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Abstract

Unilateral spatial neglect (USN) is one of the most common symptoms of right hemisphere damage; its classical
symptom is that patients fail to respond to information on their left side. It has been postulated that disturbance of 2
separate attentional networks relates to the occurrence of USN. However, little is known about the underlying
mechanism and neuronal substrates. In this study, we measured spontaneous neural activity by means of
magnetoencephalography in 13 patients with brain damage and 5 control subjects. To study the relationship between
functional connectivity at rest and severity of USN symptoms, we determined the imaginary coherence values
relating to the inter-hemispherical ventral and dorsal attentional networks, as well as the clinical severity of USN
using neuropsychological tests and behavioral rating scales. The present results showed that inter-hemispherical
connectivity in the ventral attentional network, especially between the left and right angular gyri, detected in the alpha
band is associated with the severity of USN symptoms. This may suggest that connectivity of inter-hemispherical
homologous regions of the ventral attentional network in the alpha band could be one of the biomarkers of attentional
network imbalance occurring in patients with USN.
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Introduction

There has been an increasing interest in understanding how
the human brain works when it is at rest. In particular, the
analysis of functional connectivity during rest and the
associated temporal correlation of brain activities in different
regions has become a popular topic of study. Abnormalities in
the interactions of network components play critical roles in
common neurological and psychiatric disorders such as
epilepsy [1], depression [2], schizophrenia [3], dementia [4],
and autism [5]. In addition, damage to specific functionally
connected networks is known to lead to distinct types of
cognitive dysfunction [6–9].

One of the most prominent symptoms of brain damage is
unilateral spatial neglect (USN), which is well known as a

common and disabling consequence of right-hemisphere
damage. It is a complex syndrome characterized by a failure to
attend to, look at, or respond to stimuli located on the side of
the body opposite to the side of the affected hemisphere.
Although a large number of studies on USN have been
published, the neuronal substrates of USN are not well
understood. USN occurs in about 25–30% of all stroke-affected
individuals [10,11]. The most frequent sites of damage are the
right temporoparietal junction [12] and the right inferior parietal
[13–15], ventral frontal [16], and superior temporal gyri [17].
However, unilateral damage to subcortical regions such as the
thalamus [18–20], striatum, internal capsule [20], putamen,
caudate nucleus, pulvinar [21], and cerebellar region [22] have
been reported to cause USN symptoms. These findings imply
that structural damage of specific focal brain regions cannot
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fully explain the neural mechanisms underlying USN, leading to
the idea that USN may be better explained by the dysfunction
of distributed cortical networks that control attention [23–25].

With the recent development of brain imaging techniques,
the neural mechanisms of USN have been examined from the
viewpoint of brain networks implicated in the control of
attention. It has been suggested that 2 attentional systems
exist in the human brain: the ventral attentional network (VAN)
and dorsal attentional network (DAN) [24–27]. The VAN
includes the inferior frontal gyrus, ventral frontal gyrus (VFG),
supramarginal gyrus (SMG), angular gyrus (AG), and superior
temporal gyrus, while the DAN includes superior frontal gyrus
(SFG), superior parietal lobule, and middle temporal gyrus. In
most cases with USN, lesions appear to cluster around a large
perisylvian network in the right hemisphere [12,23,28]. Using
diffusion tensor imaging tractography, Urabanski et al. [29]
identified that damage to clusters in the perisylvian white
matter lead to USN. He et al. [30] demonstrated that disrupted
functional connectivity in the VAN is manifested in cases of
USN, especially during the acute phase. With respect to the
DAN, it has been reported that functional connectivity between
inter-hemispheric homologous regions in the DAN, under task-
driven conditions [30,31], as well as under resting conditions
[32], is associated with USN symptoms.

The majority of studies demonstrating a relationship between
functional connectivity and USN symptoms have employed
functional magnetic resonance imaging (MRI). An important
limitation of this technique is that it measures slow fluctuations
in the blood oxygen level dependent signal, an indirect
measure of neural activity in the brain [33]. On the other hand,
electroencephalography and magnetoencephalography (MEG)
directly measure electrophysiological brain activity.
Furthermore, the high temporal resolution of
electroencephalography and MEG allow for the separation of
neuronal activity into oscillatory components that reflect distinct
biophysical properties [34]. In fact, several studies have
revealed relationships between neural oscillation and brain
function [35–37]. However, to the best of our knowledge, no
study to date has directly measured both neural activity and
functional connectivity in patients with USN. The purpose of the
present study was to 1) use MEG to measure neural activity in
patients with USN during rest and 2) evaluate the relationship
between functional connectivity and USN severity.

Materials and Methods

Subjects
Thirteen stroke patients with right-hemisphere damage

(mean age 65.1 ± 11.8 (years ± SD) in the range of 38–82
years; 7 men and 6 women) and 5 healthy volunteers (mean
age 26.0 ± 1.3 (years ± SD) in the range of 25–28 years; 3 men
and 2 women) participated in this study. The demographic and
clinical characteristics of the participants are summarized in
Table 1. All patients received standard therapy at the stroke
unit during the acute phase and individually tailored
multidisciplinary rehabilitation programs during the subacute,
recovery, and chronic phases. All were right-handed as
assessed by the Edinburgh Inventory [38]. Subjects were in

good health and had no history of neurological or psychiatric
disease. The present study was conformed to the ethical
principles of the Helsinki Declaration, and approved by the
Ethics Committee of Shinshu University and by the Ethics
Committee of Hokuto Hospital. Written informed consent was
obtained from each subject.

Clinical assessment
All subjects were evaluated by means of the following 4

neuropsychological tests: i) the Mini-Mental State Examination
scored from 0 (severe) to 30 (mild) [39], ii) the Star
Cancellation in the Behavioural Inattention Test (BIT) [40]
scored from 0 (mild) to 54 (severe), iii) the Daisy Copying (BIT)
scored from 0 (mild) to 3 (severe), iv) the Line Bisection (BIT)
scored from 0 (mild) to 9 (severe). All subjects were also
scaled on their behavioral attentional disturbance in daily living
using the Catherine Bergego Scale (CBS) scored from 0 (mild)
to 30 (severe) [41]. To confirm whether subjects exhibit USN
and to measure the severity of USN, we defined the USN index
as the total score of the Star cancellation, the Daisy Copying,
the Line Bisection, and the CBS tests, which totally ranges
from 0 (mild) to 96 (severe). To control for the impact of right
hemisphere damage per se, subjects with brain damage were
classified into USN(+) and USN(-) on the basis of the USN
index: USN(+) if the USN index is above 0, USN(-) if the index
scores 0. As shown in Table 1, USN symptoms were evident in
8 out of the 13 patients with brain damage. Subjects were
analyzed in 3 groups: 1) Normal controls; 2) USN(-) patients

Table 1. Clinical data.

     Months  USN BIT  
     from  Index 3 types CBS
Case Sex Age LQ Etiology onset MMSE (/96) (/66) (/30)
USN(+) 1 M 73 100 Inf 8 21 42 39 3
USN(+) 2 W 78 100 Inf 9 15 56 44 12
USN(+) 3 M 82 82 Inf 1 13 36 26 10
USN(+) 4 M 38 100 Hemo 2 17 29 24 5
USN(+) 5 W 79 80 Inf 4 23 35 25 10
USN(+) 6 W 65 100 Inf 4 25 12 9 3
USN(+) 7 W 63 100 Inf 3 29 16 1 15
USN(+) 8 M 71 100 Inf 1 29 5 1 4
USN(-) 1 M 56 100 Inf 1 29 0 0 0
USN(-) 2 W 60 100 Hemo 1 24 0 0 0
USN(-) 3 M 50 100 Inf 2 27 0 0 0
USN(-) 4 W 65 100 Inf 3 29 0 0 0
USN(-) 5 M 66 100 Hemo 4 27 0 0 0
Normal 1 W 25 98 - - 30 0 0 0
Normal 2 M 25 100 - - 30 0 0 0
Normal 3 M 27 100 - - 30 0 0 0
Normal 4 W 25 99 - - 30 0 0 0
Normal 5 M 28 100 - - 30 0 0 0

Inf: infarction; Hemo: hemorrhage; LQ: Laterality Quotient ; MMSE: Mini-Mental
State Examination ; BIT: Behavioural Inattention Test ; CBS: Catherine Bergego
Scale .
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with brain damage but no USN symptoms; and 3) USN(+)
patients with brain damage and USN symptoms.

Structural MRI
Imaging data were acquired on a Signa 3.0 Tesla system

(GE Healthcare). High-resolution structural images were
acquired with a three-dimensional fast spoiled gradient-
recalled-echo T1-weighted sequence (repetition time: 9.5
msec; echo time: 3.9 msec; flip angle: 13°; field of view: 240
mm; slice thickness: 1.6 mm; matrix: 288 × 288; 128 slices).
For patients with stroke, we drew lesion overlap maps from the
T1-weighted images (Figure 1). Lesion extent was determined
for each patient by selecting brain scans that showed the
greatest extent of damage and drawing the lesion borders
directly onto the original images, using the MRIcron software
[42] available online (http://www.nitrc.org/projects/mricron). All
lesion maps were double-checked by a neurologist or a
therapist trained to read brain scans.

MEG recording
Magnetic fields were measured in a 160-channel whole-

head-type gradiometer system (MEGvision PQA1160C;
Yokogawa Electric Corporation, Japan). MEG data were
sampled at 1000 Hz per channel (band pass 0.16–200 Hz and
notch 50 Hz) with the subjects in a supine position with eyes
closed for 10 minutes. During the MEG recordings, subjects
were instructed to close their eyes and reduce eye movements,
but to remain awake as much as possible. During the
recordings, the investigator and MEG technician checked the
on-line signal for visual signs of drowsiness (e.g., slow eye
movement activity) and observed the patients using a video
monitor. Each subject’s head position relative to the sensor
array was determined before and after the MEG recording.

Data analysis
General.  Data were analyzed using Matlab 7.13

(MathWorks, Natick, MA) and custom scripts for general
technical computing and source reconstruction, the FieldTrip
open source Matlab toolbox [43] (http://www.ru.nl/fcdonders/
fieldtrip) for functional connectivity analysis, component
analysis, SPM8 (Wellcome Department of Cognitive Neurology,
London, UK, http://www.fil.ion.ucl.ac.uk/spm/software/spm8/)
for spatial normalization, and Statistics toolbox 7.6
(MathWorks, Natick, MA) for statistical analysis. The SPSS
17.0 was also used for statistical analysis.

Preprocessing.  First, MEG data were subjected to principle
component analysis (PCA) and typical noise components (e.g.
magnetized metal artifacts) were removed using visual
inspection. After that, we defined trials of interest from the
continuous MEG data. Trials were defined as continuous data
segments of two-second frame length in steps of 1 second,
excluding trials with magnetic flux in any channel that
exceeded 2000 fT. The number of analyzed trials, 140 trials,
was equalized among subjects.

Region of interest and network nodes.  For functional
connectivity analysis, first, we selected 16 regions of interest
(ROIs) involved in attentional networks based on the previous
studies [24–27,30–32]: the DAN consisting both the SFG,

superior parietal lobule, and middle temporal region, and the
VAN consisting of both the VFG, the inferior frontal gyrus, the
SMG, the AG, and the superior temporal gyrus. Secondly,
these 16 ROIs were spatially normalized according to the
Montreal Neurological Institute coordinate system, and the
structural volumes of ROIs were obtained using WFU-PickAtlas
3.0.3 software (ANSIR Laboratory, Wake Forest University
School of Medicine) [44,45]. The ROI labels used were from
the automated anatomical labeling atlas of 116 segmented
structures [46]. Finally, the nodes were generated by means of
down-sampling these ROI three-dimensional images from 2-
mm to 10-mm spacing. 388 nodes in 16 ROIs were obtained.
The number and position of nodes in each ROI is summarized
in Table S1 and Figure S1, respectively.

Source-space coherence analysis.  Coherence is a widely
used representative measure, and we adopted the imaginary
part of coherence (imaginary coherence; IC) to remove the
spurious coherence caused by leakage associated with our
imaging algorithm [47,48]. IC exploits the fact that phase
similarities among time series arising from a common reference
or volume conduction occur with zero time delay. Thus, by
omitting the real component of coherence, which mostly
contains similarities with zero time lag, we removed suspect
associations. By limiting our analysis to the IC, our goal was to
reveal only true interactions between brain areas occurring with
a certain time lag [49].

Source-space coherence analysis was performed the
following procedure. First, the node locations on individual MRI
coordinates were generated by using predefined ROIs (Table
S1 and Figure S1) and the warping parameters calculated by
SPM8 with MRI-T1 template and individual MRI-T1 images.
Seconds, the time course for each node was calculated by
adaptive spatial filtering [50], using a single spherical volume
conductor model based on the individual MRI T1-image. To
avoid potential de-ranking after PCA noise rejection, we
performed the Tikonov regularization for the covariance matrix
[51,52]. Next, IC of all node combinations were calculated
using Fourier transform with Hanning window. The absolute

Figure 1.  Lesion overlap maps.  USN(+) group (A) and
USN(-) group (B). Horizontal sections through a template brain
show the frequency of damage for each voxel. The color scale
indicates the increasing frequency of overlapping lesions from
violet (n = 1) to red (n = 6).
doi: 10.1371/journal.pone.0073416.g001
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value of IC was used rather than coherency because we were
interested in the magnitude of connectivity at each voxel rather
than in the directionality of the information flow [53]. Then, we
calculated average coherence for 6 frequency bands: delta, 1–
4 Hz; theta, 4–8 Hz; alpha, 8–13 Hz; beta, 13–30 Hz; low
gamma, 30–50 Hz; and high gamma, 50–100 Hz [27,54–57].
The connectivity (that is, IC) at each frequency of interest was
estimated by averaging across all its Fisher’s Z-transformed
(arctanh(IC); the inverse hyperbolic tangent of IC) connections
[47]. Then we obtained individual subjects’ IC matrices and
grand-averaged (on Z-transformed space) IC matrices across
subjects for each group (see Figure 2). Finally, the ROI IC
values were calculated for each subject by averaging across
voxel pairs within each ROI. These ROI IC values were used
for correlation analysis between IC and USN index.

Correlation between IC and USN index.  To determine
whether functional connectivity predicts clinical severity of
USN, we performed regression analysis. In this analysis,
normal controls were excluded to reveal the influence of brain
damage on functional connectivity relating to USN symptom
more clearly.

Results

IC among groups at each frequency band
Figure 3 showed that the IC matrices among groups in the

delta and theta band were strikingly similar. For these bands,
the USN(-) group seemed to exhibit higher connectivity
between the left DAN/left VAN and between the /left/right
hemisphere than did the other 2 groups (Figure 3a, 3b).

Figure 2.  Illustration of IC matrix.  The color scale indicates magnitude of imaginary coherence (Z-transformed). Area surrounded
by green dashed line, and by pink dashed line indicates IC of left hemisphere and right hemisphere, respectively. Area surrounded
by red dashed line and by blue dashed line indicates IC of the DAN and the VAN, respectively. Yellowed areas indicate inter-
hemispherical homologous regions. SFG: superior frontal gyrus; SPL: superior parietal lobule; MT: middle temporal region; VFG:
ventral frontal gyrus; IFG: inferior frontal gyrus; SMG: supramarginal gyrus; AG: angular gyrus; STG: superior temporal gyrus.
doi: 10.1371/journal.pone.0073416.g002
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ANOVA revealed, however, that no statistical difference was
found among groups for the comparison between the left DAN
and the left VAN (F2,15 = 2.828, p > 0.1 for delta band: F2,15 =
2.914, p > 0.1 for theta band), and between left hemisphere
and right hemisphere (F2,15 = 1.407, p > 0.1 for delta band: F2,15

= 1.099, p > 0.1 for theta band). The matrices among groups in
the beta band and low-/high gamma band were also similar.
For these 3 bands, each group seemed to exhibit lower
connectivity than in other oscillatory bands (Figure 3d, 3e, 3f).
The patterns of IC maps in the alpha band seemed to be
considerably different from that of other frequency bands. Each
group exhibited different IC pattern. For normal group, IC within
right hemisphere seemed to be higher than within left
hemisphere, however, statistical analysis showed no difference
(t(8) = -1.699, p > 0.1). For the USN(-) group, although IC
within left hemisphere seemed to be higher IC than within right
hemisphere, no statistical difference was found(t(8) = -0.648, p
> 0.1). For the USN(+) group, IC within left hemisphere
seemed to be higher than within right hemisphere, however, no
statistical difference was found (t(14) = 0.740, p > 0.1) (Figure
3c).

Based on previous findings [30–32], which suggested
connectivity between inter-hemispherical homologous regions
in attentional networks, our goal was to determine whether
inter-hemispherical connectivity between homologous regions
in the DAN as well as in the VAN (e.g., left and right SFG)
contribute to USN symptoms.

For the delta band, ANOVA revealed statistically different IC
between the left and right SFG among the groups (F2,15 =
4.764, p < 0.05). Post hoc analysis confirmed that the USN(+)
group exhibited greater IC than the normal group (uncorrected
p < 0.05). The IC between the left and right VFG also showed
significantly different patterns among the groups (F2,15 = 3.964,
p < 0.05). Post hoc comparison confirmed that compared to the
normal group, the USN(+) group exhibited greater IC
(uncorrected p < 0.05). In the theta and beta bands, no
differences between inter-hemispherical homologous regions
were found among the groups. For the alpha band, there was a
significant difference between the left/right AG among groups
(F2,15 = 5.105, p < 0.05), and post hoc comparisons confirmed
that the USN(+) group showed lower IC than the USN(-) group
(uncorrected p < 0.05), not but compared to the normal group
(Figure 4a). We also compared IC between the left and right
VAN, as well as between the left and right DAN, in the alpha
band among the groups. Analysis showed a statistical
difference among the groups for the VAN (F2,87 = 5.566, p <
0.01), and post hoc comparisons confirmed that compared to
the USN(-) group, the USN(+) group showed lower IC
(uncorrected p < 0.01) but no difference was found between
the USN(+) group and the normal group (uncorrected p > 0.05)
(Figure 4b), while for the DAN, there was no statistical
difference among groups (F2,51 = 0.034, p > 0.10) (Figure 4c).
For the gamma band, ANOVA revealed a significant difference
among groups in the IC between the left and right AG in the
lower range (30–50 Hz) (F2,15 = 4.227, p < 0.05) and between
the left and right SMG in the higher range (50–100 Hz) (F2,15 =
4.404, p < 0.05). Post hoc comparisons confirmed that the
USN(+) group exhibited lower IC than the USN(-) group in both

ranges (each at uncorrected p < 0.05). We also calculated IC of
the inter-hemispherical attentional network for the low-gamma
band. Analysis revealed a statistical difference among the
groups for the VAN (F2,87 = 6.045, p < 0.01), and post hoc
comparisons confirmed that compared to the USN(-) group, the
USN(+) group showed lower IC (uncorrected p < 0.01), while
for the DAN, there was no statistical difference among groups
(F2,51 = 0.949, p > 0.10).

Correlation between IC and USN index
To determine whether the connectivity between inter-

hemispherical homologous regions in attentional networks
predicts USN severity, we performed regression analysis. For
the delta band, a significant correlation was found between the
connectivity of the left/right SFG and USN index (F(1,11) =
10.773, p = 0.007, r2 = 0.495). For the theta band, no
significant relation was found. For the alpha band, a significant
correlation was found for the left/right AG and USN index
(F(1,11) = 11.597, p = 0.006, r2 = 0.513) (Figure 5). We also
performed regression analysis for the DAN and VAN in the
alpha band, demonstrating that correlation between the VAN
and USN index showed a trend for significance (F(1,11) =
4.403, p = 0.058, r2 = 0.286), while correlation in the DAN did
not reach significant level (F(1,11) = 1.442, p = 0.255, r2 =
0.116) (Figure 5). For other frequency bands, i.e., the beta
band, the low-gamma band, and the high-gamma band, no
significant relation was found excepting the relation between
the IC of the left/right STG and USN index in the high-gamma
band (F(1,11) = 5.290, p = 0.04, r2 = 0.325).

Discussion

This is the first report demonstrating a relationship between
MEG measures of resting-state functional connectivity in
specific oscillatory bands and clinical symptoms in patients with
USN. Carter et al. [32] previously reported a relationship
between resting functional connectivity and USN symptoms, in
which inter-hemispherical functional connectivity predicted
USN symptoms. However, they did not shed light on the
relevance of their results to different frequencies of neural
oscillation. Furthermore, they did not implicate the VAN in their
findings. We have extended their results by demonstrating that
patient with USN had lower inter-hemispheric connectivity in
the alpha band for the VAN, especially the AG, and that IC
value for these regions was correlated with severity of USN.

Two attentional networks, the DAN and VAN, are thought to
be functionally heterogeneous, but to interact with each other.
The DAN is involved in shifting and maintaining attention [58],
goal-directed stimulus, and response selection [59] and
contains visuotopic maps of contralateral space [60]. The DAN
is usually intact in patients with USN [61,62]. On the other
hand, the VAN is damaged in a majority of patients with neglect
[61,62], and appears to be specialized for redirecting the DAN
to novel and behaviorally relevant stimuli [31]. The VAN is also
involved in non-spatial processes such as vigilance [63] as well
as detection [64,65]. Direct damage of ventral regions, such as
that observed in most of the patients in this study, causes a
malfunctioning of non-spatial processes and abnormal
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Figure 3.  IC matrices among groups at each frequency band.  The patterns of IC matrices in the delta (a) and theta band (b)
were similar. The matrices in the beta band (d) and low-/high-gamma (e, f) band were also similar. Unlike the IC matrices in other
frequency bands, the IC matrices in the alpha band (c) were considerably different among the groups. The color scale indicates
imaginary coherence value (Z-transformed).
doi: 10.1371/journal.pone.0073416.g003
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Figure 4.  Comparisons of IC of inter-hemispheric
attentional regions in the alpha band (8–13 Hz).  (a) In left/
right AG, the USN(+) group showed lower IC than the USN(-)
group (uncorrected p < 0.05). (b) In left/right VAN, the USN(+)
group showed lower IC than USN(-) (uncorrected p < 0.01). (c)
In left/right DAN, no statistical difference was found among the
groups.
doi: 10.1371/journal.pone.0073416.g004

interactions between the VAN and DAN. Finally, the
occurrence of inter-hemispherical imbalance contributes to
spatial neglect [24,25]. Based on these findings, the most
plausible explanation of the present results may be that
reduced connectivity through the corpus callosum between left
and right AG [66] resulted in the dysfunction of the DAN; the
impaired functioning of the DAN, in turn, interfered with
patients’ abilities to shift and maintain attention (i.e., spatial
neglect).

One of the most fascinating results of this study is that the
disturbed connectivity of the attentional network discussed
above was most striking in the alpha band. Notably, patients
with USN also showed lower inter-hemispherical connectivity of
the VAN in the low-gamma band; however, the IC values in the
low-gamma band were not correlated with USN severity. One
reason for the strength of our observation in the alpha band is
that the alpha band signal is robust during rest [53] and has the
highest signal-to-noise ratio of all the frequency bands [67]. In
addition, as demonstrated by Hinkley et al., reliability of
measuring the alpha band signal is high both within-sessions
and cross-sessions as compared to that of measuring signals
at other frequency bands [68]. Furthermore, it has been
hypothesized that the alpha band may play a role in attentional
processing [69–71], the visual network [72], and in inter-
hemispherical network balance [73]. On the other hand, it has
been reported that the gamma band may play a role in network
modulation in the active condition [74,75], whereas slow
waves, including those in the delta and theta range, may be
followed by brain damage itself [76,77]. Accordingly, we can
infer that the alpha band IC between the left and right VAN,
especially in the AG, could be one of the biomarkers of
attentional network imbalance occurring in patients with USN.

Our results are also consistent with previous findings that
spontaneous neural activity at rest predicts clinical variables
such as epilepsy [1], depression [2], schizophrenia [3],
dementia [4], and autism [5]. Resting functional connectivity
relates not only to symptoms, but also to task performance
dedicated to a given cognitive function [78–80]. As pointed out
in Rosazza et al. [81], resting neural activity consumes the
majority of brain energy [82] and supports neural signaling
processes subserving the integration of information originating
from internal as well as external phenomena. With respect to
the present results, a change in baseline communication, in the
left/right VAN, especially in the alpha band, may significantly
affect the way these regions are recruited and how they
communicate in a range of situations.

Although the small size of our subject cohort may limit the
statistical power of our results, we feel confident in concluding
that disturbed alpha band left/right VAN connectivity, especially
in the AG, is correlated with severity of USN symptoms.
However, considering that individual variations of functional
network in healthy subjects [25] and of brain activities in
patients with USN [83], it is obvious that we should collect data
from additional subjects with and without USN as well as age-
matched healthy controls to elaborate present findings. Another
limitation of this study is that we did not focus on the networks
other than attentional networks. Therefore, we could not
specify the network unrelated to attentional control as well as

Functional Connectivity and Spatial Neglect

PLOS ONE | www.plosone.org 7 September 2013 | Volume 8 | Issue 9 | e73416



the relationship between these networks. Further study should
address issues of interactions across bands, power analysis

[35], non-stationary analysis [27], and network changes after
treatment [84] with larger populations of subjects.

Figure 5.  Correlations between imaginary coherence and USN index in the alpha band (8–13 Hz).  Scatter plot of data for 13
patients with brain damage. (a) A significant correlation with IC of the left/right AG and USN index was found (F(1,11) = 11.597, p =
0.006, r2 = 0.513). (b) A correlation with IC of the left/right VAN and USN index showed a trend for significance (F(1,11) = 4.403, p =
0.058, r2 = 0.286). (c) but no significance was found in the left/right DAN (F(1,11) = 1.442, p = 0.255, r2 = 0.116). The solid line and
dotted line represents regression line, 95% confidence intervals for the line of best fit, respectively.
doi: 10.1371/journal.pone.0073416.g005
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Supporting Information

Figure S1.  Representations of position of 388 nodes. (a)
top view, (b) front view, (c) back view, (d) left side view, (e)
right side view. Light-blued dots represent SFG (superior
frontal gyrus), dark-blue represents SPL (superior parietal
lobule), blue represents MT (middle temporal region). Red,
orange, pink, yellow, and green represents VFG (ventral frontal
gyrus), IFG (inferior frontal gyrus), AG (angular gyrus), SMG
(supramarginal gyrus), STG (superior temporal gyrus),
respectively.
(TIF)

Table S1.  The number of nodes (voxels) in each ROI. SFG:
superior frontal gyrus; SPL: superior parietal lobule; MT: middle
temporal region; VFG: ventral frontal gyrus; IFG: inferior frontal

gyrus; SMG: supramarginal gyrus; AG: angular gyrus; STG:
superior temporal gyrus.
(DOCX)
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