then for 1 h at room temperature with horseradish peroxidase-conjugated
secondary antibodies and enhanced chemiluminescence reagents (ELPIS Biotech, Daejeon,
Korea). Films were scanned, and optical densities were quantified using ImageJ software.

2.8. ELISA

Serum cytokines were determined by using IL-6, IL-1β, and TNF-α, ELISA kits (R&D
Systems, Minneapolis, MN, USA).

3. Results
3.1. Clinical Characteristics of the Participants

Between March 2010 and August 2019, 50 patients with IIM, 30 patients with AS,
and 10 healthy controls were enrolled in the study. Baseline characteristics of the study
population are shown in Table 1, and there was no statistically significant intergroup
difference in age, sex, and BMI. IIM was diagnosed at a mean age of 48.4 years, and the
mean disease duration was 2.24 years. Thirty-four patients (68%) presented with proximal
muscle weakness, 30 (60%) had skin manifestations such as Gottron’s sign, heliotrope rash,
or V-neck sign, and 27 (55.1%) were diagnosed with interstitial lung disease at an initial
presentation. Anti-Jo-1 antibody was identified in six patients. Forty-one patients (82%)
had a previous history of glucocorticoid therapy before the enrollment date. The mean
values were stated as CK of 532 U/L, LDH of 329 IU/L, and CRP of 1.44 mg/dL at the
sample collection date.
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Table 1. Demographics and clinical parameters of study participants.

IIM
(n = 50)

AS
(n = 30)

Control
(n = 10) p-Value

Age (year) * 50.7 ± 12.2 52.5 ± 11.4 45.0 ± 15.0 0.249
Male 25 (50.0) 15 (50.0) 5 (50.0) 1.000

BMI (kg/m2) 23.5 ± 3.4 22.8 ± 2.8 25.0 ± 2.2 0.376
Age at disease onset (year) 48.4 ± 12.4

Disease duration (year) 2.24 ± 2.74
Clinical features at disease onset (n)

Proximal muscle weakness 34 (68.0)
Skin manifestations † 30 (60.0)

Interstitial lung disease 27 (55.1)
Elevated serum level of enzymes ‡ 46 (92.0)

Anti-Jo1 antibody present 6 (12.2)
Laboratory data *
WBC (×103/µL) 8445 ± 5095

Creatinine kinase (U/L) 532 ± 934
Aldolase (U/L) 19.1 ± 23.2

Myoglobin (ng/mL) 694 ± 885
LDH (IU/L) 329 ± 179

C-reactive protein (mg/dL) 1.44 ± 3.59
ESR (mm/h) 30.5 ± 28.1

Treatment history §

Corticosteroids (ever) 41 (82.0)
IVIG (ever) 4 (8.0)

Note: Values are expressed as the mean ± SD or numbers (%) unless stated otherwise. * At sample collection
date; † Gottron’s sign or heliotrope rash or V-neck sign; ‡ Creatinine kinase or lactate dehydrogenase or aspartate
aminotransferase or alanine aminotransferase; § Treatment history before the sample collection date; Abbreviation:
ANA, Antinuclear antibodies; ESR, Erythrocyte sedimentation rate; IVIG, Intravenous immunoglobulin; LDH,
Lactate dehydrogenase; WBC, White blood cell.

3.2. Metabolic Profiling of Healthy Control, AS and IIM Patients

We first sought to explore the metabolic signature of IIM in serum samples of IIM
patients, AS patients and healthy controls. After missing value imputation, a total of
148 metabolites remained for further analysis in human serum. Principal component analy-
sis (PCA) in human serum samples showed differences between the IIM and other groups
(Figure 1A), whereas the AS and healthy control groups showed no intergroup difference.
In total, 88 significant metabolites were identified using ANOVA with an FDR-adjusted
p-value less than 0.05 for IIM, AS, and healthy control groups (Supplementary Table S1).
The clustered heatmap using Euclidean distance and ward method shows different clusters
with metabolite similarity (Supplementary Figure S2). The heatmap with group averages
clearly showed differences between the IIM, AS, and healthy control groups (Figure 1B,C).
In particular, the metabolic signature between healthy control and IIM was distinctively
different. L-Acetylcarnitine, cis-5-tetradecenoylcarnitine, serotonin, glycine, creatinine
and methionine were down-regulated, whereas all other significant metabolites were up-
regulated in IIM compared to healthy control (Figure 1B). To visualize the metabolomic
data globally, mapping of biochemical pathways and chemical similarity for significant
metabolites in IIM compared to healthy controls was conducted (Figure 1D). All signifi-
cant metabolites were mapped as three main clusters: amino acids and biogenic amine,
sphingomyelin, glycerophospholipids, and acylcarnitine. Clearly, all significantly changed
sphingomyelin were down-regulated in IIM compared to the healthy controls. Besides
sphingomyelin, numerous metabolites in other clusters were altered in the serum of IIM
compared to healthy controls. The results support that inflammation in muscle impacts on
systemic serum metabolite profile.
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Figure 1. Metabolomic analysis of IIM patients, AS patients, and healthy controls. (A) PCA plot
of AS patients, IIM patients, and healthy controls. (B) Heatmap of significant metabolites with
group average in IIM, including amino acid, biogenic amine and acylcarnitine class. (C) Heatmap of
significant metabolites with group average in IIM, including SMs, lysoPCs, PC, and hexoses. For the
full name of metabolites, please see Supplementary Table S2. (D) MetaMapp metabolomic networks
of human serum alterations in IIM patients compared to healthy controls. Border color and node
color: red indicates up-regulation in IIM, and blue indicates down-regulation in IIM. Node size
indicates the FDR-adjusted p-value.
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3.3. Predictive Biomarker and Machine Learning Algorithm Optimization for Distinguishing IIM

Following the ANOVA test, multiple comparisons were performed to identify 37 IIM-
specific metabolites (Supplementary Table S3). Among these IIM-specific metabolites, a
combination of seven metabolites was calculated to distinguish IIM from AS and healthy
controls using backward stepwise selection (Figure 2A). LR, RF, and SVM algorithms were
used to establish a prediction model of IIM. An ROC analysis with LR, RF, and SVM was
performed to assess model performance and showed an area under the ROC curve (AUC)
values of 0.966 (95%CI: 0.928–1.000), 1 (1.000–1.000) and 0.957 (0.910–1.000), respectively
(Supplementary Figure S3). The evaluation results of the prediction model using a five-fold
cross-validation method are shown in Figure 2B. The AUC values were 0.955 (LR), 0.908
(RF) and 0.918 (SVM). By using the prediction model as well as 5-fold cross-validation,
seven metabolite panels were identified as the powerful contributor to help distinguish
IIM from other groups.
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Figure 2. Serum metabolites as biomarkers for IIM. (A) The individual plot of IIM-specific metabolites
was selected by the backward stepwise method for constructing a prediction model. * p < 0.05;
** p < 0.005; *** p < 0.0005, and **** p < 0.0001. (B) ROC curves for seven sets of metabolites with five-
fold cross-validation. AUC values were calculated for each machine learning method; red indicates
logistic regression, blue indicates support vector machine, and yellow indicates random forest.
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3.4. Metabolic Profiling in the C-Protein-Induced Myositis Mouse Model

To discover metabolite changes in skeletal muscle, we used a mouse model induced
by injection of immunogens. Mouse quadriceps and hamstrings muscle were stained with
hematoxylin and eosin (H&E) to assess muscle histology (Figure 3A). The histological
score showed a significantly increased in the quadriceps and hamstring muscles of CIM
mice compared to control mice (Figure 3B). CIM showed an increased production of
cytokines TNF-α, IL-6, and IL-1 in mouse serum samples (Supplementary Figure S4). We
performed univariate and multivariate analyses to explore the effect on the metabolite
profile in muscle tissue with inflammation. After missing value imputation, a total of
157 metabolites remained for further analysis in mouse muscle tissue. The PCA analysis in
mouse muscle samples showed a difference between CIM and control mice (Figure 3C).
A volcano plot was constructed to display the overview of significant metabolites (t-test
with FDR-adjusted p-value less than 0.05) between CIM and control mice. (Figure 3D). In
total, 68 metabolites were changed in the tissue of CIM mice (Supplementary Table S4). A
clustered heatmap showed the similarity of the metabolite patterns of individual samples
in each group (Supplementary Figure S5). Among significant metabolites, the levels of
amino acids, biogenic amines, and acylcarnitines, except taurine, were decreased in CIM
mice. Alternatively, the levels of all lipids increased in CIM mice. Interestingly, biogenic
amines, except taurine, and all metabolites from other classes showed the same pattern in
CIM mice in the network analysis (Figure 3E). In addition, we identified 37 metabolites that
were altered in the serum of CIM mice compared to controls (Supplementary Figure S6 and
Supplementary Table S5). We noted that metabolites, including carnosine, tryptophan, and
creatinine, were altered in the serum of CIM mice (Supplementary Figure S7).

3.5. Metabolic Pathway Associated with the Muscle of CIM Mice and Expression of ODC-1 and SMOX

Following statistical analysis for metabolites that were measured by targeted analysis,
enrichment pathway analysis was utilized to recognize the alteration of metabolic path-
ways that are associated with IIM muscle (Supplementary Figure S8). Pathway analysis
showed that 6 metabolites–aspartic acid, histidine, carnosine, spermidine and spermine
(Figure 4A)—were predominantly linked to beta-alanine and histidine metabolism (Supple-
mentary Table S6). Furthermore, we found that spermine and spermidine were significantly
decreased in the CIM mice, which indicates the down-regulation of the polyamine pathway
(Figure 4A,B) as metabolites from the polyamine pathway have been detected in several
studies but have not been ascertained in the CIM mouse [14,15]. Thus, we additionally
observed the expression of enzymes related to spermine and spermidine. Spermine oxi-
dase (SMOX) converts spermine to spermidine which is a critical regulator of spermine
and spermidine concentration, and ornithine decarboxylase 1 (ODC-1) is known as the
rate-limiting step of polyamine pathways [16,17]. To further understand the alteration
of polyamines concentration in muscle tissue, Western blot analysis was used for ODC-1
and SMOX (Figure 4C,D). The expression of ODC-1 increased, whereas SMOX expression
decreased in CIM mice.
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Figure 3. Effect of myositis on skeletal muscle tissue in the mouse model. (A) histology of control
and CIM. (B) The histologic score of control and CIM. (** p < 0.0001) (C) PCA plot of control and
CIM skeletal muscle tissue. (D) Volcano plot from t-test results of control and CIM. Red dots are
upregulated metabolites, and blue dots are downregulated metabolites. (E) Network analysis of
mouse tissue, comparing CIM and control. Border color and node color: red indicates up-regulation
in CIM, and blue indicates down-regulation in CIM. Node size indicates the FDR-adjusted p-value.
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Figure 4. IIM-related metabolite alterations and pathways in muscle tissue. (A) Individual scatter
plots of significant metabolites related to important pathways in mouse tissue. (B) Overview of
altered metabolites related to the skeletal muscle tissue of mice. Red-colored metabolite indicates
up-regulation in CIM mice, while blue-colored metabolites represent down-regulation as compared
with the control mice. (C) Protein expression and (D) relative quantitative data of ODC-1, SMOX,
and tubulin. (* p < 0.05, ** p < 0.005.)

4. Discussion

Using a targeted metabolomics platform, this study highlights that all groups from
patients and healthy control showed different blood metabolic signatures, indicating the
potential of the biomarker for IIM and the significant alteration of metabolites to discover
the underlying mechanism related to muscle inflammation.

We found notable metabolites, including five amino acids and two biogenic amines
besides lipids, that were altered specifically in IIM patients. These findings are in agreement
with those of a previous study that showed serum amino acid concentration alteration
in IIM patients [13]. Amino acids, especially branched-chain amino acids (BCAA), are
essential for skeletal muscle and whole-body metabolism [18]. In previous studies, BCAA is
recommended as a supplement for muscle development and treating fatigue [19]. However,
increased levels of BCAAs can cause inflammation by activating mTORC1, which subse-
quently increases the production of proinflammatory cytokines [20]. The observation of the
increased BCAA level in the serum in IIM patients needs to be investigated further, along
with the levels of other increased amino acids. Remarkably, methionine sulfoxide was
specifically increased in IIM comparing healthy controls and AS patients and methionine
were decreased in IIM comparing healthy control. Methionine sulfoxide, the oxidized
form of methionine, can be reduced back to methionine by methionine reductases that
protect proteins against oxidative stress and regulates the aging process [21,22]. An altered
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level of methionine sulfoxide and methionine is considered a biomarker of oxidative stress,
and, therefore, our result might reflect increased ROS production in IIM patients [23,24].
Additionally, our results showed that various metabolites in the lipid class were altered,
specifically in IIM patients. Phospholipid metabolism has been highlighted in various
diseases and energy metabolisms, as well as in skeletal muscle function [25]. A few studies
have reported changes of lipid in serum of myopathy patients and speculated that dysregu-
lation of the lipid metabolism in patients with polymyositis and dermatomyositis results in
persistent muscle weakness and fatigue [26,27].

In recent years, machine learning methods have frequently been applied to discover
biomarkers of muscle diseases. Previous findings have predicted the cancer risk of anti-
TIF1γ+ myositis and have suggested gene markers for muscle disease classification using
machine learning algorithms. In this study, we first identified a set of seven metabolites
that allowed us to discriminate IIM patients from AS patients and healthy controls by using
machine learning algorithms based on the AUC values of LR, RF and SVM were 0.955,
0.908 and 0.918, respectively [28,29]. Our results suggest a prediction biomarker set for
IIM patients, which is relevant to the pathophysiologic mechanism of IIM. This biomarker
discovery may help for the diagnosis or disease activity monitoring through less invasive
and easily applied technologies instead of muscle biopsy.

In the muscle tissue of CIM mice, spermine and spermidine from the polyamine
pathway were significantly down-regulated in this study. In addition, ornithine and
putrescine, which also are involved in the polyamine pathway, were significantly increased
in the serum of IIM patients compared to healthy controls. Dysregulated polyamine
metabolism associated with various diseases and inflammation has been described in
previous studies [30,31]. Polyamines in muscle disease are related to the degeneration
and regeneration of muscular fibers, and the concentrations of spermine and spermidine
are regulated by a key enzyme, SMOX [32]. Furthermore, SMOX expression was also
reduced, besides the decreased spermine and spermidine concentrations in CIM mice. A
recent study demonstrated that a significant reduction of SMOX expression is associated
with muscle atrophy induced by several conditions [33]. Aging is one of the conditions
that can reduce spermidine levels and SMOX expression, which can bring about a loss
of skeletal muscle [34]. The significant reduction of spermine, spermidine, and SMOX
expression and significant induction of ODC was highly consistent with that in aged
skeletal muscle. These changes in metabolites and enzyme expression might be affected by
aging, including decreased cell proliferation and protein synthesis [35]. Thus, the alteration
of polyamine metabolites and associated enzymes might reflect an aging phenotype in
inflammatory muscle.

Moreover, we discovered changes in metabolites from beta-alanine and histidine
metabolisms using enrichment pathway analysis. Compared to the control mice, histidine,
carnosine and aspartic acid levels were lower in the muscle tissue of CIM mice. Carnosine,
formed by histidine and beta-alanine, is highly presented and synthesized primarily in
the skeletal muscle tissue of mammals [36]. In addition, carnosine has protective effects,
including the reduction of proinflammatory and profibrotic cytokines, which can suppress
ROS production and inflammation [37,38]. Histidine also plays an important role in skeletal
muscle that enhances muscle performance and is used for the synthesis of carnosine [39].
Decreased muscle carnosine and histidine may reflect cell damage in states of inflammation.

In our results, interestingly, metabolic profiling in tissue samples from CIM mice
showed metabolites, except taurine, from each class changed in the same direction. The
significant reduction in several amino acids and amines, such as aspartic acid, histidine,
methionine, threonine, tyrosine, carnosine, creatinine, spermidine, and spermine that was
observed in our study, is highly consistent with previous studies with aging. Essential
amino acids stimulate protein synthesis in skeletal muscle, and the delivery of amino
acids is closely associated with muscle weakness and atrophy [40]. Previous studies further
identified that reduced amino acid delivery and protein synthesis is stimulated by mTORC1
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in aged skeletal muscle [41]. Our findings in this study showed particular relevance to the
aging phenotype.

The limitations of the present study include the lack of a validation cohort for modeling,
the small sample size of patient groups and healthy controls, the lack of various disease
controls, the potential gender difference of polyamine metabolites in the mouse model
and only partial metabolites representation of the blood and tissue metabolomes. The lack
of a validation set in this study could lead to the risk of model overfitting. As IIM is a
rare disease, additional validation cohort recruitment was challenging. To overcome this
limitation, we developed the five-fold cross-validation method with three machine learning
algorithms. The limitation of the targeted analysis was that only a set of metabolites could
be evaluated. As various metabolites in our study showed significant differences in IIM
and the mouse model, further research using global profiling is needed.

5. Conclusions

In summary, we performed targeted metabolomics profiling in the serum of IIM
patients and tissue of CIM mice and showed a specific metabolic signature within both
serum and inflamed tissue. To the best of our knowledge, this is the first study suggesting
a metabolic biomarker for IIM patients by using a machine learning algorithm-based
prediction model. Beyond suggesting a predictive marker of IIM, our study additionally
uncovered alteration of metabolites related to muscle inflammation and provided new
insight into IIM pathology.
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