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Organophosphorus compounds are important in organic chemistry. This review article covers emerging, powerful synthetic

approaches to organophosphorus compounds by homolytic substitution at phosphorus with a carbon-centered radical. Phosphina-

tion reagents include diphosphines, chalcogenophosphines and stannylphosphines, which bear a weak P—heteroatom bond for

homolysis. This article deals with two transformations, radical phosphination by addition across unsaturated C—C bonds and substi-

tution of organic halides.

Introduction

Organophosphorus compounds constitute an important class of
compounds in a wide range of applications in organic chem-
istry, as reagents, intermediates, ligands, bioactive agents, and
functional materials [1-4]. The synthesis of organophosphorus
compounds has therefore been extensively investigated
(Scheme 1). Classical methods to form a C—P bond include
ionic reactions such as nucleophilic substitution of P-X com-
pounds with organometallic reagents, nucleophilic substitution
of alkyl halides with phosphorus nucleophiles, and nucleophilic
addition to polar unsaturated bonds. Recent advances in tran-
sition-metal catalysis have realized catalytic cross-coupling
reactions of aryl halides with H-P compounds [5-7] and

catalytic addition to nonpolar unsaturated carbon—carbon bonds
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Scheme 1: Representative C—P bond-forming reactions.
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[8-11]. In the field of radical chemistry, the addition of phos-
phorus radicals, mainly from H-P compounds, onto
carbon—carbon multiple bonds [12-15] has held a special pos-
ition since they provide transformations unattainable by polar

reactions.

Homolytic substitution is a reaction in which a radical (Re)
attacks a saturated atom (X) in a molecule with the liberation of
a leaving radical (L¢) from the atom (Scheme 2). Homolytic
substitution at halogen and chalcogen atoms is well known to
proceed and hence has been widely used in organic synthesis
[16-19]. In contrast, applications of homolytic substitution to
C-P bond formation have been rarely explored. With the
growing importance of organophosphorus compounds,
increasing attention has been paid to homolytic substitution at
phosphorus. The new tool for C—P bond formation has achieved
interesting transformations that ionic reactions cannot. This
review summarizes homolytic substitution at phosphorus for
C-P bond formation in organic synthesis while the relevant
mechanistic studies are found in the literature [19-21]. This
review deals with two transformations, radical phosphination by
addition across unsaturated C—C bonds and substitution of
organic halides.

N AN
Re + X-L —_—

R-X + Le

Scheme 2: General equation of homolytic substitution.

Review

Radical addition of phosphination agents
Stannylphosphines of the type R3Sn—PR’, are known to
undergo radical addition to carbon—carbon unsaturated bonds.
Schumann reported the addition of diphenyl(triphenyl-
stannyl)phosphine to allyl chloride, styrene, and phenylacety-
lene (Scheme 3) [22,23]. The addition is most likely to proceed
via a radical process as the absence of AIBN leads to consider-
able decreases in yield. Mitchell then reported that
diphenyl(trimethylstannyl)phosphine reacts not only with
terminal alkynes but also with internal alkynes and allenes
(Scheme 4) [24,25]. It is noteworthy that the regioselectivity of
the radical addition to propynamide is opposite to that of the
relevant ionic Michael addition. Considering the regioselec-
tivity, these addition reactions naturally involve C—P bond for-
mation by homolytic substitution at phosphorus (Scheme 5).
Studer recently reported similar silylphosphination of phenyl
vinyl sulfone with Me3Si—PPh, [26].

Tzschach reported that tetraorganodiphosphines Ro,P—PR, add
to phenylacetylene under UV irradiation or upon heating in the
presence of AIBN (Scheme 6) [27]. The reaction consists of the

Beilstein J. Org. Chem. 2013, 9, 1269-1277.

AIBN PPh;
PhsSn—-PPhy + >
3N 2 R benzene Ph3Sn R
refl
X R = CH,Cl 65%
R =Ph 68%
Ph3;Sn—-PPh ——FPh AIBN o
- + =
ol 2 benzene Phﬁn%
reflux PPh,
78%
Scheme 3: Addition of diphenyl(triphenylstannyl)phosphine.
R
MesSn-PPh, + Ph——=——R Messn%
es=n 2 neat PPh;
Ph
R =Ph, hv, rt 75%
R = Ph, AIBN, 80 °C 95%
R = CONMey, hv, rt 88%
Me3zSn—-PPh, h PPh;, SnMej;
+ M MeaSn. A PhaP A
2N neat, rt
P Bu Bu Bu
58%, 88:12
Scheme 4: Addition of diphenyl(trimethylstannyl)phosphine.
L  pnPlan, hPhz
R3Sne R3Sn_~ ——————— R3Sn
- R3Sn-
Scheme 5: Plausible mechanism of addition of R3Sn—PPh,.
AIBN, h o
v
= ’ RoP., -
R2PPR2 + =—Ph 50 °C 2 .‘/\/‘/LPRZ
R = Me, neat 62% Eiz =91
R = Et, neat 49%

R =Ph, in CgHs 29%

Scheme 6: Addition of tetraorganodiphosphines to phenylacetylene.

addition of a diorganophosphanyl radical to phenylacetylene
and the homolytic substitution of tetraorganodiphosphine with
the resulting vinyl radical to afford the adduct and to regenerate
the initial diorganophosphanyl radical (Scheme 7). The high £
selectivity is attributable to kinetic control of the homolytic
substitution, where R,P—PR preferentially approaches the vinyl
radical from the roomier side. Although the transformation
looks useful to construct an (£)-1,2-diphosphanylethene
skeleton, the scope of alkyne is limited to phenylacetylene and
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Scheme 7: Plausible mechanism of anti-diphosphination.

the reactions result in unsatisfactory yields because of the insta-
bility of the products as well as the diphosphines in air.

A more general, facile, and reliable method for diphosphination
was later reported by Yorimitsu and Oshima, which utilizes
diphosphines generated in situ from chlorophosphine and
hydrophosphine in the presence of triethylamine [28]. A variety
of terminal alkynes undergo the radical diphosphination
(Table 1). The diphosphination was applicable to the synthesis
of a new push—pull-type molecule that emits blue fluorescence
(Scheme 8). The initially formed diphosphanylethylene deriva-
tives are not very stable in air, and therefore sulfidation or oxi-
dation was performed to accurately assess the efficiency of the
diphosphination reactions.

Ogawa independently reported similar diphosphination under

UV irradiation (Table 2) [29,30]. The reactions favor the forma-
tion of Z isomers, which results from photoinduced isomeriza-

Table 1: Radical anti-selective diphosphination of terminal alkynes.

V-40, EtzN R
Ph,PH, Ph,PCI
=R PhoP,
benzene ”“)\Pth
reflux

S R
Q 6 phop
_N__CN rt 2 PPh,

NC™ N ij u
E/Z =90:10-95:5
V-40
R Yield (%)
C1oH21 84
Ph 87
CGH4-p-OMe 89
C6H4-p-COQMe 95
CgHg-p-1 83
CgHa-p-COMe 96
(CHp)30Bn 78
(CH2)gCO2EL 86
(CH2)9SCOMe 80
(CHa)oCl 86
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Ph,PH, Ph,PCl

- V-40, EtzN
weo~( =~ 3
— benzene
reflux
2
Ph,P
30% H,0
& e o=
then separation PPh,
90% o

Xemmax = 469 nm (excitation at 320 nm)

Scheme 8: Radical diphosphination for synthesizing fluorescent ma-
terial.

Table 2: Photoinduced radical diphosphination of terminal alkynes.

hv PPh,
= R + PhP-PPh, ————>

2 2 CDyCly 1t PhoPr Nk
R Time (h)  Yield (%) ElZ
CH,CH,CHMe, 39 62 18:82
(CHa)sCl 18 55 42:58
Ph 1 45 <1:99

tion of initially formed E isomers. Ogawa’s diphosphination is
thus potentially useful for the synthesis of (Z)-1,2-diphos-
phanyl-1-alkenes, which can serve as bidentate ligands.

Morse developed photoinduced addition of tetrafluorodiphos-
phine to alkenes and alkynes in the gas phase (Table 3) [31-34].
The addition provides a series of intriguing bidentate phos-
phine ligands. The addition to alkynes yields 1:1 mixtures of
E/Z isomers. Due to the high reactivity of a difluorophosphanyl
radical, considerable polymerization takes place unless
substrates or olefinic products are reasonably inert.

Yorimitsu and Oshima reported radical addition of a P—S bond
across alkyne by using diphenyl(organosulfanyl)phosphine (Ta-
ble 4) [35]. The addition proceeds mainly in an anti fashion to
afford the adducts bearing a sulfanyl group at the terminal
carbon and a phosphanyl group at the internal carbon. The reac-
tion mechanism is similar to that in Scheme 7 (Scheme 9). The
regioselective outcome suggests that the homolytic substitution
occurs exclusively at phosphorus, not at sulfur. A sulfanyl
radical is liberated to add the terminal carbon of alkyne. To
reverse the regioselectivity in radical addition of a P—S bond,
S-thiophosphinyl O-ethyl dithiocarbonates were created,
although the reversed addition excludes homolytic substitution
at phosphorus (Scheme 10) [36].
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Table 3: Photoinduced radical diphosphination with tetrafluorodiphos-
phine.

R /R
i hv S\
F2P—PF2 + _—_/: F2P PF2
Product Yield (%)
F.P PF, 50
62
FoP PF,
F F
F F <10
FoP PF,
i F
/—k 13
FoP PF,
F
—~ 52
FoP PF,
; ) 0
FoP PF,
~ :
FoP PF,
H?:( 10
FoP PF,
F3;C CF3
= 65
FoP PF,
CF3
= 25
FoP PF,

Scheme 9: Mechanism of thiophosphination with diphenyl(organosul-
fanyl)phosphine.

——Ar
* dilauroyl peroxide § A8
S S PhoP__~
’B )]\ benzene, reflux S OEt
PRy ~s” “OEt 92-71%, E/Z > 99:1

Scheme 10: Thiophosphination with S-thiophosphinyl O-ethyl dithio-
carbonate.
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Table 4: Thiophosphination of terminal alkynes.

Ss

V-40 Sg ~PPh,

=R' + R2S-PPh, — " R2S %/\W
reflux EIZ = 94:6-84:16

R R2 Yield (%)
C1oH21 Ph 75
C-CBH” Ph 61
Ph Ph 83
CgHa-p-OMe Ph 75
CgH4-0-OMe Ph 85
CgHa-p-COMe Ph 69
CgHy-p-COoMe Ph 73
CGH4-,O-CF3 Ph 69
C6H4-,D-NH2 Ph 80
(CH3)30H Ph 66
CgHy-p-OMe C12Ho2s 70
C1oH21 C12H2s 42
C10H21 t-Bu 51

Kawaguchi, Nomoto, and Ogawa seminally studied the photoin-
duced radical chalcogenophosphination of alkynes and allenes
by means of PhCh—ChPh/Ph,P-PPh; binary systems (Ch = S,
Se, Te) [30,37-39]. The regioselective outcome of the photoin-
duced thio- and selenophosphination of terminal alkynes
(Table 5) is similar to that of the thermal thiophosphination
(Scheme 9). Detailed mechanistic studies revealed that compro-
portionation between PhSe—SePh and Ph,P—-PPh, occurs
smoothly to generate PhSe—PPh, as the actual reactive species.
Selenophosphination of terminal allene affords (2-phenylse-
lenyl-2-alkenyl)diphenylphosphine regioselectively
(Scheme 11). Notably, the sense of the regioselectivity of

Table 5: Photoinduced thio- and selenophosphination by dichalcogen/
diphosphine binary system.

=R
+
hv (>350 nm) PPh;
PhCh-ChPh
. CDCl, Phch, A
Ph,P-PPh, E/Z = 94:6-85:15
R Ch Yield (%)
CgH13 S 77
CGH4-,D-O|V|€ S 91
1-cyclohexenyl S 87
CgHgy-p-Br Se 96
CgHy-p-OMe Se 78
1-cyclohexenyl Se 83
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_
~7R
.
hv (>350 nm) =
PhSe-SePh PhyP R
. CDCly, 1t SePh
PhyP-PPh . E/Z = 40:60
via Y\R R=CgHi3 83%
SepPh R=Ph  73%

Scheme 11: Photoinduced selenophosphination of allenes.

tellurophosphination by a PhTe-TePh/Ph,P—PPh, system is
opposite to those of the thio- and selenophosphination
(Scheme 12). This reversal indicates that homolytic substitu-
tion at tellurium overwhelms that at phosphorus and that a
diphenylphosphanyl radical is more reactive than a phenyltellu-
ranyl radical.

=—CegH4-p-CF3
* hv (>400 nm) CeHa-p-CF3
PhTe—TePh PhyP.
.\ CDCla, 1t TePh
thP_PPhZ 96%, E/Z = 85:15

Scheme 12: Photoinduced tellurophosphination.

Substitution of halides (X), carboxys (COOR),
or carboxylates (OCOR) with phosphorus

After scattered research efforts into the uncontrolled radical
C—H phosphination under harsh reaction conditions [40], Barton
elegantly devised radical decarboxylative phosphorylation of
carboxylic thiohydroxamic mixed anhydrides (Scheme 13) [41].
Radical addition of a phenylsulfanyl radical to the thiocarbonyl
generates the corresponding alkyl radical Re, which undergoes
homolytic substitution at the phosphorus of P(SPh);3 to furnish
(PhS),P-R as the initial product (Scheme 14). Oxidative addi-
tion of the disulfide byproduct to the initial product furnishes a
pentavalent phosphorus species that is eventually hydrolyzed to
an S,S-diphenyl dithiophosphonate upon workup.

S
o
R N I
\[(0 N)kS + P(SPh); ———— R-P(SPh),
o) ):/ " R=CyHay 67%

R= C-CBHH 50%

Scheme 13: Decarboxylative phosphorylation of carboxylic acid
derivatives.

Barton also reported that white phosphorus reacts with
N-acyloxythiopyridones, so-called Barton PTOC esters
(Scheme 15) [42]. Photolysis of the esters in the presence of
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S
ROy )ks -SPh (PhS),P-SPh
\[or \/ PE -CO, — SPh
s
Néks
PhS);P-R
-R (N )3§ MO o i
(PhS),P N workap P(SPh),

U

Scheme 14: Plausible mechanism of decarboxylative phosphorylation.

white phosphorus followed by oxidation with hydrogen
peroxide yields alkylphosphonic acid. The efficient phosphina-
tion would stem from the highly strained structure and the weak
P—P bonds of white phosphorus.

. o)
R. O P4 white light H,0, Il
~ ’ R_
70( '\ij CH,Cl,/CS,, 0°C  DME, reflux P(OH),
X R = CysHa 71%
R= C-CGH11 74%

R = 1-adamantyl 87%

Scheme 15: Radical phosphination of PTOC esters with white phos-
phorus.

After 13 years of silence, radical substitution reactions of
organic halides and related compounds with phosphination
agents have now been rapidly developing since 2006. Yori-
mitsu and Oshima invented radical phosphination of organic
halides with tetraphenyldiphosphine (Table 6) [43].

Table 6: Radical phosphination of aryl iodides.

CI-PPh,
(MesSi)sSiH
7 N\ | V-40, pyridine Sg 7\ IIIDth
R — benzene, reflux R —
R Yield (%)
H 88
2,4,6-Me3 63
2-MeO 65
4-MeO 75
4-CF3 78
4-Br 66
4-CN 69
4-COCHs 47
4-OTf 68
4-CO,CH,CH=CH, 78
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Tetraphenyldiphosphine is generated in situ by radical reduc-
tion of chlorodiphenylphosphine with tris(trimethylsilyl)silane
followed by condensation of the resulting diphenylphosphine
with the remaining chlorophosphine (Scheme 16, equation 1
and 2). An aryl radical reacts with tetraphenyldiphosphine to
liberate a diphenylphosphanyl radical, which abstracts hydrogen
from tris(trimethylsilyl)silane to sustain the chain propagation
(Scheme 16, equation 3-5). The in situ formations of
diphenylphosphine and of tetraphenyldiphosphine can exclude
the handling of pyrophoric diphenylphosphine and air-sensitive
tetraphenyldiphosphine. The user-friendly conditions are also
suitable for dicyclohexylphosphination with CIP(¢-CgHj1);.

Generation of PhoP—PPh,
V-40

Si—H + PhP-ClI Si—Cl + PhP-H (1)

pyridine

Ph,P-Cl + Ph,P-H Ph,P-PPh,  (2)

Radical Phosphination with Ph,P—PPh,

sid + M

+ PhoPZPPh, — = Ph-PPh, + PhP+ (4)

— Si—I + Phe (3)

Ph «

>

thp-/:\ s PhoP-H +  Si+ (5)

Scheme 16: Plausible mechanism of radical phosphination (Si =
(Me3Si)3Si).

Phosphination of alkyl halides as substrates results in unsatis-
factory yields. Instead, Barton’s alkyl imidazole-1-carbothio-
ates are good substrates for this radical phosphination (Table 7).
Conversion of an optically pure cis-carbothioate leads to trans-
aminophosphine of potential use as a ligand (Scheme 17).

Table 7: Radical phosphination of alkyl imidazole-1-carbothioates.

S CI-PR2,, (Me;Si)3SiH
1 S S
R\O)]\N/\> V-40, EtzN 8 R1-lgR22
l:N benzene, reflux

R? R? Yield (%)
c-CgH1q Ph 87

C-CGH11 C-C6H11 68
EtOCOCH,CH(CH3) Ph 89
3-oxacyclopentyl Ph 87

CgH13 Ph 63

Beilstein J. Org. Chem. 2013, 9, 1269-1277.

N Cl-PPh,
AN
&’\? (Me3Si);SiH
8 S
: S V-40, Et3N 8 -----Igth
o benzene, reflux
NHBoc

NHBoc 61%

Scheme 17: Stereoselective phosphination leading to (S,S)-
aminophosphine derivative.

Diphosphine approaches the resulting radical from the opposite
side of the NHBoc group to invert the original stereochemistry.

Studer developed in 2007 new elegant reagents Me3Sn—PPh,
and Me;3Si—PPh; for radical phosphination [44]. The scope of
his phosphination with Me3Sn—PPh; is wide as summarized in
Table 8. Although the low toxicity of Me3Si—PPh; is advanta-
geous, phosphination with Me3Si—PPh, is limited to alkyl
halides or imidazole-1-carbothioate. Density functional theory
calculations have clarified the homolytic substitution process is
a two-step mechanism via a tetracoordinated phosphorus atom
(Figure 1). The spin density in the tetracoordinated phosphorus
intermediate is localized mostly on the Sn atom while the
remaining spin density is found in the equatorial position of the
distorted trigonal prismatic P atom.

Table 8: Radical phosphination with Me3Sn—PPha.

V-40, Me;Sn—PPh, H20, Q
R-X R—PPh;
benzene, reflux
R-X Yield (%)
p-MeOCgH - 73
p-NCCgH4-I 79
p-CF3C6H4—| 75
p-C|C6H4—| 72
o-MeOCeH4—I 59
0-MeO,CCgHy—! 73
CH3CBr=CH, 76
CsHyq-1 79
C-C6H11—| 94
C1 1 H23—Br 54
t-Bu—-Br 83
CsHq1—SePh 60

c-CgH14—OCS-1-imidazole 57

The rate constant for phosphination of an aryl radical with
Me3Sn—PPhj is calculated to be ca. 9 x 108 M~!s™! by competi-
tion kinetics with BuzSnH reduction [45]. This large rate
constant allows for stereospecific trapping of axially chiral acyl
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Phe
+
Me3Sn-PPh,

_—
\
\
\

—28.2 keal/mol\
\

Y Me3zSne
\ PhPh +
\ )5 Ph-PPh
2
" MeHBPn 2
— -7 +4.2 kcal/mol

Figure 1: Calculated reaction profile of homolytic substitution between
Phe and Me3Sn—PPh; at the B2-PLYP-D/TZVVP//PBE-D/TZVP level.
Gray lobes indicate major spin densities.

radicals with Me3Sn—PPh; (Scheme 18). Chemodivergent trap-
ping of diastereomers of an N-(2-cyclohexenyl)acetanilide
derivative is interesting (Scheme 19). One isomer undergoes
direct phosphination while the other cyclizes prior to phosphi-
nation.

0
)I\N/\Ph

PPh,

)J\

N
N Ph
| AIBN, Me3Sn—PPh, H,0,

benzene, 75 °C

65%
er=96:4 er=96:4

Scheme 18: Phosphination with retention of axial chirality.

O O
A A

AIBN, Me3Sn—PPh;,

| P(S)Ph,
benzene, 75 °C
then Sg
70%
0 /[<O
)J\N \ = N
| AIBN, Me3Sn—PPh,
benzene, 75 °C i P(S)Ph,
then Sg
70%

Scheme 19: Chemodivergent phosphination.

Intermolecular phosphinative radical addition of alkyl iodides to
activated alkenes proceeds in the presence of MesM—PPh; (M =
Sn, Si) and V-40 (Table 9) [26]. Secondary and tertiary alkyl
iodides participate in the addition reaction while primary alkyl
iodide results in direct phosphination prior to the expected addi-
tion. Not only acrylate ester but also acrylamide, vinyl sulfone,

and acrylonitrile are good radical acceptors in this addition.

Beilstein J. Org. Chem. 2013, 9, 1269-1277.

Table 9: Phosphinative radical addition of alkyl iodides to activated

alkenes.

R—I + Z EWG

¢-CeH11
c-CgH11
t-Bu
t-Bu
CsH14
CsHq4
c-CgH11
c-CgH11
¢-CgH11

Si
Sn
Si
Sn
Si
Sn
Sn
Sn
Sn

V-40, MesM—PPh, Ospph,
heptane or benzene R
80 °C EWG
then H,O,
EWG Yield (%)
CO,t-Bu 72
CO,t-Bu 64
CO,t-Bu 76
CO,t-Bu 69
CO,t-Bu <5
CO,t-Bu <5
SO,Ph 48
CONMe, 44
CN 79

Studer’s stannylphosphine technology is reliable enough to be

applied to the construction of interesting m-conjugated frame-

works. In collaboration with Yamaguchi, Studer invented a new

radical reagent (Me3Sn),PPh for the synthesis of highly strained
bis(phosphoryl)-bridged biphenyls (Scheme 20) [46]. Subse-
quently, Liu reported an efficient synthesis of bis(phosphoryl)-

bridged ladder triphenylene by means of the radical clipping
with (Me3Sn),PPh (Scheme 21) [47]. In light of the increasing
importance of phosphoryl-bridged n-conjugated skeletons in

organic material sciences, (Me3Sn),PPh will serve as a key

reagent.

Br. Br

R
Br Br
R

V-40, (Me3Sn),PPh

R
O4 I -0

Nz
-

pZ

PhCF3 125 °C Ph “Ph
then H202

R=H, 29% R

R =Ph, 22%

R =p-Ph 2NCGH4Y 13%

+ cis isomer (trans/cis = 1:1)

Scheme 20: Bis(phosphoryl)-bridged biphenyls by radical phosphina-

tion.

Ogawa developed photoinduced phosphination of perfluo-

roalkyl iodides with tetraorganodiphosphines (Scheme 22) [48].

Remarkably, the phosphination proceeds quantitatively. The

phosphine ligands thus synthesized are fluorophilic. Particu-
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Br I (O I

Br. P
O V-40, (Me3Sn),PPh ‘
Br ;hCFﬁ, é 25°C 50
Br eh M2B2 “Ph
g T

Scheme 21: Bis(phosphoryl)-bridged ladder triphenylene by radical
phosphination.

hv (>300 nm)

CDCly rt
then Sg
Rr = CqoF21, CgF17, CeF13, C4Fo,
c-CgF 11, iIC3F7, -(CF2)6-, -(CF2)s-

Re—PPh,
>99%

Re-|

+ PhyP-PPh,

Scheme 22: Photoinduced phosphination of perfluoroalkyl iodides with
tetraphenyldiphosphine.

larly, two molecules of perfluorodecyldiphenylphosphine co-
ordinate to palladium dichloride to form a catalytically active
palladium complex that is useful for a fluorous/organic biphasic
system.

Cummins devised radical phosphination of bromobenzene or
bromocyclohexane with white phosphorus by means of a triva-
lent titanium complex (Scheme 23) [49]. This represents a
unique direct method for preparing triorganophosphine without

recourse to any trivalent phosphorus sources such as PClj.

PhBr Ti(Nt-BuAr); PhsP
or +Py or
c-CeHi4Br benzene, rt (c-CeH11)sP

Ar=3.5MeCels 5501 for both

Scheme 23: Ti(lll)-mediated radical phosphination of organic bro-
mides with white phosphorus.

Conclusion

Introduction of a phosphorus atom by a radical process has
offered an intriguing tool for the synthesis of organophos-
phorus compounds. Radical addition of a phosphorus-centered
radical has been representative so far. A recent dramatic growth
in reports of homolytic substitution at phosphorus in organic
synthesis has changed the landscape of radical phosphination.

Radical addition that involves homolytic substitution at phos-

Beilstein J. Org. Chem. 2013, 9, 1269-1277.

phorus always culminates in difunctionalization of a multiple
bond. Therefore this methodology will find application in the
synthesis of complex phosphines including bidentate ones.
Radical substitution of halogen in organic halide with phos-
phorus will be an alternative to classical ionic substitution.
Advantageously, it requires neither highly basic conditions nor
transition metals. Homolytic substitution at phosphorus is still
in its infancy. In light of the rich chemistry of organophos-
phorus compounds, it will find wider application in organic syn-
thesis in the future.
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