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Knowing in advance what to look for speeds up
search, but how this knowledge guides search is
poorly understood. The little available evidence
suggests that previewing the target produces larger
reductions in search times for harder searches. To
investigate this issue further, we performed seven
experiments in which subjects searched for an oddball
target after previewing the target, distracter, or an
unrelated square. Consistent with previous studies,
harder searches showed bigger reductions in search
time for an informative preview. However, the same
data replotted using the reciprocal of search time
showed a remarkably different result: The informative
preview showed a fixed additive increase in reciprocal
search time across all searches regardless of difficulty.
This is a nontrivial outcome because it cannot be
explained using a simple relationship between search
times in the informative and uninformative preview
conditions. We interpret our findings by proposing
that the reciprocal of search time reflects the strength
of an underlying accumulating signal related to the
distinctiveness or salience of the target over the
distracters and that preview additively increases this
signal for all searches. This in turn implies that the
top-down signals related to target preview and
bottom-up signals related to target-distracter salience
sum linearly.

Introduction

We search for visual objects with varying speci-
ficity: We might search for anything (‘‘find something
interesting’’), an item from a category (‘‘find an
animal’’), or for a very specific item (‘‘find the
meerkat’’). How does knowing what to look for help
in search? This is a fundamental question because it
concerns how top-down knowledge influences visual

processing. Classic studies of this issue have shown
that previewing a target before the onset of the
search display speeds up search (Wolfe et al., 2004;
Vickery, King, & Jiang, 2005; Schmidt & Zelinsky,
2009, 2011; Maxfield & Zelinsky, 2012; Maxfield,
Stalder, & Zelinsky, 2014). These studies find that the
preview benefit depends on the relationship between
the cue and the target. It reduces when the cue and
target differ in size or orientation (Vickery et al.,
2005) and more generally as they become more
dissimilar (Schmidt & Zelinsky, 2009; Lamy, Zivony,
& Yashar, 2011). Previewing the category to which
the target belongs also produces systematic effects
(Maxfield & Zelinsky, 2012). Previewing the target as
a word has a weaker benefit that arises only when
presented well in advance, suggesting that lexical
representations become available only later in time
(Wolfe et al., 2004; Vickery et al., 2005; Schmidt &
Zelinsky, 2011).

Despite these insights, we understand relatively little
about how target preview influences search in terms of
the mechanisms. Previewing a target is generally
thought to bias attention to its features throughout the
visual field, facilitating its detection (Ipata et al., 2006;
Khayat, 2006; Suzuki & Gottlieb, 2013; Wilschut,
Theeuwes, & Olivers, 2013, 2014; Sridharan, Schwarz,
& Knudsen, 2014). But precisely how attentional bias
leads to reduced search time is not clear. A potential
clue to the underlying mechanism comes from obser-
vations made in a few studies, all showing that the
preview benefit is small for easy searches and large for
hard searches. The preview benefit is stronger not only
when the target is more similar to the distractors (Chen
& Zelinsky, 2006), but also with increasing set size
(Vickery et al., 2005; Yang & Zelinsky, 2009). A similar
observation has been made for repetition priming
(Lamy et al., 2011).
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Why should target preview have a larger benefit for
harder searches? There are two possibilities. The first
possibility is that easy searches are dominated by
bottom-up factors and therefore do not experience a
preview benefit whereas hard searches are benefited
more by top-down factors, such as repetition (Lamy et
al., 2011). Although this is plausible, this account does
not make explicitly testable predictions. This issue is
complicated by the fact that there is no consensus in the
literature about how the preview benefit should be
measured: Should it be the absolute change in search
time, percentage change in search time, or something
else?

Our solution to this issue is to develop a measure
that is a natural index of the underlying biophysical
processes that drive visual search. This is based on an
accumulator model for search that has broad empirical
support from neurophysiology (Schall et al., 2011).
According to this model, a local salience signal
generated at each location accumulates toward a
threshold and triggers a response on reaching it. When
a target is previewed, we hypothesize that this biases
feature processing throughout the visual field, resulting
in an increase in distinctiveness of the target relative to
the distractor. Specifically, we propose that this bias is
an additive increase in the signal, but this benefit
accumulates longer for harder searches, resulting in a
bigger reduction in search time. This possibility
predicts the same preview benefit for all searches,
provided they are characterized in terms of the
underlying distinctiveness signal.

Testing this possibility requires an estimate of the
salience signal, which we obtain as follows: Consider a
constant signal S that accumulates toward a threshold
set (without loss of generality) to one. The accumulated
signal at the time of threshold crossing must satisfy S3
RT¼ 1, where RT is the threshold crossing time or
Reaction Time. Therefore, the underlying signal S¼ 1/
RT. Thus, 1/RT is an estimate of the underlying
accumulating signal. This remains largely true even in
the presence of motor delays and noise in the
accumulator (Experiment 9). We therefore predicted
that, when preview conditions are compared using 1/
RT, we would find a fixed benefit due to preview in
terms of 1/RT.

The reciprocal of search reaction time (1/RT) not
only has a plausible physical interpretation, but in a
series of studies, we have found that it explains a
variety of visual search phenomena compared to
models based on search reaction time (RT). 1/RT
increases linearly with feature differences (Arun, 2012;
Pramod & Arun, 2014) and behaves like a mathe-
matical distance (Arun, 2012). It explains complex
searches involving multiple types of distracters (Vig-
hneshvel & Arun, 2013), searches involving targets
differing in multiple types of features (Pramod &

Arun, 2014), and dissimilarities between objects
differing in local and global attributes (Pramod &
Arun, 2016). In this study too, we have measured the
preview benefit in terms of RT as well as reciprocal
RT (1/RT) and found a qualitatively different insight
using reciprocal search time.

Overview of this study

Our goal was to systematically investigate the
impact of target preview on visual search across a
large variety of searches. We conducted eight exper-
iments in all. In each experiment, subjects searched for
an oddball target after previewing an informative cue
(the target or distractor of the upcoming search) or an
unrelated white square. Across all experiments, we
obtained essentially the same result: Although harder
searches showed larger decreases in search time when
the target was previewed, the same data replotted in
terms of 1/RT showed a fixed offset across all searches.
This is a nontrivial result because it cannot be explained
by a simple transformation of search times. For
instance, if RTu and RTi denote the search time in the
unrelated and informative priming conditions, then
halving all the unrelated preview search times (RTi ¼
RTu/2) would cause a doubling of the reciprocal
search times (1/RTi ¼ 2/RTu) but not a fixed offset.
Across all experiments, we also quantitatively evalu-
ated these two models by comparing their residual
error and found that the 1/RT offset model has a
consistently smaller error compared to the RT scaling
model. In Experiment 9, we show through simulations
that these results can be explained by an additive but
not multiplicative increase in distinctiveness even after
taking into account fixed effects such as motor
response latency. Taken together, our results show
that previewing a target or a distractor additively
increases the underlying dissimilarity signal in visual
search.

Methods

Our experimental procedures were nearly identical
across all experiments and are collectively described
below.

Subjects

All subjects were 20–30 years old with normal or
corrected-to-normal vision. Subjects were naı̈ve to
the purpose of the experiment and gave written
consent to a protocol approved by the Institutional
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Human Ethics Committee of the Indian Institute of
Science.

Stimuli

We chose stimuli consisting of similar and dissimilar
shapes to ensure a broad range of search difficulty. All
images were normalized to have the same brightness and
contrast to avoid low-level cues from guiding search.

Procedure

Subjects were seated approximately 60 cm from a
computer monitor, which was under control of custom
Matlab programs in Psychtoolbox (Brainard, 1997). In
each trial, subjects saw a 38 3 38 noise mask that
appeared for 0.5 s at the center of a screen followed by
the cue (Figure 1). The cue was either the oddball target
of the subsequent search display or an unrelated white
square (38 wide) that appeared at fixation for 1 s. This
was followed by a search array with 32 items arranged
in a 6 3 6 grid with 4.58 spacing between the item
centers. All items were identical except for one oddball
target that appeared within the central 4 3 4 grid. The
position of each item in the grid was randomly jittered
according to a uniform distribution with range 60.6758
to prevent alignment cues. The task of the subject was
to indicate using a key press (‘‘M’’ for right, ‘‘Z’’ for
left) the side of the screen on which the oddball target
was located. A red vertical line (width 0.118) was
displayed along the middle of the screen to facilitate
left/right judgments. The search array was displayed
for 10 s or until the subject made a response, whichever
was sooner. Timed-out trials and error trials were
repeated randomly later on during the task.

In most experiments, subjects performed searches
involving all possible pairs of 16 images (i.e., 16C2¼ 120
pairs). For each pair of images (A, B), subjects
performed eight correct trials (four with A as target,
which comprised two trials with A on the left and two
with A on the right, and four with B as target). Thus,
for each priming condition (target preview and
unrelated preview) there were 120 3 8¼ 960 trials,
resulting in a total of 1,920 correct trials. These trials
appeared in random order.

The above details were common to most experi-
ments. The different details in each experiment are
described below.

Experiment 1

A total of nine subjects (five male) participated in the
experiment.

Experiment 2

A total of eight subjects (five male) participated in
the experiment. We chose a random set of 80 pairs from
the 120 pairs and ran them each for 16 correct trials
(eight with A as target, among which four trials had A
on the left and four with A on the right, and eight with
B as target) giving rise to a total of 2,560 trials. All the
other details remained the same.

Experiment 3

A total of eight subjects (five male) participated in
the experiment. Stimuli measured 28 3 28. All the other
details remained the same.

Experiment 4

A total of eight subjects (four male) participated in
the experiment.

Experiment 5

A total of eight subjects (six male) participated in the
experiment.

Experiment 6: Present/absent searches

A total of eight subjects (four male) participated in
the experiment. A total of 60 searches were randomly
chosen from the 120 searches of Experiment 1. Targets
were present in half the trials and absent in the other
half. Similarly, the target was previewed in half the
trials and a white square was shown in the other half of
the trials. This gave rise to a total of 603 43 8¼ 1,920
trials. The task in this experiment was to report the
presence or absence of the oddball in the search by
pressing either the ‘‘P’’ or ‘‘A’’ key on the keyboard.
Searches with an accuracy less than 65% were removed
from further analysis. All the other details remained the
same.

Experiment 7: Homogeneous search with
varying set size

A total of eight subjects (seven male) participated in
the experiment. A total of 120 searches were performed
at two set sizes (14 and 32 items) with subjects
performing four correct trials per unique search. This
gave rise to a total of 120 searches 3 2 set sizes 3 2
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preview conditions3 4 repetitions¼ 1,920 trials. All the
other details were the same as in the common methods.

Experiment 8: Heterogeneous search with
varying set size

A total of eight subjects (three male) participated in
the experiment. Here, searches were heterogeneous, i.e.,
search arrays contained a target among two types of
distractors. In each trial, the search array was preceded
by a 300-ms preview of either the exact target image or
the word corresponding to the target. The subject had to
respond using a key press to indicate whether the target
was on the left or right side of the screen. We chose nine
unique animals (bird, cat, cow, dog, goat, horse,
monkey, snake, and rhino) for this experiment, which
were used to create 36 target/distractor triplets. Each
stimulus appeared as a target in four searches such that
it occurred only once with each of the four remaining
pairs of stimuli. The four distractor pairings for the
searches for each stimulus were chosen randomly,
without replacement, among the remaining eight stimuli.
Search arrays contained either 14 or 32 items in a 6 3 6
grid where, in searches with 14 items, stimuli appeared in
the middle 4 3 4. Subjects had to perform eight correct
trials of each search. Thus, in all there were a total of 36
searches 3 2 set sizes 3 2 preview conditions 3 8
repetitions¼ 1,152 trials. Searches with an accuracy less
than 80% were removed from further analysis. All the
other details were the same as the common methods.

Data analysis

During post hoc analyses, search times greater than 5
s were excluded from further analysis. This was done

for all experiments except for Experiment 8, which
contained harder searches and set size variations. This
removed no more than 0.6% of all trials. We obtained
similar results upon changing these thresholds. To
estimate the dissimilarity signal for a particular search,
we calculated the average search time across trials (with
either item in a pair as target) and subjects and then
took the reciprocal of the average search time.
Confidence intervals for slopes and intercepts were
obtained using built-in linear regression functions in
Matlab (regress).

Results

We performed a total of eight visual search
experiments with a very similar design (Figure 1), which
yielded extremely similar results. Therefore, for ease of
exposition, we have described all experiments together
grouped into sections and tabulated the experiment-
specific details separately.

Across all experiments, subjects were extremely
consistent in their search times across searches, highly
accurate, and showed no speed–accuracy trade-off in
their performance (Table 1). Average search times
across searches with preview were strongly correlated
with search times with unrelated preview, suggesting
that preview modulates but does not fundamentally
alter intrinsic search difficulty (Table 1).

Experiment 1: Target preview in oddball search

In Experiment 1, we took searches involving all
possible pairs of a set of 16 animals (Figure 2A). On
plotting the average search time in the preview versus

Experiment

Consistency Accuracy (%) RT versus accuracy correlation

RT correlation between priming conditionsNP P NP P NP P

E1: animals 0.90 0.88 99 99 �0.44 �0.48 0.96

E2: animals 16 reps 0.96 0.94 98 98 �0.56 �0.57 0.98

E3: letters 0.92 0.88 98 98 �0.52 �0.47 0.95

E4: inverted animals 0.91 0.89 98 98 �0.34 �0.45 0.95

E5: distractor preview 0.90 0.89 98 99 �0.51 �0.12# 0.96

E6: target present 0.87 0.84 96 93 �0.90 �0.39 0.90

E6: target absent 0.96 0.90 98 99 �0.40# 0.02# 0.77

E7: animals set size 14 0.90 0.88 99 99 �0.34 �0.2 0.93

E7: animals set size 32 0.83 0.82 99 99 �0.49 �0.27 0.92

E8: words set size 14 0.85 0.81 98 98 �0.16# �0.52 0.85

E8: words set size 32 0.86 0.85 98 97 �0.27# �0.48 0.95

Table 1. Consistency, accuracy, and speed–accuracy trade-offs. Notes: #correlations that did not reach statistical significance ( p .
0.05). All other correlations were significant ( p , 0.05). P ¼ Informative preview; NP ¼ no (uninformative) preview.

Journal of Vision (2016) 16(15):3, 1–17 Sunder & Arun 4



the unrelated preview condition, we obtained a strong
correlation (Figure 2A; Table 1). To assess whether a
particular image pair (A, B) showed a priming benefit,
we performed an ANOVA on the search time for that
pair with subject, preview condition, and target (A or B
as target) as factors. For these pairs, the relationship
between the target preview and unrelated preview
search times was not just a change in slope (i.e., slope
significantly different from one) but also a clear
nonzero intercept (Table 2).

On replotting the same data in terms of the
reciprocal RT, we saw a strikingly different pattern that
suggests a qualitatively different explanation: Searches
that were significantly benefited by preview had a
reciprocal search time that differed by a fixed constant
from the unrelated preview condition (Figure 2B). In
other words, the slope of this relationship was not
significantly different from one and the intercept was
nonzero (Table 2). This effect remained qualitatively
similar even when including all searches rather than the
ones with a significant benefit (Table 3).

To verify that the 1/RT preview benefit does not
depend on search difficulty, we sorted the searches into
two groups according to the average search time in the
unrelated priming condition and asked whether the
increase in reciprocal RT was different between the
easy and hard search groups. This revealed no
significant difference (Table 4). Thus, the reciprocal of
search time increased by a constant offset due to target

preview. To investigate whether the priming benefit
interacts with search asymmetry, we identified for each
image pair (A, B) the easy target (e.g., A in B) and hard
target (e.g., B in A) based on the average search times
in the unrelated priming condition. We then compared
the priming benefit (i.e., difference in 1/RT) for the easy
and hard targets. We found a greater priming benefit
for easy targets compared to hard targets, but in both
cases, we obtained a constant offset in 1/RT (Table 4).
Thus, the preview benefit shows the same effect for
both easy and hard searches.

Experiment 2: Are some image pairs benefited
more by preview than others?

The above analyses were based on image pairs that
showed a significant priming benefit. Why do some
pairs show a systematic preview benefit but not others?
There are two possible explanations: The simplest one
is that all searches are benefited by preview but only a
few are detected due to random noise. Alternatively,
only some searches may be consistently benefited,
which can happen, for instance, if some targets are
easier to hold in working memory. To investigate this
issue, we performed Experiment 2, in which we selected
a subset of 80 of the 120 searches from Experiment 1
with twice the number of trials per condition. This
allowed us to ask the question: Are the same searches

Figure 1. Schematic of the visual search task used in all experiments. Each trial began with a noise mask followed by either an

unrelated preview (a white square) or an informative preview (target or distracter) for 1 s. This was followed by a search array

containing one oddball. Subjects had to indicate, using a key press, whether the target was on the left or right of the screen. In the

actual experiment, stimuli were shown on a black background in a 6 3 6 search array.
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benefited by preview more frequently than expected by
chance?

For ease of exposition, we describe the result of
dividing the trials into odd- and even-numbered trials,
but we obtained similar results for other random splits
of the data. For the odd-numbered trials, we found that

19 of the 80 pairs (i.e., 24%) showed a significant benefit
in priming. Among the even-numbered trials, 23 of the
80 pairs (29%) showed a significant benefit. Only five
searches were benefited in both groups. We then asked
whether the distribution of searches that did or did not
overlap in each group was significantly different from

Figure 2. Target preview speeds up search (Experiment 1: animals). Top row: Animal stimuli used in this experiment. (A) Search times

in the target preview plotted against search times in the unrelated preview conditions. Plus symbols represent object pairs for which

the search time was significantly different ( p , 0.05, see text) between the two preview conditions. Pairs with no significant

difference ( p . 0.05) are represented by gray circles. The equation of the best-fitting straight line for the object pairs benefited by

preview is shown. (B) Same data as in panel A but replotted using the reciprocal of search times (1/RT), a measure of the

distinctiveness of the target relative to the distracters. The equation of the best-fitting straight line for the object pairs benefited by

preview is shown. The symbol D represents the average salience benefit due to preview, i.e., the distance from the unit line.

Experiment

RT plot Reciprocal RT plot

Slope Intercept Slope Intercept

E1: animals (n ¼ 46 pairs) 0.72 [0.7, 0.75] 0.09 [0.07, 0.12] 1.01 [0.97, 1.05] 0.18 [0.13, 0.23]

E2: animals 16 reps (n ¼ 34 pairs) 0.77 [0.74, 0.81] 0.08 [0.04, 0.12] 1.03 [0.97, 1.08] 0.13 [0.06, 0.19]

E3: letters (n ¼ 49 pairs) 0.7 [0.65, 0.73] 0.09 [0.06, 0.13] 0.95 [0.89, 1.01] 0.32 [0.23, 0.41]

E4: inverted animals (n ¼ 39 pairs) 0.7 [0.66, 0.73] 0.09 [0.06, 0.13] 1.04 [0.98, 1.1] 0.2 [0.13, 0.26]

E5: distractor preview (n ¼ 11 pairs) 0.73 [0.64, 0.8] 0.1 [0.02, 0.19] 0.98 [0.87, 1.08] 0.2 [0.08, 0.32]

E6: target present (n ¼ 20 pairs) 0.57 [0.45, 0.7] 0.25 [0.1, 0.4] 1.03 [0.9, 1.16] 0.18 [0.06, 0.3]

E6: target absent (n ¼ 20 pairs) 0.97 [0.73, 1.21] �0.08 [�0.56, 0.4] 1.2 [0.96, 1.45] �0.056 [�0.18, 0.07]
E7: animals set size 14 (n ¼ 33 pairs) 0.7 [0.62, 0.78] 0.128 [0.04, 0.212] 0.98 [0.85, 1.10] 0.22 [0.085, 0.36]

E7: animals set size 32 (n ¼ 33 pairs) 0.52 [0.46, 0.58] 0.29 [0.22, 0.37] 0.91 [0.8, 1.01] 0.28 [0.18, 0.4]

E8: words set size 14 (n ¼ 16 searches) 0.61 [0.37, 0.85] 0.23 [�0.13, 0.61] 1.05 [0.69, 1.41] 0.16 [�0.09, 0.41]
E8: words set size 32 (n ¼ 16 searches) 0.65 [0.48, 0.81] 0.21 [�0.11, 0.53] 0.94 [0.7, 1.18] 0.19 [0.04, 0.33]

Table 2. Relationship between target versus unrelated preview for significantly primed pairs. Notes: The best-fitting slope and
intercept are shown for the RT plot and the reciprocal RT plot. In each case, the numbers within square brackets represent the 95%
confidence interval.
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the number of searches expected had the incidence in
each group been independently distributed. This
revealed no statistically significant difference, suggest-
ing that the incidence of benefit was independently
distributed in the two groups (observed distribution of
effects: 5, 18, 14, and 43 searches that were benefited in
both groups, in the odd group only, in the even group
only, and in neither group, respectively; predicted
distribution given the 24% and 29% rate of occurrence
in odd and even groups: 5.5, 17.5, 13.5 and 43.5; p ¼
0.98, chi-squared test). Thus, there was no significant
tendency for some searches to be consistently benefited
by preview across independent sets of trials. In other
words, the target preview benefit is present in some
pairs but not others due to random noise and not

because some pairs show a consistent preview benefit
compared to others. In any case, the constant offset in
1/RT was present in both searches with significant
preview benefit and across all searches (Tables 1 and 2).

Experiments 3 and 4: Generality of the fixed
priming benefit

To establish the generality of the effect, we
performed several additional experiments, which
yielded the same results as detailed above. In Experi-
ment 3, we selected English letters as another disparate
set of shapes to test the generality of the effect (Figure
3). In Experiment 4, we tested the same animals as in

Experiment

RT plot Reciprocal RT plot

Slope Intercept Slope Intercept

E1: animals (n ¼ 120 pairs) 0.8 [0.75, 0.83] 0.09 [0.05, 0.13] 1.03 [0.97, 1.08] 0.1 [0.03, 0.16]

E2: animals 16 reps (n ¼ 80 pairs) 0.88 [0.84, 0.92] 0.027 [�0.014, 0.068] 1.04 [0.99, 1.09] 0.06 [0.002, 0.116]

E3: letters (n ¼ 120 pairs) 0.71 [0.67, 0.76] 0.12 [0.08, 0.15] 0.9 [0.82, 0.95] 0.33 [0.23, 0.43]

E4: inverted animals (n ¼ 120 pairs) 0.78 [0.73, 0.82] 0.1 [0.05, 0.15] 1.01 [0.95, 1.07] 0.11 [0.05, 0.17]

E5: distractor preview (n ¼ 120 pairs) 0.9 [0.85, 0.93] 0.02 [�0.01, 0.07] 1.03 [0.98, 1.09] 0.05 [�0.01, 0.1]
E6: target present (n ¼ 60 pairs) 0.66 [0.58, 0.75] 0.23 [0.13, 0.33] 0.93 [0.82, 1.04] 0.18 [0.08, 0.28]

E6: target absent (n ¼ 60 pairs) 0.87 [0.74, 1] 0.09 [�0.17, 0.35] 1.07 [0.93, 1.2] 0.018 [�0.05, 0.09]
E7: animals set size 14 (n ¼ 120 pairs) 0.78 [0.72, 0.83] 0.1 [0.04, 016] 0.98 [0.92, 1.04] 0.14 [0.07, 0.21]

E7: animals set size 32 (n ¼ 120 pairs) 0.79 [0.72, 0.87] 0.13 [0.04, 0.23] 0.98 [0.91, 1.05] 0.1 [0.02, 0.17]

E8: words set size 14 (n ¼ 36 searches) 0.75 [0.6, 0.91] 0.16 [�0.07, 0.4] 0.83 [0.7, 0.97] 0.23 [0.115, 0.355]

E8: words set size 32 (n ¼ 36 searches) 0.71 [0.63, 0.8] 0.20 [0.03, 0.37] 0.9 [0.79, 1.004] 0.165 [0.08, 0.24]

Table 3. Relationship between target versus unrelated preview across all pairs. Notes: Conventions remain the same as in Table 2.

Experiment

Priming benefit in 1/RT

Low RT group High RT group p Easy target Hard target p

E1: animals 0.21 0.20 0.58 0.17 0.24 0.003

E2: animals 16 reps 0.17 0.16 0.64 0.16 0.17 0.46

E3: letters 0.25 0.28 0.13 0.23 0.28 0.02

E4: inverted animals 0.25 0.24 0.61 0.18 0.28 0.01

E5: distractor preview 0.17 0.20 0.29 0.16 0.20 0.45

E6: target present 0.13 0.08 0.18 0.19 0.21 0.74

E7: animals set size 14 0.14 0.14 0.98 0.13 0.15 0.60

E7: animals set size 32 0.124 0.07 0.14 0.10 0.11 0.93

E8: words set size 14 0.21 0.18 0.67 N/A N/A N/A

E8: words set size 32 0.16 0.16 0.95 N/A N/A N/A

Table 4. Priming benefit as a function of search difficulty and search asymmetry. Notes: Here we have compared the priming benefit
(difference in 1/RT between target preview and unrelated preview) by separating all significant searches into two equal groups (low
RT and high RT). The column denoted by p represents the statistical significance of a paired comparison (paired t test) performed
between the easy and hard searches. Likewise, to investigate whether the priming benefit is influenced by search asymmetry, we
divided the searches for each significantly primed image pair (A, B) into those corresponding to the easy target or the hard target in
the unrelated priming condition. The priming benefit for the easy and hard targets is shown with column p denoting the statistical
significance of the comparison (paired t test). Entries corresponding to easy and hard targets in the words experiment are marked N/A
because search asymmetries are no longer meaningful for heterogeneous searches with one target and two distractors.
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Experiment 1 but inverted them to reduce their
semantic strength (Figure 4). In all these experiments,
priming produced a fixed constant offset in 1/RT and
yielded results extremely similar to those detailed above
(Tables 1 through 4).

Experiment 5: Distractor preview

Next, we asked whether previewing the distractor of
an upcoming search can also lead to a priming benefit,
and if so, whether it will also yield a fixed benefit across
all searches. To this end, we repeated Experiment 1
with a preview of the distractor instead of the target.
We obtained qualitatively similar results, i.e., a fixed
preview benefit in 1/RT (Figure 5; Tables 1 through 4).
Importantly, the preview benefit did not depend on the
statistical criterion used to detect significantly primed

pairs (Table 3) and did not depend on search difficulty

or on search asymmetry (Table 4).

To compare the magnitude of the preview benefit for

target versus distractor preview, we compared the
increase in 1/RT across all 120 searches for distractor

preview with the same searches with target preview in
Experiment 1. The benefit was significantly larger for

target compared to distractor preview (average benefit

across 120 searches: 0.05 in this experiment; 0.13 in
Experiment 1; p , 0.00005, paired t test). Although this

could, in principle, reflect differences between subjects,
it is unlikely because search times in the two

experiments in the unrelated preview conditions were
strongly correlated (r ¼ 0.94, p , 0.00005 across 120

searches).

We conclude that distractor preview also produces a

fixed increase in distinctiveness just like target preview.

Figure 3. Experiment 2 (letters). (A) Search times in the target preview plotted against search times in the unrelated preview

conditions. All conventions are as in Figure 2. (B) Same data as in panel A but replotted using reciprocal search time (1/RT).

Figure 4. Experiment 3 (inverted animals). (A) Search times for target and unrelated preview. All conventions are as in Figure 2. (B)

Same data as in panel A but replotted using reciprocal search time (1/RT).
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Experiment 6: Present/absent searches

In all preceding experiments, subjects had to indicate
the location of a target that is always present. We
therefore wondered if our results would generalize to
the more common form of visual search used in the
literature in which a target is either present or absent.
To this end we performed Experiment 6 with the target
present or absent with equal probability in each trial.
We obtained extremely similar results: There was a
fixed preview benefit in 1/RT across all searches (Figure
6; Tables 1 through 4). Importantly, the preview benefit
did not depend on the statistical criterion used to detect
significantly primed pairs (Table 3) and did not depend
on search difficulty or on search asymmetry (Table 4).

Although not the main focus of this study, we
obtained an incidental insight into target-absent
searches using this data. We note that it is meaningless

to look for a preview benefit in a target-absent search
because there is no target in the first place. However,
there could still be systematic effects of target preview:
We reasoned that, when a ‘‘target’’ is previewed, it
might take longer to confirm its absence in an
upcoming search array if it is similar to the distractors
than when it is dissimilar. Specifically, when item A is
previewed and then a search array containing Bs is
shown, we predict that the response time will be
systematically related to the search time for finding the
target A among an array of Bs in the unrelated preview
condition. Indeed, these two search times had a
significant positive correlation (r ¼ 0.72, p , 0.00005).
We conclude that confirming the absence of a
previewed target in an array of distractors is driven by
the dissimilarity between the previewed target and the
distractors.

Figure 6. Effect of target preview in a present/absent task. (A) Search times for target and unrelated preview. All conventions are as in

Figure 2. (B) Same data as in panel A but replotted using reciprocal search time (1/RT).

Figure 5. Effect of distractor preview on visual search (Experiment 4). (A) Search times for distractor and unrelated preview. All

conventions are as in Figure 2. (B) Same data as in panel A but replotted using reciprocal search time (1/RT).
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Experiment 7: Set size

We performed this experiment to investigate how
the preview benefit changes with set size. To this end,
subjects searched for oddball targets in either 14- or
32-item arrays in both target and unrelated preview
conditions. We obtained qualitatively similar results
at both set sizes: Target preview led to a fixed benefit
that appeared to be independent of set size (Figure 7;
Tables 1 through 4). Again, the preview benefit did not
depend on the statistical criterion used to detect
significantly primed pairs (Table 3) and did not
depend on search difficulty or on search asymmetry
(Table 4).

To visualize the effect of set size on searches across
varying levels of difficulty, we separated the search
times in the unrelated priming condition at set size 14
into four equal groups sorted by difficulty. For each
group, we calculated the mean search time and the
mean reciprocal search time in both the target preview
and unrelated preview conditions at each set size. The
resulting points are shown in Figure 7A and B. It can
be seen that, for each level of difficulty, a change in the
set size increases the search time in both the exact and
unrelated preview conditions, but the net benefit due to
priming remains unchanged (Figure 7B).

To visualize the priming benefit in the more
conventional RT versus set size plot, we divided the

image pairs that were benefited significantly by preview
into two groups (based on the average search times in
the unrelated preview condition with set size 14): easy
searches (n¼ 18) and hard searches (n¼ 15). We can see
that the hard searches are benefited more by target
preview, but again, the same data plotted using 1/RT
show a fixed preview benefit (Figure 7A, B).

In sum, we conclude that the target preview leads to
a fixed benefit that is independent of set size.

Experiment 8: Word versus picture preview

The preceding experiments all involved displays
containing one target and multiple identical distractors
with the target itself directly as the relevant preview.
Here we asked whether our results regarding the
preview benefit would generalize in two ways: (a)
preview benefit for a target presented as a word versus
an exact picture and (b) preview benefit for heteroge-
neous searches in which there is one target among two
types of distracters (e.g., a bird among dogs and
rhinos).

In Experiment 8, subjects searched for a target
image that was always cued using a word or the exact
image. The search display consisted of the target
image embedded among two types of distractors. We
then repeated all the analyses as before and compared

Figure 7. Effect of set size on target preview. (A) Search times in the target preview plotted against search times in the unrelated

preview conditions for 14-item searches (red) and 32-item searches (blue). Plus symbols represent object pairs that showed a main

effect of preview condition ( p , 0.05, see text). Circles represent pairs with no significant difference ( p . 0.05). Squares depict

averaged data for search pairs corresponding to quartiles of the search time in the unrelated priming condition (set size 14). Red and

blue lines indicate best-fitting straight lines to the significantly primed pairs. (B) Same data as in panel A but replotted using reciprocal

search time (1/RT). All conventions are as in panel A. The symbol D represents the average salience benefit due to preview, i.e., the

distance from the unit line. (C) Reaction time versus set size plot for the significant searches in hard (solid lines) and easy (dashed

lines) groups divided according to the sorted RTs across 120 searches in the unrelated preview condition. There were 18 hard and 15

easy significant searches.
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the picture preview condition with the word preview
condition (Tables 1 through 4). Based on previous
literature, we expected that picture preview would lead
to a stronger benefit compared to word preview.
Indeed this is what we observed: Search times for
picture preview were faster in general (Figure 8A), but
when the same data was plotted using the reciprocal of
search time, we observed a fixed preview benefit
(Figure 8B; Table 2). Importantly, the preview benefit
did not depend on the statistical criterion used to
detect significantly primed pairs (Table 3) and did not
depend on search difficulty (Table 4). The same data
plotted using the conventional RT versus set size plots
revealed that the preview benefit in terms of the
absolute change in RT was larger for harder searches
(Figure 8C). It can also be seen that previewing the
exact target image has a stronger effect compared to
previewing its word.

In sum, we conclude that target preview leads to a
fixed benefit in distinctiveness across all searches
regardless of difficulty even for heterogeneous searches
with verbal or pictorial preview.

Is the preview benefit a scaling of RT or an
offset in 1/RT?

The essential finding of this study is that previewing
a target or distractor leads to a fixed increase in 1/RT
across both easy and hard searches. We have argued
that this cannot be explained using a simple scaling of
RT because this will result in a simple scaling of 1/RT

as well. However, because these two accounts of the
data are quantitatively different, we set out to examine
these two possibilities by comparing how well they can
explain the data.

Specifically, we considered two models. Let the
search time in the target and unrelated preview
conditions be RTp and RTnp. The first model, which
we call the RT scaling model, specifies that RTp ¼ a.
RTnp, where a is a scaling factor. The second model,
which we call the 1/RT offset model, specifies that 1/
RTp ¼ 1/RTnp þ c, where c is a constant offset. Note
that these two models have exactly one free parameter,
and therefore, their residual errors can be directly
compared. We then fit the two models to the data in
Experiment 1 and plotted the predictions of both
models on a plot of RTp versus RTnp as before (Figure
9A). Across all searches with a preview benefit, the
absolute residual error in search time for the 1/RT
offset model was significantly smaller than for the RT
scaling model (Figure 9A, inset). To perform a global
comparison across all experiments, we repeated this
procedure for each experiment and combined the
absolute residual error for searches with preview benefit
across all experiments; here too the 1/RT offset model
had a smaller error (Figure 9B). To further confirm this
effect, we replotted the data again using 1/RT (Figure
9C). Here too we observed a similar pattern: The
absolute error in reciprocal search time was smaller for
the 1/RT offset model compared to the RT scaling
model for Experiment 1 (Figure 9C), and this pattern
was true even across the data for Experiments 1
through 8 put together (Figure 9D).

Figure 8. Target preview in heterogeneous search (Experiment 8). (A) Search times in the target preview plotted against search times

in the word preview conditions for 14-item searches (red) and 32-item searches (blue). Plus symbols represent object pairs that

showed a main effect of preview condition ( p , 0.05, see text). Circles represent pairs with no significant difference ( p . 0.05). Red

and blue lines indicate best-fitting straight lines to the significantly primed pairs. (B) Same data as in panel A but replotted using

reciprocal search time (1/RT). All conventions are as in panel A. (C) RT versus set size plot for the 18 hard (solid lines) and 18 easy

(dashed lines) searches divided according to the sorted RTs across 36 searches in the word preview condition.
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Thus, the relationship between search times in the
target and unrelated preview conditions is better
explained as a fixed increase in 1/RT than a scaling of
RT. We conclude that preview leads to a fixed benefit in
1/RT or distinctiveness across all searches.

Experiment 9: Simulations

In all our results, we have interpreted the reciprocal
of search time as an estimate of the underlying

distinctiveness signal in visual search and its fixed
increase due to preview as arising from a fixed increase
in the underlying distinctiveness. Here, we critically
evaluated these two interpretations using computa-
tional modeling. First, we asked whether a fixed 1/RT
increase could be explained by an additive or a
multiplicative change in the underlying accumulating
signal. This issue is not straightforward if there is a
motor delay between target selection and the motor
response. Second, we asked whether these two inter-
pretations change in a more realistic process of
stochastic accumulation toward threshold.

Figure 9. Comparing RT scaling with 1/RT offset. (A) Search RTs for the target preview condition plotted against those in the unrelated

preview conditions (black dots) with the best-fitting predictions of the RT slope model (blue) and the predictions of the 1/RT offset

model (red) for searches that are significantly benefited by preview (n¼ 46). Inset: Mean absolute error for the RT slope model (blue)

and 1/RT offset models (red). (B) Mean absolute error for the RT slope model (blue) and the 1/RT offset model (red) across all

searches with a preview benefit across Experiments 1 through 8. This was calculated by combining the mean absolute error across

experiments for each model. (C) Similar plot as in panel A but using 1/RT. (D) Similar plot as in panel B but using 1/RT, showing that

the 1/RT offset model has a smaller error regardless of whether the error is measured using RT or 1/RT.
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Can the fixed 1/RT increase be explained by an
additive or multiplicative gain?

The fixed 1/RT increase due to target preview implies
that the underlying distinctiveness or salience signal
undergoes a systematic transformation. We considered
two simple possibilities: The fixed increase in 1/RT
could arise from an additive or a multiplicative gain
applied to the intrinsic bottom-up salience signal in the
search array. These two possibilities are illustrated in
Figure 10.

In the additive gain model (Figure 10A), the bottom-
up salience signal arising from the search array itself is
increased by a fixed amount by the top-down signal
from target preview. The search RT is taken as a sum
of the time required for the net salience signal to
integrate to threshold and a fixed motor baseline delay
due to the time required to make a key-press response
after detecting the target. Thus, if the bottom-up

salience is B and the motor delay is M, the reaction
time in the no-preview condition is RTnp¼M þ 1/B.
The RT in the target preview condition is then RTp ¼
M þ 1/(B þ T), where T represents the top-down bias
due to target preview. For a fixed level of motor
baseline, we adjusted the top-down bias T to obtain a
slope of either 0.5 or 0.75 between RTp versus RTnp. A
slope of 0.75 is close to the relationship observed in
Experiment 1 between the search times for target
preview versus unrelated preview (Figure 2A). Next, as
we did with the real data, we plotted the RT in the
preview condition against the RT in the no-preview
condition for a broad range of searches (i.e., for many
values of the bottom-up salience B) for different levels
of motor baseline (M¼0 or 0.2 s) and different levels of
top-down bias (slope¼ 0.5 or 0.75). The resulting plot
(Figure 10B) shows that increasing the motor baseline
tends to reduce the effect of preview, particularly for
easy searches in which the target selection time is small.

Figure 10. Models for the fixed preview benefit (Experiment 9). (A) In the additive gain model, a bottom-up salience signal

accumulates to threshold, and a response is generated after a short motor delay (denoted by B). In a target or distractor preview

condition, the bottom-up salience signal is incremented by a fixed amount. (B) Plot of simulated RTs in the preview condition against

the unrelated preview conditions for two levels of preview benefit and two motor baselines (see text). (C) Same data as in panel B but

replotted using search salience, i.e., reciprocal of search time. (D) In the multiplicative gain model, all details are the same as in the

additive model except that the top-down bias due to preview multiplicatively increases bottom-up salience. (E–F) Same plots as in

panels B and C for the multiplicative gain model.
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This effect is more pronounced when the same data is
replotted using 1/RT (Figure 10C). For zero baseline,
as expected, the 1/RT for target preview differs by a
constant offset from the 1/RT for unrelated preview.
This offset increases for a larger preview effect.
However, with a fixed motor baseline, the 1/RT for
target preview tends to approach the 1/RT for
unrelated preview. In other words, when 1/RT is large
(i.e., for easy searches), the preview benefit should be
small because the motor baseline dominates the RT.
Thus, additive gain can explain the fixed increase in 1/
RT only if the motor delay is either zero or relatively
small compared to the target selection time.

In the multiplicative gain model (Figure 10D), the
bottom-up salience signal arising from the search array
undergoes a proportional gain change due to the top-
down signal from target preview. The search RT is
taken again as a sum of the target selection time (from
the accumulator model) plus a fixed motor delay.
Following the same conventions as before, RTnp ¼M
þ 1/B and RTp ¼M þ 1/(BT). We then plotted the
relationship between RTp and RTnp (Figure 10E) and
between 1/RTp and 1/RTnp (Figure 10F) as before for
two levels of preview benefit (slope ¼ 0.5 or 0.75) and
motor baseline (B ¼ 0 or 0.2 s). With no motor delay,
the search times in the target preview and unrelated
preview conditions are directly proportional (Figure
10E), and the 1/RT plot reveals no fixed increase due to
target preview (Figure 10F, solid lines). Instead, the
benefit of preview is larger for easy searches. This effect
is mitigated by the presence of a motor delay (Figure
10F, dashed lines), which dominates the net RT for
easy searches but still does not produce a fixed increase
in the 1/RT plot. Although it is possible that this
nonlinearity may not be observed due to noise in the
data, achieving a fixed increase in 1/RT will require a
different motor delay for each level of gain, which is
not plausible. We conclude that a multiplicative gain
change in the bottom-up salience signal cannot produce
a constant offset in 1/RT with or without a motor
baseline.

To summarize, we have found that a fixed increase in
1/RT can be observed only with an additive gain
change in the underlying salience signal but not a
multiplicative gain change. Thus, top-down factors,
such as knowledge of the target, add to bottom-up
salience rather than multiplying it.

Does 1/RT estimate the underlying salience
signal for a stochastic accumulator?

As detailed in the Introduction, for a noiseless
accumulation to threshold, 1/RT is directly propor-
tional to the underlying salience signal. However, this
may not be true in the presence of noise. To assess this

possibility, we simulated a stochastic accumulation
process toward threshold (Figure 11A). The level of the
accumulator was incremented in each time step (5 ms
each) by a fixed drift signal (i.e., the bottom-up salience
signal) and by zero-mean Gaussian noise (r¼ 0.033). A
response was recorded when the accumulator level
reached a value of one. The standard deviation of the
Gaussian noise was chosen to match the linear
relationship between mean and standard deviation
observed in the real data in Experiment 1 (rRT ¼
0.75lRT � 0.24, where rRT and lRT are the standard
deviation and mean of the observed RTs across
subjects and trials). For the unrelated preview condi-
tion, we chose a total of 120 values of bottom-up
saliences (ranging from 0.0025 to 0.01 in equal steps)
and created 72 simulated search times for each search
pair (corresponding to nine subjects with eight trials
each as in Experiment 1). For the target preview
condition, we incremented all bottom-up salience
values in the unrelated preview condition by a fixed
value of 0.00045 (this value was chosen to match the
observed slope of 0.79 between target and unrelated
priming RT in Experiment 1; see Figure 2A).

We first asked whether the reciprocal of the
simulated RT was indeed a reasonable estimate of the
underlying salience signal. A plot of these two
quantities revealed a striking correlation (r¼ 0.99, p ,
0.00005; Figure 11B). We conclude that 1/RT provides
an unbiased estimate of the underlying salience signal
even for a stochastic accumulator at least within the
range relevant to the observed data.

To investigate whether the additive increase in
bottom-up salience results in a fixed increase in 1/RT, we
plotted the data for the two preview conditions as before.
We found a strong correlation between the search times
in the two preview conditions (r¼ 0.98, p , 0.00005;
Figure 11C). But importantly, when the same data was
replotted using 1/RT, we observed a clear constant offset
(best-fitting slope¼ 0.98 with [0.94, 1.01] as the 95%
confidence interval; offset¼ 0.11 with [0.07, 0.16] as the
95% confidence interval; Figure 11D). We conclude that
a fixed increase in 1/RT due to target preview can be
observed due to an additive gain in bottom-up salience
even for a stochastic accumulator process.

General discussion

In this study, we have systematically investigated how
previewing a target or a distractor benefits visual search
across a wide variety of search conditions. Our main
finding is that preview produces larger reductions in
search time for harder searches, but when the same data
is replotted in terms of reciprocal search time (1/RT),
this reveals a fixed benefit in 1/RT across all searches
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regardless of difficulty. This is a nontrivial finding
because it cannot be explained using a simple scaling of
the search time (scaling RT is equivalent to scaling 1/RT
and thus cannot produce a constant offset in 1/RT).

We have interpreted our findings in the framework
of an accumulator model for visual search: We have
shown that 1/RT is an unbiased estimate of the
underlying salience signal and that a fixed increase in 1/
RT can be explained by an additive (but not
multiplicative) increase in the underlying salience
signal. Our results imply that top-down knowledge in
the form of target preview combines additively with
bottom-up intrinsic factors. Below, we discuss our
findings in the context of the literature.

Our study addresses a major gap in the literature on
how prior knowledge of the target influences search:
Whether the preview benefit depends on search
difficulty has never been systematically investigated in
contrast to the extensively studied topic of cue–target
relationships (Wolfe et al., 2004; Vickery et al., 2005;
Schmidt & Zelinsky, 2009, 2011; Maxfield & Zelinsky,
2012; Maxfield et al., 2014). Only a few studies have
observed that the strength of repetition priming
depends on search difficulty (Lamy et al., 2011; Meeter
& Olivers, 2014). How might search difficulty influence

the preview benefit? One possibility is that easy searches
are benefited less by preview because they are
dominated by bottom-up factors or because the
preview benefit might develop slowly in time (Lamy et
al., 2011).

This issue is complicated by the fact that there is no
clarity in the literature about how to measure the
preview benefit: Should it be the absolute reduction in
search time or the percentage reduction? If the preview
benefit is taken as the absolute reduction in RT, we have
found it to be smaller for easy searches (e.g., panel A of
Figures 2 through 8) as have others (Vickery et al., 2005;
Chen & Zelinsky, 2006; Yang & Zelinsky, 2009; Lamy et
al., 2011). But if the preview benefit is taken as the
percentage reduction in search time, then we have found
it to be the same for all searches. At this juncture, there
is no clear reason to favor one measure over the other.
However, neither measure offers any intuition about the
underlying mechanisms. They also do not explain other
aspects of the preview benefit: For instance, we have
consistently observed a nonzero intercept in the
relationship between search times in the two conditions
(panel A of Figures 2 through 8; Tables 2 and 3).

One solution to this quandary is to develop a
measure for target preview that is a natural index of the

Figure 11. Additive gain model with stochastic accumulators (Experiment 9). (A) In the stochastic accumulator model, a noisy bottom-

up salience signal accumulates until it reaches threshold at which point a response is generated. (B) Plot of 1/RT against the

magnitude of the underlying salience signal, showing that 1/RT is an excellent estimate of the salience signal. (C) Plot of simulated

search times in the preview condition against search times in the unrelated preview condition. (D) Same data as in panel C but using

search salience, i.e., reciprocal of search time.
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processes that underlie target detection in visual search.
Here, we have shown that the appropriate measure for
preview benefit is the reciprocal of search time. This
measure is based on a model for visual search with
broad empirical support from neurophysiology (Schall
et al., 2011). According to this account, viewing a
search array sets off accumulators that integrate local
salience toward a threshold. A response is made when
the net salience or evidence at a particular location
reaches threshold. The fixed preview benefit means that
previewing the target increases the net salience of the
target relative to the distractor by biasing feature
representations throughout the visual field (Carrasco,
2011). This increased salience accumulates faster
toward threshold, but the accumulation occurs for a
short time in an easy search and for longer in a hard
search, producing a bigger absolute reduction in search
time for hard searches. This interpretation explains the
data more parsimoniously and is grounded in a
physiologically plausible account of visual search. This
interpretation is also consistent with a model of guided
search in which the feature guidance signal, which
drives a diffusion process, is benefited additively by
preview (Wolfe, 2006). Our finding that bottom-up
salience is additively facilitated by top-down preview
predicts that feature attention should act additively on
target–distractor salience throughout the visual field
although this prediction is consistent with additive gain
changes due to attention the precise link between
attentional facilitation, and its effect on salience signals
in search need to be systematically investigated
(Carrasco, 2011).

We have also found that previewing the distractor
produces a fixed but weaker increase in distinctiveness
compared with previewing the target (Experiment 5).
This finding is consistent with the weaker repetition
priming observed for distractors (Watson & Hum-
phreys, 1997; Wolfe et al., 2003). These findings imply
that subjects can also suppress distractor features but
not as strongly as they can enhance target features
although this effect may become stronger with repeated
distracters (Cunningham & Egeth, 2016). More gener-
ally, our results show that, although target enhance-
ment and distractor suppression may be served by
distinct mechanisms (Khayat, 2006; Suzuki & Gottlieb,
2013; Sridharan et al., 2014), both have the same effect
on the underlying salience signal.

Conclusions

In sum, we have shown that previewing the target or
distractor of an upcoming search produces a fixed
increase in distinctiveness or salience. In other words,
the bottom-up salience of the search is additively

modulated by top-down knowledge. The notion that
these factors combine linearly is concordant with our
recent findings that bottom-up salience signals related
to target–distractor dissimilarity and distractor het-
erogeneity combine linearly (Vighneshvel & Arun,
2013) and that salience signals for object attributes
combine linearly (Pramod & Arun, 2014, 2016). Taken
together, these results indicate a general principle
whereby a variety of salience signals combine linearly
to guide visual search.

Keywords: visual search, preview, top-down, bottom-
up
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