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Abstract: Due to the beginning of vaccination against COVID-19, serological discrimination between
vaccine-associated humoral response and serology-based surveillance of natural SARS-CoV-2 in-
fections as well as breakthrough infections becomes an issue of relevance. Here, we assessed the
differentiated effects of the application of an RNA vaccine using SARS-CoV-2 spike protein epitopes
on the results of both anti-spike protein–based serology (EUROIMMUN) and anti-nucleocapsid-based
serology (VIROTECH). A total of 80 serum samples from vaccinees acquired at different time points
after vaccination was assessed. While positive or borderline serological response in the anti-spike
protein assay was observed for all samples (90% both IgG and IgA, 6.3% IgA only, 3.8% borderline
IgG only), only a single case of a falsely positive IgM was observed for the anti-nucleocapsid assay
as expected due to this assay’s specificity. Positive anti-spike protein antibodies were already de-
tectable in the second week after the first dose of vaccination, with higher titers after the second dose
of the vaccine. In conclusion, the combined application of anti-spike protein–based serology and
anti-nucleocapsid-based serology will provide a useful option for the discrimination of vaccination
response and natural infection.

Keywords: SARS-CoV-2; COVID-19; serology; vaccination; surveillance; nucleocapsid; spike protein

1. Introduction

At the end of 2020, vaccination against COVID-19 was started in Germany with RNA-
based vaccines using epitopes of the SARS-CoV-2 spike protein (SARS-2-S) [1] to induce
protective immunity [2,3]. Vaccine-induced antibodies against the spike protein can be
expected in vaccinees as indicated by the study on safety and immunogenicity prior to
authorization [4]. Accordingly, vaccinated individuals without infection by SARS-CoV-2
should develop measurable antibodies in serological assays targeting the SARS-CoV-2 spike
protein but not in assays targeting the nucleocapsid (SARS-2-N) protein [5] of SARS-CoV-2.

In the course of the recent months, various studies have assessed the diagnostic
performance characteristics of SARS-CoV-2-specific serological assays, indicating imperfect
sensitivity and specificity of the assays, with higher reliability of assays targeting IgG
compared to IgM- and IgA-specific ones [6–14]. Specificity problems with serological
assays based on whole viral antigens [15] facilitated the development of more specific
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assays based on chosen structures of the virus only. Although the viral nucleocapsid as
well as the antigens of the viral open reading frames (ORFs) 8 and 3b were shown to elicit
the strongest specific antibody responses after SARS-CoV-2-infections [16], serological
assays targeting the spike protein and the nucleocapsid protein have been most frequently
designed. Serological response against the spike protein has been considered as particularly
interesting due to reported interaction with ACE2 (angiotensin-converting enzyme 2)
binding [17]. Further, spike-protein-specific antibodies have been reported to persist longer
than nucleocapsid-specific antibodies [18], which decrease within weeks to months [19].
Spike proteins offer even better sensitivity if the spike protein is applied as trimer and not
as monomer in the serological assay [20]. Indeed, the trimeric spike protein was one of
the first implemented as the primary antigen in various serological assays [21]. Intensity
of humoral immunoreactivity toward the SARS-CoV-2 spike protein was shown to be
influenced by disease severity and smoking status [22].

In spite of the shorter half-life of nucleocapsid-specific antibodies [18,19], their com-
bination with antibodies against the receptor-binding domain of the spike protein [23]
as well as their assessment alone [24] were associated with excellent specificity. In the
short-term range of 2 weeks after infection, there are no differences between sensitivity of
assays targeting antibodies against the nucleocapsid or the spike protein [25]. In recent
comparisons of nucleocapsid- and spike-protein-based assays, no unambiguous superiority
of one approach or the other could be identified [26–29]. In early infection states, sensi-
tivity of anti-nucleocapsid antibodies can even be higher than that of anti-spike protein
antibodies [24,30,31]. Other studies suggested a higher degree of inconsistency of the
abundance of anti-nucleocapsid antibodies compared to anti-spike protein antibodies after
SARS-CoV-2-infections [32,33]. Furthermore, spike-protein-based assays were reported to
better predict the outcome of neutralization assays [34].

Considering the reported good specificity results of nucleocapsid assays [23,24], vac-
cination with SARS-CoV-2 spike-protein-based vaccines should elicit robust anti-spike
protein antibodies as its humoral response but ought to show no cross-reaction with anti-
nucleocapsid-antibody-specific assays. It should therefore be possible to differentiate
between a vaccination response and at least recent natural infections with SARS-CoV-
2 [18,19] on the basis of these different test strategies.

In this study, a serological assay by EUROIMMUN targeting the spike protein and an
assay by VIROTECH targeting the nucleocapsid protein of SARS-CoV-2 were comparatively
applied for the testing of volunteers after mRNA-based vaccination with mRNA encoding
the spike protein as described [1–4]. Both the EUROIMMUN and the VIROTECH assay had
already been evaluated in previous assessments [12,35,36]. By doing so, it was intended
to confirm the expected differentiated response with reactivity in the spike-protein-based
assay, but without reactivity in the nucleocapsid-based assay in vaccinated individuals
without previous SARS-CoV-2 infection.

2. Materials and Methods
2.1. Sample Collection

Assessed samples comprised 80 sera of volunteers vaccinated with the Comirnaty
COVID-19 mRNA vaccine from BioNTech (Mainz, Germany) and Pfizer (Puurs, Bel-
gium) [36], collected after the first or second vaccination. The sera were stored in the
refrigerator at 2 to 8 ◦C prior to assessment for a maximum of 2 days. The vaccinees were
healthcare workers at the University Medical Center Göttingen, Germany.

2.2. Serological Assays

The compared serological assays comprised the spike-protein-based EUROIMMUN
COVID-19 IgG/IgA assay (EUROIMMUN, Lübeck, Germany; referred to as “EUROIM-
MUN assay” in the following) and the nucleocapsid-based VIROTECH SARS-CoV-2
IgA/IgM/IgG ELISA (Rüsselsheim am Main, Germany; referred to as “VIROTECH assay”
in the following). Both assays were performed exactly as described by the manufacturers.
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2.3. Statistics

Correlation between the titers of the anti-spike protein antibodies and the time from
first and second vaccination until sample acquisition as well as the vaccinees’ age at sample
acquisition was calculated applying Spearman’s correlation coefficient after conducting a
significant Shapiro–Wilk test for normal distribution.

Wilcoxon’s rank sum test was applied to detect statistical differences for the anti-spike
protein antibody titers between males and females and between individuals who received
one or two vaccinations.

2.4. Ethics

The study was ethically approved by the institutional ethics board of the University
Medical Center Göttingen (identification code 21/05/20, provided on 21 May 2020).

3. Results
3.1. Vaccinees

The assessed 80 vaccinees comprised 36 (45.0%) males and 44 (55.0%) females. At
the time of sample acquisition, the mean (± standard deviation SD) age in years was
39.4 (± 1.4), and the median age (interquartile range) was 37 (29, 49). At total of 53/80
(66.3%) had received the first and the second vaccine, 27/80 (33.8%) only the first vaccine.
For the patients who had only received the first vaccine, the mean (± SD) number of
days after this vaccine until sample acquisition was 16.5 (± 5.4), for the patients who had
received both vaccines it was 4.5 (± 4.6). The raw study data on the vaccinees are shown in
the Appendix A, Table A1.

3.2. Serological Test Results

In the spike-protein-specific EUROIMMUN assays, all assessed 80 vaccinees showed
at least one positive (n = 77/80, 96.3%) or borderline (n = 3/80, 3.8%) result for either the
immunoglobulin subclass A, G, or both. In detail, in the EUROIMMUN IgG assay 72/80
(90.0%) positive and 3/80 (3.8%) borderline results were observed. In the EUROIMMUN
IgA assay, 77/80 (96.3%) showed positive results. Of note, the three cases of borderline
EUROIMMUN IgG results were associated with the three negative EUROIMMUN IgA
results without exemption, while positive IgA results were always associated with positive
IgG results.

The three cases with negative EUROIMMUN IgA and borderline EUROIMMUN IgG
comprised a 48-year-old female 19 days after her first vaccine, a 61-year-old female 1 day
after her second vaccine, and a 60-year-old male 3 days after his second vaccine, respectively.
The five cases with positive EUROIMMUN IgA result but negative EUROIMMUN IgG
result consisted of a 21-, 51-, and a 63-year-old female and a 50-year-old male 11 days after
their first vaccine, as well as a 23-year-old male 9 days after his first vaccine, respectively.

No positive results were observed for the immunoglobulin subclasses IgG and IgA of
the nucleocapsid-specific VIROTECH assay. For IgM, a positive VIROTECH signal was
recorded in a 51-year-old female 3 days after her second vaccine.

The raw data are provided in the Appendix A, Table A2.

3.3. Correlation of the Time in Days between the Last Vaccine and Sample Acquisition, Age, Sex
and the Measured Titers

Spearman’s correlation coefficient between the time from the first and second vaccina-
tion and the titers of the anti-spike protein antibodies are indicated in Table 1. As shown
there, respective correlation was weak for IgA, especially in patients who had received
only one vaccine at the time of sample acquisition. It was slightly better after two vaccines,
in spite of a tendency for higher titers after longer time intervals. For IgG, the correlation
was better for all assessed situations.
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Table 1. Spearman’s correlation coefficient between the time from the first and second vaccination and the titers of the
anti-spike protein antibodies. The p-values for the titers of the anti-spike protein antibodies and the time from first and
second vaccination were 0.00003 and <0.0001, respectively.

Population n
Time from Vaccination Anti-Spike Protein Antibodies Spearman’s Correlation

Coefficient with 0.95
Confidence IntervalMean (SD) Median (q25, q75) Mean (SD) Median (q25, q75)

IgA 1: All
individuals

80 22.53 (5.85) 22.50 (21, 27) 4.88 (2.73) 4.94 (2.48, 8.03) 0.479 [0.274, 0.676].

IgA 1:
Individuals

with only first
vaccination

27 16.48 (5.38) 19 (11, 21) 3.87 (2.28) 3.71 (1.73, 5.19) 0.0075 [−0.342, 0.357

IgA 2:
Individuals

with first and
second

vaccination

53 4.49 (4.57) 3 (1, 7) 5.39 (2.82) 5.5 (2.81, 8.52) 0.539 [0.261, 0.760]

IgG 1: All
individuals

80 22.53 (5.85) 22.50 (21, 27) 4.96 (2.47) 4.97 (3.02, 7.52) 0.787 [0.646, 0.858]

IgG 1:
Individuals

with only first
vaccination

27 16.48 (5.38) 19 (11, 21) 2.96 (1.69) 3.34 (1.41, 4.33) 0.638 [0.384, 0.810]

IgG 2:
Individuals

with first and
second

vaccination

53 4.49 (4.57) 3 (1, 7) 5.98 (2.18) 6.08 (4.90, 8.08) 0.698 [0.468, 0.839]

1 Time from first vaccination, 2 time from second vaccination.

Table 2 indicates Spearman’s correlation coefficients between the age at the sample
acquisition date and the anti-spike protein antibody titers. A non-significant trend for
higher titers in young age groups was observed for both IgA and IgG antibodies.

Table 2. Spearman’s correlation coefficients between the age at the sample acquisition date and the anti-spike protein
antibody titers. The p-value for age at sample acquisition was 0.00238. The p-value for anti-spike protein IgA antibodies was
0.00008 and for IgG anti-bodies 0.00108.

Population n
Age in Years at Sample

Acquisition Anti-Spike Protein Antibodies Spearman’s Correlation
Coefficient with 0.95
Confidence IntervalMean (SD) Median (q25, q75) Mean (SD) Median (q25, q75)

IgA 1: All
individuals

80 39.4 (12.31) 37 (29, 49) 4.88 (2.73) 4.94 (2.48, 8.03) −0.153 [−0.382, 0.092]

IgA 1:
Individuals

with only first
vaccination

27 40.25 (13.69) 39 (28, 50) 3.87 (2.28) 3.71 (1.73, 5.19) −0.216 [−0.599, 0.187]

IgA 2:
Individuals

with first and
second

vaccination

53 38.96 (11.66) 36 (30, 48) 5.39 (2.82) 5.5 (2.81, 8.52) −0.078 [−0.367, 0.207]
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Table 2. Cont.

Population n
Age in Years at Sample

Acquisition Anti-Spike Protein Antibodies Spearman’s Correlation
Coefficient with 0.95
Confidence IntervalMean (SD) Median (q25, q75) Mean (SD) Median (q25, q75)

IgG 1: All
individuals

80 39.4 (12.31) 37 (29, 49) 4.96 (2.47) 4.97 (3.02, 7.52) −0.213 [−0.440, 0.044]

IgG 1:
Individuals

with only first
vaccination

27 40.25 (13.69) 39 (28, 50) 2.96 (1.69 3.34 (1.41, 4.33) −0.142 [−0.569, 0.296]

IgG 2:
Individuals

with first and
second

vaccination

53 38.96 (11.66) 36 (30, 48) 5.98 (2.18) 6.08 (4.90, 8.08) −0.211 [−0.501, 0.035]

1 Time from first vaccination, 2 time from second vaccination.

The anti-spike protein antibody titers among males and females were compared by
conducting Wilcoxon’s rank sum test and were not statistically significant assuming a level
of significance of 0.05 (Table 3).

Table 3. Comparison of spike protein antibody titers among males and females applying Wilcoxon’s rank sum test.

Population Males Females Wilcoxon Rank Sum
Test, p-Valuen Mean (SD) Median (q25, q75) n Mean (SD) Median (q25, q75)

IgA 1: All
individuals

36 5.39 (2.63) 5.30 (2.91, 8.42) 44 4.46 (2.77) 4.00 (1.77, 7.10) 0.1255

IgA 1:
Individuals with

only first
vaccination

12 4.59 (2.26) 5.00 (2.86, 5.68) 15 3.29 (2.19) 3.25 (1.25, 5.19) 0.1959

IgA 2:
Individuals with
first and second

vaccination

24 5.78 (2.76) 6.23 (2.91, 8.52) 29 5.06 (2.87) 4.90 (2.56, 8.52) 0.4017

IgG 1: All
individuals

36 4.87 (2.35) 4.92 (2.92, 6.48) 44 5.03 (2.60) 5.00 (3.16, 7.69) 0.7866

IgG 1:
Individuals with

only first
vaccination

12 3.13 (1.69) 3.07 (2.13, 4.33) 15 2.83 (1.74) 3.45 (1.03, 3.96) 0.6256

IgG 2:
Individuals with
first and second

vaccination

24 5.74 (2.16) 5.72 (4.46, 8.09) 29 6.17 (2.22) 6.67 (4.93, 8.08) 0.4529

1 Time from first vaccination, 2 time from second vaccination.

The anti-spike protein antibody titers among individuals who received one or two
vaccinations were tested by conducting Wilcoxon’s rank sum test and were statistically
significant assuming a level of significance of 0.05 for both subclasses IgA and IgG. The titers
were higher among individuals who received both vaccinations (Table 4, Figures 1 and 2).
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Table 4. Comparison of spike protein antibody titers among individuals who received one or two vaccinations applying
Wilcoxon’s rank sum test.

Population Only First Vaccination First and Second Vaccination Wilcoxon Rank
Sum Test, p-Valuen Mean (SD) Median (q25, q75) n Mean (SD) Median (q25, q75)

IgA: All
individuals 27 3.87 (2.28) 3.71 (1.73, 5.19) 53 5.39 (2.82) 5.50 (2.81, 8.52) 0.0217

IgG: All
individuals 27 2.96 (1.69) 3.34 (1.41, 4.33) 53 5.98 (2.18) 6.08 (4.90, 8.08) <0.0001
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Figure 1. Box-plots indicating the difference of IgA antibody titers (as ratio of the patient sample over
the extinction of the calibrator) among individuals who received one or two vaccinations. “quant.”:
quantitative IgA titers. Once: one vaccination only. Twice: two vaccinations.
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4. Discussion

The study was conducted to differentiate the vaccination with RNA-based vaccines
using epitopes of the SARS-CoV-2 spike protein (SARS-2-S) [1–4] as a proof-of-principle
assessment. First of all, positive or borderline results for anti-spike protein antibodies
were observed for all assessed vaccinees, irrespective of vaccination status with just one
or with two vaccine doses. In contrast, anti-nucleocapsid IgA and IgG antibodies did not
occur in the vaccinees. The single positive IgM result among the 80 assessed samples is
as expected in line with the previously calculated specificity of the applied VIROTECH
anti-nucleocapsid-IgM assay between 94% and 96.7% as indicated in a previous study [12].
Accordingly, the reported single positive IgM result can most likely be judged as a false
positive. Hypothetically, a very early stage of a breakthrough infection is an alternative
explanation, so follow-up assessment is recommended in case of such a serological reac-
tion pattern. In this specific case, serological follow-up was unfeasible as the respective
volunteer agreed to one blood sample acquisition only. However, in retrospect, when
asked, the subject reported no symptoms of a mild upper respiratory tract infection at the
relevant time.

Considering the acceptable sensitivity and specificity of the VIROTECH assay with
samples from patients with COVID-19 as shown elsewhere [12], our data suggest that a
combination of anti-spike protein–based serology and anti-nucleocapsid-based serology
can be used to discriminate spike-protein-based vaccination-induced antibody titers from
antibodies after acute SARS-CoV-2 infections as well as from potential antibodies due to
breakthrough infections in spite of vaccination.

Secondly, it could be shown that anti-spike protein antibodies are already measurable
early after vaccination. While 72 vaccinees showed a combination of positive IgG and IgA
against the SARS-CoV-2 spike protein, five individuals with samples acquired at very early
time points—9 to 11 days after the first vaccine—expressed IgA but still no IgG antibodies.
This pattern was not observed at later time points of sample acquisition, suggesting its
occurrence at early stages after vaccination only.

A pattern of borderline IgG anti-spike protein antibodies without measurable IgA an-
tibodies, which was observed, compared to the study median, in older vaccinees once after
the first and twice after the second vaccine dose, calls for further follow-up. Although this
pattern was observed in less than 5% of the vaccinees, it raises the question of potentially
insufficient humoral response toward the vaccination applied.

Thirdly, associations of antibody-titers with factors such as age, sex, and time between
vaccination and serum sample acquisition were assessed. While respective correlations
were generally weak, at least significance for higher anti-spike protein antibody titers in
individuals after the second vaccination compared to patients with only one vaccine dose
could be shown.

The study has a number of limitations. Firstly, the comparable low number of only
80 vaccinees allows a preliminary interpretation only. Secondly, the intervals between
vaccination and sample acquisition were arbitrary and defined by the accessibility of the
vaccinees for the sample acquisition. Thirdly, a sample acquisition on a daily basis would
have been desirable to assess the seroconversion process. However, this procedure was
not feasible for organizational reasons. Fourthly, neutralizing potential of the measured
antibodies was not tested, as the correlation of the results of the used serological assays
to the results from neutralization tests has already been demonstrated in preliminary
studies [7]. Also, the scope of the work was not the confirmation of the neutralizing
potential of vaccine-related antibodies but just the establishing of a ready-to-perform
approach of serological discrimination of post-vaccination antibodies and wildtype virus
infection–related ones in the diagnostic routine.

5. Conclusions

In a small group of recently vaccinated individuals, anti-spike protein antibodies
were very consistently recorded, while anti-nucleocapsid antibodies were virtually ab-
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sent. In spite of the limitations mentioned, the assessment strongly suggests combined
application of anti-spike protein–based serology and anti-nucleocapsid-based serology for
the discrimination of responses after spike-protein-based vaccination and natural infec-
tions. Although not directly assessed in this study, it is likely that this may also apply to
breakthrough infections. Positive anti-spike protein antibody results can be expected early
after vaccination, although higher titers are seen after the second vaccine. Larger studies
are recommended to confirm these preliminary results. From the practical clinical point
of view, a combination of serological assays for the discrimination of anti-spike protein
antibodies and anti-nucleocapsid antibodies is recommended, if a recent breakthrough
infection with SARS-CoV-2 is to be confirmed in vaccinees for clinical, hygiene-related, or
surveillance purposes.
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Appendix A

Table A1. Vaccinee-specific raw data.

Study ID Sex (1 = Male, 2 = Female) Age at Sample Acquisition (Years) Date of First Vaccine Date of Second Vaccine Date of sAmple Acquisition

1 1 19 2021-01-21 2021-02-01

2 2 21 2021-01-21 2021-02-01

3 2 25 2021-01-21 2021-02-01

4 2 36 2021-01-21 2021-02-01

5 2 51 2021-01-21 2021-02-01

6 1 50 2021-01-21 2021-02-01

7 2 63 2021-01-21 2021-02-01

8 2 49 2021-01-12 2021-02-02

9 1 62 2021-01-15 2021-02-02

10 2 48 2021-01-20 2021-02-02

11 1 24 2021-01-14 2021-02-02

12 2 30 2021-01-12 2021-02-02

13 2 48 2021-01-14 2021-02-02

14 1 44 2021-01-13 2021-02-02

15 1 54 2021-01-11 2021-02-01 2021-02-02

16 1 31 2021-01-11 2021-02-01 2021-02-02

17 2 28 2021-01-11 2021-02-01 2021-02-02

18 1 31 2021-01-11 2021-02-02

19 1 48 2021-01-11 2021-02-01 2021-02-02

20 2 61 2021-01-11 2021-02-01 2021-02-02

21 1 32 2021-01-12 2021-02-02

22 2 45 2021-01-11 2021-02-02

23 1 34 2021-01-12 2021-02-02

24 1 33 2021-01-11 2021-02-02
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Table A1. Cont.

Study ID Sex (1 = Male, 2 = Female) Age at Sample Acquisition (Years) Date of First Vaccine Date of Second Vaccine Date of sAmple Acquisition

25 2 32 2021-01-11 2021-02-01 2021-02-02

26 1 40 2021-01-11 2021-02-01 2021-02-03

27 1 26 2021-01-12 2021-02-02 2021-02-03

28 1 41 2021-01-07 2021-02-01 2021-02-03

29 2 27 2021-01-13 2021-02-03

30 1 43 2021-01-12 2021-02-02 2021-02-03

31 2 48 2021-01-08 2021-02-01 2021-02-04

32 2 46 2021-01-13 2021-01-03 2021-02-04

33 1 34 2021-01-11 2021-02-01 2021-02-04

34 2 50 2021-01-12 2021-02-02 2021-02-04

35 2 49 2021-01-13 2021-02-04

36 2 28 2021-01-11 2021-02-01 2021-02-04

37 1 60 2021-01-11 2021-02-01 2021-02-04

38 2 28 2021-01-18 2021-02-04

39 2 34 2021-01-11 2021-02-01 2021-02-04

40 2 54 2021-01-14 2021-02-04

41 1 60 2021-01-20 2021-02-04

42 1 39 2021-02-01 2021-02-04

43 2 25 2021-01-11 2021-02-01 2021-02-04

44 1 23 2021-01-26 2021-02-04

45 2 62 2021-01-15 2021-02-05

46 2 25 2021-01-12 2021-02-02 2021-02-05

47 1 48 2021-01-14 2021-02-04 2021-02-05

48 1 42 2021-01-12 2021-02-02 2021-02-05

49 2 30 2021-01-14 2021-02-04 2021-02-05
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Table A1. Cont.

Study ID Sex (1 = Male, 2 = Female) Age at Sample Acquisition (Years) Date of First Vaccine Date of Second Vaccine Date of sAmple Acquisition

50 2 41 2021-01-12 2021-02-02 2021-02-05

51 1 23 2021-01-12 2021-02-02 2021-02-05

52 2 54 2021-01-11 2021-02-04 2021-02-05

53 2 34 2021-01-12 2021-02-02 2021-02-05

54 2 39 2021-01-08 2021-02-01 2021-02-06

55 2 53 2021-01-11 2021-02-01 2021-02-08

56 2 50 2021-01-08 2021-02-01 2021-02-08

57 2 64 2021-01-08 2021-02-01 2021-02-08

58 2 38 2021-01-11 2021-02-01 2021-02-08

59 1 43 2021-01-12 2021-02-02 2021-02-08

60 2 36 2021-01-07 2021-02-01 2021-02-08

61 2 63 2021-01-11 2021-02-01 2021-02-08

62 1 42 2021-01-11 2021-02-01 2021-02-08

63 1 39 2021-01-08 2021-02-01 2021-02-08

64 2 51 2021-01-15 2021-02-05 2021-02-08

65 1 33 2021-01-12 2021-02-02 2021-02-08

66 2 31 2021-01-13 2021-02-03 2021-02-09

67 1 33 2021-01-11 2021-02-01 2021-02-09

68 1 32 2021-01-18 2021-02-08 2021-02-09

69 1 30 2021-01-11 2021-02-01 2021-02-09

70 2 58 2021-01-12 2021-02-02 2021-02-09

71 1 28 2021-01-18 2021-02-08 2021-02-09

72 2 28 2021-01-13 2021-02-03 2021-02-09

73 2 33 2021-01-12 2021-02-04 2021-02-09

74 1 31 2021-01-12 2021-02-04 2021-02-09
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Table A1. Cont.

Study ID Sex (1 = Male, 2 = Female) Age at Sample Acquisition (Years) Date of First Vaccine Date of Second Vaccine Date of sAmple Acquisition

75 2 27 2021-01-13 2021-02-03 2021-02-09

76 1 25 2021-01-11 2021-02-01 2021-02-09

77 1 23 2021-01-12 2021-02-02 2021-02-09

78 2 57 2021-01-12 2021-02-04 2021-02-09

79 1 25 2021-01-12 2021-02-08 2021-02-09

80 2 27 2021-01-13 2021-02-03 2021-02-09

Table A2. Raw data of the serological test results—for the VIROTECH results, only qualitative data are shown.

Study ID

Euroimmun IgA
(Qualitative,
0 = Negative,
1 = Positive)

Euroimmun IgG
(Qualitative,
0 = Negative,
1 = posItive,

3 = Borderline)

Euroimmun IgA
(Ratio of the Patient

Sample over the
Extinction of the

Calibrator)

Euroimmun IgG
(Ratio of the Patient

Sample Over the
Extinction of the

Calibrator)

Virotech IgA
(Qualitative,
0 = Negative,
1 = Positive)

Virotech IgM
(Qualitative,
0 = Negative,
1 = Positive)

Virotech IgG
(Qualitative,
0 = Negative,
1 = Positive)

1 1 1 8.84 1.41 0 0 0

2 1 0 1.73 0.57 0 0 0

3 1 1 4.1 2.20 0 0 0

4 1 1 5.2 3.62 0 0 0

5 1 0 3.25 0.63 0 0 0

6 1 0 1.99 0.64 0 0 0

7 1 0 1.15 0.62 0 0 0

8 1 1 7.86 4.44 0 0 0

9 1 1 7.41 4.26 0 0 0

10 1 1 1.32 1.46 0 0 0

11 1 1 3.71 4.37 0 0 0

12 1 1 5.19 5.54 0 0 0
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Table A2. Cont.

Study ID

Euroimmun IgA
(Qualitative,
0 = Negative,
1 = Positive)

Euroimmun IgG
(Qualitative,
0 = Negative,
1 = posItive,

3 = Borderline)

Euroimmun IgA
(Ratio of the Patient

Sample over the
Extinction of the

Calibrator)

Euroimmun IgG
(Ratio of the Patient

Sample Over the
Extinction of the

Calibrator)

Virotech IgA
(Qualitative,
0 = Negative,
1 = Positive)

Virotech IgM
(Qualitative,
0 = Negative,
1 = Positive)

Virotech IgG
(Qualitative,
0 = Negative,
1 = Positive)

13 0 3 0.71 1.03 0 0 0

14 3 1 0.95 3.34 0 0 0

15 1 1 1.89 3.03 0 0 0

16 1 1 6.26 5.47 0 0 0

17 1 1 1.82 5.02 0 0 0

18 1 1 6.18 4.41 0 0 0

19 1 1 1.76 2.48 0 0 0

20 0 3 0.35 0.84 0 0 0

21 1 1 3.24 4.33 0 0 0

22 1 1 1.25 3.94 0 0 0

23 1 1 4.94 6.28 0 0 0

24 1 1 5.07 2.13 0 0 0

25 1 1 3.67 4.93 0 0 0

26 1 1 5.41 5.24 0 0 0

27 1 1 3.02 4.90 0 0 0

28 1 1 4.94 5.99 0 0 0

29 1 1 1.11 5.44 0 0 0

30 1 1 2.55 4.95 0 0 0

31 1 1 3.96 5.62 0 0 0

32 1 1 1.61 2.68 0 0 0

33 1 1 2.48 3.68 0 0 0

34 1 1 3.32 3.02 0 0 0

35 1 1 4.05 3.96 0 0 0
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Table A2. Cont.

Study ID

Euroimmun IgA
(Qualitative,
0 = Negative,
1 = Positive)

Euroimmun IgG
(Qualitative,
0 = Negative,
1 = posItive,

3 = Borderline)

Euroimmun IgA
(Ratio of the Patient

Sample over the
Extinction of the

Calibrator)

Euroimmun IgG
(Ratio of the Patient

Sample Over the
Extinction of the

Calibrator)

Virotech IgA
(Qualitative,
0 = Negative,
1 = Positive)

Virotech IgM
(Qualitative,
0 = Negative,
1 = Positive)

Virotech IgG
(Qualitative,
0 = Negative,
1 = Positive)

36 1 1 2.26 4.99 0 0 0

37 0 3 0.56 1.09 0 0 0

38 1 1 6.57 3.86 0 0 0

39 1 1 4.9 4.47 0 0 0

40 1 1 2.33 1.77 0 0 0

41 1 1 5.16 2.77 0 0 0

42 1 1 2.48 2.81 0 0 0

43 1 1 6.44 6.67 0 0 0

44 1 0 5.19 0.85 0 0 0

45 1 1 3.55 3.45 0 0 0

46 1 1 3.31 6.17 0 0 0

47 1 1 8.62 5.63 0 0 0

48 1 1 5.51 2.40 0 0 0

49 1 1 4.16 7.57 0 0 0

50 1 1 6.96 6.08 0 0 0

51 1 1 2.81 5.37 0 0 0

52 1 1 2.56 2.00 0 0 0

53 1 1 1.14 4.32 0 0 0

54 1 1 3.13 7.47 0 0 0

55 1 1 5.15 7.82 0 0 0

56 1 1 8.59 8.00 0 0 0

57 1 1 8.52 8.50 0 0 0
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Table A2. Cont.

Study ID

Euroimmun IgA
(Qualitative,
0 = Negative,
1 = Positive)

Euroimmun IgG
(Qualitative,
0 = Negative,
1 = posItive,

3 = Borderline)

Euroimmun IgA
(Ratio of the Patient

Sample over the
Extinction of the

Calibrator)

Euroimmun IgG
(Ratio of the Patient

Sample Over the
Extinction of the

Calibrator)

Virotech IgA
(Qualitative,
0 = Negative,
1 = Positive)

Virotech IgM
(Qualitative,
0 = Negative,
1 = Positive)

Virotech IgG
(Qualitative,
0 = Negative,
1 = Positive)

58 1 1 8.52 8.49 0 0 0

59 1 1 8.52 8.12 0 0 0

60 1 1 8.52 8.15 0 0 0

61 1 1 8.52 7.88 0 0 0

62 1 1 8.32 8.06 0 0 0

63 1 1 8.52 8.26 0 0 0

64 1 1 1.73 3.31 0 1 0

65 1 1 8.52 8.23 0 0 0

66 1 1 8.33 8.63 0 0 0

67 1 1 8.52 8.24 0 0 0

68 1 1 8.21 5.96 0 0 0

69 1 1 8.52 8.13 0 0 0

70 1 1 8.52 8.30 0 0 0

71 1 1 3.81 4.03 0 0 0

72 1 1 8.52 8.58 0 0 0

73 1 1 7.25 8.08 0 0 0

74 1 1 6.2 6.69 0 0 0

75 1 1 1.21 6.80 0 0 0

76 1 1 8.52 8.23 0 0 0

77 1 1 8.52 7.99 0 0 0

78 1 1 5.5 6.50 0 0 0

79 1 1 6.95 5.81 0 0 0

80 1 1 8.52 8.08 0 0 0
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