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Abstract 

Background:  The aim of the study was to develop and test an artificial intelligence (AI)-based method to improve 
the quality of [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) images.

Methods:  A convolutional neural network (CNN) was trained by using pairs of excellent (acquisition time of 6 min/
bed position) and standard (acquisition time of 1.5 min/bed position) or sub-standard (acquisition time of 1 min/bed 
position) images from 72 patients. A test group of 25 patients was used to validate the CNN qualitatively and quanti-
tatively with 5 different image sets per patient: 4 min/bed position, 1.5 min/bed position with and without CNN, and 
1 min/bed position with and without CNN.

Results:  Difference in hotspot maximum or peak standardized uptake value between the standard 1.5 min and 
1.5 min CNN images fell short of significance. Coefficient of variation, the noise level, was lower in the CNN-enhanced 
images compared with standard 1 min and 1.5 min images. Physicians ranked the 1.5 min CNN and the 4 min images 
highest regarding image quality (noise and contrast) and the standard 1 min images lowest.

Conclusions:  AI can enhance [18F]FDG-PET images to reduce noise and increase contrast compared with standard 
images whilst keeping SUVmax/peak stability. There were significant differences in scoring between the 1.5 min and 
1.5 min CNN image sets in all comparisons, the latter had higher scores in noise and contrast. Furthermore, difference 
in SUVmax and SUVpeak fell short of significance for that pair. The improved image quality can potentially be used either 
to provide better images to the nuclear medicine physicians or to reduce acquisition time/administered activity.
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Background
Positron emission tomography (PET) images are inher-
ently noisy, and with a low spatial resolution, due to the 
specifics of the imaging process and the ill-posed tomo-
graphic reconstruction problem. Different reconstruction 
algorithms exist to improve image quality. For example, 
the block-sequential regularization expectation maximi-
zation algorithm (BSREM) [1, 2], commercially known 
as Q.Clear (GE Healthcare, Milwaukee, WI, USA) [3], 

has been developed. The algorithm has been shown to 
increase lesion detectability and the quantitative accu-
racy of standardized uptake value (SUV), particularly in 
small lesions, compared with standard ordered subset 
expectation maximization (OSEM) algorithms [2, 4, 5]. 
BSREM suppresses noise via a penalty factor beta (β), 
which allows for more iterations while keeping the noise 
level low. BSREM has been optimized for several differ-
ent radiopharmaceuticals [6–9]. For [18F]fluorodeoxyglu-
cose (FDG) PET, a β of 500 has been shown to be optimal 
if a scan time of 1.5 min per bed position with an admin-
istered activity of 4 MBq/kg is used. A lower acquisition 
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time, i.e. 1  min/bed position gives images of too poor 
quality, given the same amount of activity [7].

Artificial intelligence (AI) is believed to transform radi-
ology and nuclear medicine in the future [10]. Convo-
lutional neural networks (CNN), an AI algorithm, have 
been shown to work well in improving image quality in 
planar nuclear medicine [11]. AI algorithms for image 
enhancement [11], segmentation [12–14], classification 
and prognostication [15] have been published. For exam-
ple, standard-dose computed tomography (CT) [16] and 
PET images [17] has been derived from low-dose data 
using CNNs.

Modern nuclear medicine departments aim at increas-
ing patient throughput due to a high demand, which 
makes short acquisition time important. However, this 
will decrease image quality unless the administered 
activity is increased. The aim of this study was therefore 
to test if image quality of BSREM reconstructed images 
obtained with short and standard acquisition times can 
be improved using a CNN trained on images acquired 
with a long acquisition time.

Method
Patients and imaging
Ninety-seven patients referred for clinical [18F]FDG PET-
CT at Skåne University Hospital, Malmö or Lund, were 
included in the study. Seventy-two of the patients were 
used for training the CNN (included December 2019 to 
March 2020) and a separate set of 25 patients (included 
April to June 2018) were used to evaluate the method. All 
patients underwent an intravenous injection of 4 MBq/kg 
body weight of [18F]FDG after at least 4 h fasting and at 
a glucose level ≤ 10 mM. Four Discovery MI (GE Health-
care, Milwaukee, WI, USA) PET-CT systems, each with 
four detector rings, were used for image acquisition. 
Imaging was performed 60  min after administration, 
and the patients were scanned from the inguinal region 
to the base of the skull. The patients in the training set 
were scanned with 5–7 bed positions, depending on the 
length of the patient. The acquisition time for one of the 
bed positions was 6  min (different bed position for dif-
ferent patients) and 1.5 min for the others. The images of 
the patients in the test group were acquired with a time 
per bed position of 4 min for all bed positions and stored 
in list-mode.

The PET-images were reconstructed using a BSREM 
algorithm including time-of-flight and point spread 
function with a 256 × 256 matrix (pixel size 2.7 × 2.7 
mm2, slice thickness 2.8 mm). CT images were acquired 
for attenuation correction and anatomic correlation of 
the PET images. A diagnostic CT with intravenous and 
oral contrast or a low-dose CT without contrast was 
performed.

CNN
A denoising CNN suitable for image enhancement as 
proposed by Zhang et  al. [18] was implemented using 
Matlab (Mathworks Inc. Natick, Massachusetts). In our 
adaptation of Zhang’s model, we have changed the num-
ber of convolution layers to 10 and used a 256 × 256 × 5 
(3D) matrix input. Each convolution layer consists of 68 
3 × 3 × 3 filters except the first and last layer which con-
sist of one 3 × 3 × 3 filter. As in the proposed CNN by 
Zhang et  al., batch normalisation was used in order to 
speed up the training process and improve the denois-
ing performance. Pooling layers were not used in order 
to benefit from a larger receptive field where contextual 
information can be used to improve the denoising. A lin-
ear rectifier was used after each convolution layer except 
the last. A mean squared error loss and a stochastic gra-
dient descent optimizer was used. An illustration of the 
current paper’s adapted CNN is shown in Fig. 1.

List mode data from the bed position with a 6 min scan 
time were extracted from each of the 72 patients in the 
training group. List mode permits image reconstruction 
event-by-event from a chosen starting point and inter-
val. From the list mode data, 1 image set for 6 min and 
4 image sets for 1 (first, second, third and fourth minute) 
and 1.5  min (6  min divided in 4 intervals) were recon-
structed with the BSREM algorithm, respectively. For the 
1 min and 1.5 min images, a β of 500 was used, and a β 
of 200 was used for the 6  min image. Each reconstruc-
tion yielded 71 slices which were cropped in the begin-
ning and the end, leaving only 50 of the centremost 
slices. Each 50-slice reconstruction were further divided 
into 10 subsets, each comprising a 3D volume sized 
256 × 256 × 5, to match the input of the CNN. Further-
more, to reduce overfitting data augmentation was per-
formed; each reconstruction (1  min and 1.5  min) was 
randomly resized, sheared and flipped in two dimen-
sions, resulting in 5 additional samples. Two sets of 
training pairs were composed, pairs with 1  min and 
6 min images and pairs with 1.5 min and 6 min images. 
The total training pairs for each of the two training sets 
were (subsets × patients × reconstructions × samples) 
10 × 72 × 4 × 6 = 17.280. Two networks were trained: one 

Fig. 1  Diagram of the denoising CNN architecture. A mean squared 
error loss and a stochastic gradient descent optimizer was used
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for images acquired with 1 min and the other for 1.5 min/
bed position. Figure 2 shows an overview how the train-
ing group and test group are set up. Table  1 shows an 
overview of the image sets from the training group.

Image analysis
25 patients (test group), each with 5 different whole-
body image sets (Table  2), resulting in a total of 125 
examinations, were evaluated; β500 1 min with and with-
out CNN enhancement, β500 1.5  min with and with-
out CNN enhancement and β300 4  min without CNN 

enhancement. In our department, β500 1.5  min is used 
clinically. The choice of β500 1 min + /− CNN is because 
it is a natural step if one wishes to decrease acquisition 
time to increase the throughput in the department. β300 
4 min was considered as the gold standard image for ref-
erence. Image sets will henceforth be written without the 
beta-value for brevity.

Fig. 2  Diagram showing the scan time per bed positions and the derived BSREM reconstructions. The training group produces two networks 
(1 min CNN and 1.5 min CNN), these are applied on whole body reconstructions (1 min CNN and 1.5 min CNN) in the test group

Table 1  Overview of the image sets in the training group

Two CNNs were trained using subset pairs, one consisting of 6 min and 1.5 min 
and the other was 6 min and 1 min

Training group

Image set Beta

6 min 200

1.5 min 500

1 min 500

Table 2  Overview of the whole-body image sets in the test 
group

Each patient in the test group (n = 25) had 5 image sets, in total there were 125 
examinations for readers to score

Test group

Image set Beta

4 min 300

1.5 min 500

1.5 min CNN 500

1 min 500

1 min CNN 500
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Quantitative analysis
The coefficient of variation (COV), considered as an 
objective measure of noise, was calculated from regions 
of interests (ROIs) drawn in the liver on transaxial images 
using Hermes 2.0.0 (Hermes Medical Solutions, Stock-
holm, Sweden). Three ROIs with a diameter of 6 cm were 
drawn in subsequent transaxial slices with one image in-
between, and the measurements were averaged. None of 
the ROIs were placed where liver metastases or large ves-
sels were seen. The ROIs were drawn in the 4 min image 
set and copied to the other image sets. The COV was 
calculated as the ratio between the SUVstandard deviation (SD) 
and the SUVmean, thus a lower value indicates less noise.

The lesion SUVmax/peak were calculated from a VOI 
defined over a lesion. Three small-middle sized hotspots 
(pathologic lesions or physiologic uptake) per patient 
were selected to get a large range of SUVs. SUVmax and 
SUVpeak (SUVmean in a 1 cm3 volume sphere) were calcu-
lated for all lesions.

Qualitative analysis
Firstly, a nuclear medicine specialist evaluated all image 
sets per patient side-by-side in all anatomic planes to 
ensure the CNN didn’t add or subtract anything relevant 
from the images.

Secondly, two nuclear medicine specialists, including 
the previously mentioned and a radiology resident was 
presented with a blinded list consisting the 125 exami-
nations in random order. Noise and contrast levels were 
recorded for each examination on a 5-point scale.

A training/calibration session was held to establish 
a baseline for noise and contrast levels. Images from 
patients not included in the test group  with previously 5 
mentioned image sets series were displayed side-by-side. 
3 points in noise and contrast was established as base-
line for standard 1.5 min (the clinically used images). For 
noise, 5 = “very little noise”, 4 = “slightly less noise com-
pared with baseline”, 2 = “slightly increased noise com-
pared with baseline”, 1 = markedly increased noise”. For 
contrast, 5 = “very good contrast”, 4 = “slightly increased 
contrast compared with baseline”, 2 = “slightly decreased 
contrast compared with baseline” and 1 = “markedly 
decreased contrast”.

Assessment of examinations was performed on dedi-
cated workstations using Hermes 2.0.0.

Statistical analysis
Friedman’s test was used to compare quantitative data for 
SUVmax, SUVpeak and COV measurements in all 5 image 
sets (4  min, 1.5  min + /− CNN, 1  min + /− CNN), sig-
nificant p value was set at p < 0.05. Post-hoc analysis with 
Wilcoxon signed-rank test was conducted with a Bonfer-
roni correction applied, resulting in a significance level 

set at p < 0.005. Since there were 5 image sets, each meas-
urement group resulted in 10 comparisons and thus sig-
nificant p value was calculated as 0.05/10 = 0.005.

Kruskal–Wallis test was applied to each investiga-
tor’s results for the investigation of potential difference 
between the groups. Post-hoc testing with Mann–Whit-
ney U tests were performed on all pairwise groups 
for each reader which resulted in 10 comparisons 
per reader. Thus, significant p value was calculated as 
0.05/10 = 0.005.

All statistical computations were performed using 
IBM SPSS Statistics version 26.0.0.1 (IBM, Armonk, NY, 
USA).

Results
Patients
Training group
The patients in the training group were referred for 
clinically indicated PET-CT, due to known or suspected 
malignancy or infection. The five most common indi-
cations were lung cancer (n = 20), colorectal cancer 
(n = 11), lymphoma (n = 10), gynaecological cancer 
(n = 9) and symptoms indicating malignancy (n = 8). 
Fifty-four (54) % of the patients were female. Mean age 
was 61  years (SD 15  years, range 25–86  years). Mean 
height was 171 cm (SD 9.4 cm, range 154–197 cm), mean 
weight 74  kg (SD 14.8  kg, range 45–112  kg) and mean 
body mass index 25.4 (SD 4.6, range 16.9–36). Mean 
administered activity was 4.0 MBq/kg (SD 0.1, range 3.1–
4.2  MBq/kg) and mean accumulation time 61  min (SD 
3 min, range 56–69 min).

Test group
The 25 patients in the test group were referred for clini-
cally indicated PET-CT, due to known or suspected 
malignancy: lung cancer (n = 13), colorectal cancer 
(n = 3), oesophageal cancer (n = 2), breast cancer, gynae-
cological cancer, head/neck cancer, testicular cancer, sar-
coma, bile duct cancer and unclear bone finding (n = 1 
each). Fifteen subjects were males and 10 females. Mean 
age was 59 years (SD, 14 years, range 24–81 years). Mean 
height was 173 cm (SD 9.5 cm, range 158–197 cm), mean 
weight 70  kg (SD 11.5  kg, range 44–92  kg) and mean 
body mass index 23.5 (SD 3.5, range 16.5–29.7). Mean 
administered activity was 4.0 MBq/kg (SD 0.1, range 3.8–
4.3  MBq/kg) and mean accumulation time 62  min (SD 
4 min, range 55–74 min).

Lesion SUVmax/peak  are shown in scatter and Bland–
Altman plots in Fig.  3a–d (1.5  min CNN vs. 1.5  min) 
and Fig. 4a–d (1.0 min CNN–1.5 min). Comparisons of 
mean  SUVpeak, SUVmax and COV across all series are 
shown in Fig. 5. Examples of the image sets are shown in 
Figs. 6 and 7.
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Quantitative analysis
The differences in the groups SUVpeak, SUVmax, and 
COV were statistically significant. A majority of the 
post-hoc comparisons showed significant differ-
ences for all quantitative metrics (SUVpeak, SUVmax 
and COV). For SUVpeak, the differences in the pairs 
1.5  min–1.5  min CNN, 1.5  min–1  min and 1.5  min 
CNN–1 min, respectively, fell short of significance. For 
SUVmax, the pairs 1.5  min–1.5  min CNN and 1.5  min 
CNN–1  min, respectively, fell short of significance. 
A graphical representation of the results is shown in 
Fig. 5 and statistical results in Table 3.

Qualitative analysis
Reader 2 evaluated all image sets in the test group and 
found no added or subtracted hotspots in any image set.

Mean and SD of noise and contrast score respectively 
for each image set of each reader are presented in Table 4. 
Noise-wise, 1.5 min CNN had the highest mean score for 
all readers; contrast-wise, reader 1 scored 1.5 min CNN 
the highest followed by 4  min, whereas reader 2 and 3 
scored 4 min the highest followed by 1.5 min CNN. The 
standard 1  min acquisition got lowest scores from all 
readers both regarding noise and contrast. For all readers, 
1.5 min CNN and 1 min CNN were consistently ranked 
higher than their corresponding 1.5 min and 1 min image 
set. Rankings of image sets for noise and contrast are 
shown in Table 5a, b.

Fig. 3  Agreements and correlations between 1.5 min CNN–1.5 min 
image sets for SUVmax, and SUVpeak. Pearson correlations (a and b; 
dotted line represents the line of identity and solid line shows the 
linear correlation). Bland–Altman plots (c and d). Solid horizontal line 
shows the mean of differences (0.04 and 0.04, respectively). Dotted 
lines represent 95% limits of agreement (0.37 to − 0.29 and 0.63 
to − 0.55, respectively). Dashed line indicates trend. Error bars show 
95% confidence limits calculated by exact method)

Fig. 4  Agreements and correlations between 1.0 min CNN–1.5 min 
image sets for SUVmax, SUVpeak. Pearson correlations (a and b). Bland–
Altman plots (c and d). Mean of differences were (− 0.10 and − 0.18, 
respectively). 95% limits of agreement were (0.36 to − 0.56 and 0.61 
to − 0.97, respectively)
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Group wise analysis showed significant differences in 
scoring of the image sets for noise or contrast for any 
reader (p < 0.001). In the post-hoc pairwise analysis we 
found that there were significant differences in scoring 
for both noise and contrast for 1.5–1.5 min CNN across 
all comparisons. In the 1.5–1  min CNN comparisons, 
half of the mean rank scores were significantly different, 
detailed results for all pairwise comparisons are shown in 
Table 6.

Discussion
The most important aspect when applying AI enhance-
ment on medical images is that no disease specific 
information is subtracted or added, in the present 
study we have not found any evidence of this. The main 

goal was to elucidate if AI enhancement could help to 
improve image quality while preferably keeping a 1:1 
ratio of SUV parameters compared to current clinical 
parameters. Improved image quality can be used for 
either providing the nuclear medicine physicians better 
images or to reduce scan time or administered activ-
ity. The rationale for not comparing with a post-filter 
such as Gaussian or bilateral filtering is due to evidence 
that BSREM intrinsic properties allows the omission of 
post-filtering [19].

The present study shows that the CNNs improved the 
1 min and 1.5 min image sets qualitatively, respectively. 
The 1.5–1 min CNN comparison had higher mean rank 
by all readers for both noise and contrast, all significant 
without Bonferroni correction but 3 out of 6 compari-
sons fell just short of significance with the correction, 
but 1  min CNN had slightly lower mean SUVmax and 
SUVpeak. We have not investigated if the difference is sig-
nificant for the detection of disease or implicates assess-
ments of follow-up examinations. Using the 1 min CNN 
image set would reduce scan time per bed position from 
1.5 to 1 min in our county, which may decrease patient 
discomfort and movement artefacts. The 1.5  min CNN 
scored higher than 1 min CNN for both noise and con-
trast across all readers. Since the quantitative difference 
for SUVmax/peak between 1.5 and 1.5 min CNN fell short 
of significance, an introduction to the enhanced exami-
nation seems feasible in a clinical context, whereas it 
remains unclear if 1 min CNN can be used clinically due 
to the slightly reduced SUVmax/peak compared to the clini-
cal 1.5 min image set. This could be elucidated in a future 
study where the two image sets are compared regarding 
diagnostic sensitivity.

We used 6  min images with β200 for training since 
this gives excellent images and was the longest feasible 

Fig. 5  Comparisons of mean SUVpeak, SUVmax and COV with error bars 
showing standard deviations for all image sets. SUVpeak mean values 
for both 1.5 min and 1.5 min CNN were 2.4. SUVmax mean values for 
both 1.5 min and 1.5 min CNN were 3.8. COV for 1.5 min CNN was less 
than the 1.5 min image set, indicating less noise

Table 3  Wilcoxon signed-ranks test of all pairwise image sets

Significant p value is < 0.005 after Bonferroni correction

P values

SUVpeak SUVmax COV

4 min–1.5 min  < 0.001  < 0.001  < 0.001

4 min–1.5 min CNN  < 0.001  < 0.001  < 0.001

4 min–1 min  < 0.001  < 0.001  < 0.001

4 min–1 min CNN  < 0.001  < 0.001  < 0.001

1.5 min–1.5 min CNN 0.467 0.607  < 0.001

1.5 min–1 min 0.877 0.001  < 0.001

1.5 min–1 min CNN  < 0.001  < 0.001  < 0.001

1.5 min CNN–1 min 0.528 0.007  < 0.001

1.5 min CNN–1 min CNN  < 0.001  < 0.001 0.048

1 min–1 min CNN  < 0.001  < 0.001  < 0.001
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scan time for the patients to be able to keep up patient 
throughput in the department (where only one bed posi-
tion was scanned with the long acquisition time). For the 
test group, we aimed for the best possible whole-body 
reference, and therefore used a slightly lower acquisition 
time (4  min) for all bed positions. [18F]FDG continues 
to accumulate in FDG-avid tumours long after 60  min 
[20]. If 6  min was used for all bed positions in the test 

group, then the latter positions may have had unaccep-
table biokinetics for the clinical evaluation of possible 
hotspots. Also, 6  min for all bed positions would be an 
uncomfortable long scanning time for the patient and 
not possible due to a demand of high patient throughput. 
The β values used for the different acquisition times were 
chosen based on previous work [7]. The settings used for 
the standard 1.5 min image are in line with the updated 

Fig. 6  Transaxial PET images of all image sets and corresponding transaxial CT image. The lung metastasis in the right lung is readily detected 
regardless of reconstruction and the SUVmax in the metastasis is comparable for all 1 min and 1.5 min images

Fig. 7  Transaxial PET images of the upper abdomen and midline sagittal images of the image sets in the test group. Noise in the liver increases as 
scan time per bed position is decreased, both corresponding CNN series have markedly less noise in the liver
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EANM Research Ltd (EARL) harmonization programme 
[21].

There are many papers which utilize both AI and non-
AI methods to reduce noise in the PET image, some in 
conjunction with MRI, as a post-processing method 
(such as this study) or incorporated in the iterative recon-
struction [22–26]. Other efforts in this field have been 
demonstrated by Xu et al. [27] where deep learning was 
used to reconstruct standard-dose PET from 200 × low-
dose PET, which could increase the availability and 
reduce the radiation of radiopharmaceuticals. Cui et  al. 
[28] used unsupervised deep learning to achieve denois-
ing of PET images, their method employ the anatomical 
images from CT or MR and noisy PET images as inputs, 
omitting the need of large datasets of high-quality PET 
images which is not always easy to obtain. We have only 

Table 4  Reader score descriptives

Image set Reader/category N Minimum Maximum Mean SD

1.5 min Reader 1 noise 25 1 3 2.5 0.65

Reader 1 contrast 25 1 4 2.8 0.69

Reader 2 noise 25 1 5 3.0 0.93

Reader 2 contrast 25 1 5 3.1 0.93

Reader 3 noise 25 2 4 3.0 0.58

Reader 3 contrast 25 1 5 3.0 0.79

1.5 min CNN Reader 1 noise 25 4 5 4.5 0.51

Reader 1 contrast 25 2 5 4.3 0.80

Reader 2 noise 25 3 5 4.4 0.58

Reader 2 contrast 25 2 5 4.1 0.76

Reader 3 noise 25 3 5 4.4 0.58

Reader 3 contrast 25 3 5 3.9 0.81

1 min Reader 1 noise 25 1 2 1.0 0.20

Reader 1 contrast 25 1 3 2.0 0.61

Reader 2 noise 25 1 3 1.7 0.85

Reader 2 contrast 25 1 4 2.3 0.98

Reader 3 noise 25 1 4 2.0 0.87

Reader 3 contrast 25 1 4 2.5 0.82

1 min CNN Reader 1 noise 25 2 4 3.2 0.85

Reader 1 contrast 25 1 5 3.7 0.90

Reader 2 noise 25 3 5 4.1 0.73

Reader 2 contrast 25 2 5 3.7 0.74

Reader 3 noise 25 3 5 4.1 0.70

Reader 3 contrast 25 2 5 3.6 0.71

4 min Reader 1 noise 25 3 5 3.8 0.80

Reader 1 contrast 25 3 5 4.2 0.83

Reader 2 noise 25 3 5 4.2 0.65

Reader 2 contrast 25 3 5 4.3 0.68

Reader 3 noise 25 3 5 4.2 0.55

Reader 3 contrast 25 3 5 4.2 0.78

Table 5  Image sets ranked by mean noise and contrast score for 
all readers, 1 = best rank

Reader 1 Reader 2 Reader 3

(a) Noise rank

1 1.5 min CNN 1.5 min CNN 1.5 min CNN

2 4 min 4 min 4 min

3 1 min CNN 1 min CNN 1 min CNN

4 1.5 min 1.5 min 1.5 min

5 1 min 1 min 1 min

(b) Contrast rank

1 1.5 min CNN 4 min 4 min

2 4 min 1.5 min CNN 1.5 min CNN

3 1 min CNN 1 min CNN 1 min CNN

4 1.5 min 1.5 min 1.5 min

5 1 min 1 min 1 min
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found one study which investigated several AI enhancing 
techniques whilst aiming to keep quantitative accuracy 
in small lung nodules [22]. The study differs from ours in 
two major ways. Firstly, their methods aim to reproduce 
standard-dose PET from low-dose PET through AI meth-
ods while we are using a post-processing AI method. Sec-
ondly, our study aims to ensure that the CNN model does 
not alter SUVmax/peak in a way that is detrimental to the 
patient, such as affecting treatment response assessment. 
Detectability of lesions does not seem to be an issue in 
the present study (we did not find any added or sub-
tracted hotspots), although it has not been investigated 
explicitly.

A continuation on Xu et  al.’s discovery was exempli-
fied by Chen et al., who used deep learning to synthesize 
ultra-low dose PET ([18F]florbetaben) with MRI data to 
predict standard-dose PET images and showed that both 
image quality metrics and accuracy of amyloid status was 
high [29]. A study by Schwyzer et al. demonstrated that 
deep neural networks were able to detect automatically 
lung cancer in ultra-low dose PET ([18F]FDG) [30]—one 
may speculate that AI technologies in conjunction will 
push nuclear medicine in a direction where ultra-low 
doses of PET-tracers are feasible, which translates into 
a wider application of the modality and increased fre-
quency of examinations.

Limitations
Subjective scoring, varying experience in PET assess-
ment and image processing, and the fact that one author 
(reader 2) evaluated the examinations once before scor-
ing may have had an impact on scoring results. A train-
ing/calibration session was held before individual scoring 
to reduce subjectivity. Although reader 2 was exposed to 
all the series side-by-side, these were blinded (image set 
properties not shown), and in the subsequent assessment 

which took place two weeks after, the image sets were 
shown one by one in random order to avoid bias.

Conclusion
AI can enhance BSREM reconstructed [18F]FDG-PET exam-
inations to reduce noise and increase contrast compared 
with standard images whilst keeping SUVmax/peak stability. 
There were significant differences in scoring between the 1.5 
and 1.5 min CNN image sets in all comparisons, the latter 
had higher scores in noise and contrast. Furthermore, dif-
ference in SUVmax and SUVpeak fell short of significance for 
that pair. The improved image quality can potentially be used 
either to provide better images to the nuclear medicine phy-
sicians or to reduce acquisition time/administered activity.
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