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Abstract: Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission
risk varies geographically. Modelling its geographic characteristics is essential for identifying
the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving
as an important tool in providing and assessing a variety of potential climatic/environmental
malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven
climatic/environmental variables in determining malaria transmission in SSA. A systematic search
on Google Scholar and the Institute for Scientific Information (ISI) Web of KnowledgeSM databases
(PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed
articles that studied the relationship between remotely-sensed climatic variable(s) and malaria
epidemiological data in the SSA sub-regions. The relationship between malaria disease and
different climatic/environmental proxies was examined using different statistical methods. Across
the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the
National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution
Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors
was most frequently returned as a statistically-significant variable to model both spatial and
temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic
regression and Poisson regression) were the most frequently-employed methods of statistical analysis
in determining malaria transmission predictors in East, Southern and West Africa. By contrast,
multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining
reliable malaria transmission predictors and climatic/environmental monitoring variables would
require a tailored approach that will have cognizance of the geographical/climatic setting, the stage
of malaria elimination continuum, the characteristics of the RS variables and the analytical approach,
which in turn, would support the channeling of intervention resources sustainably.

Keywords: remote sensing; climatic/environmental variables; predictors; epidemiology;
Sub-Saharan Africa

1. Introduction

Malaria remains the number one killer of all infectious diseases in Sub-Saharan Africa (SSA) [1].
In 2013, an estimated 198 million malaria cases and 584,000 malaria deaths were recorded. About 90%
of the malaria deaths recorded were from the SSA region [2]. Out of all known malaria parasites, viz.
Plasmodium falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi [2], P. falciparum is the most prevalent
of the human malaria parasites in SSA, while the P. vivax malaria parasite is more common across the
Horn of Africa [3]. The spatial and temporal variation of malaria disease is known to be influenced by
socio-economic/human, ecological/environmental and climatic factors [4,5]. The climatic variables
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suggested to possess a direct and indirect influence on malaria transmission are rainfall, temperature,
altitude and humidity [6–12]. Rainfall expands mosquito breeding habitats, which in turn, increases
its population densities and risk of malaria transmission [13]. Nevertheless, excessive rainfall is
also capable of flushing the breeding sites [14]. The completion of the malaria life cycle is suited to
temperatures between 15 ˝C and 40 ˝C and between 16 ˝C and 33 ˝C for the development and survival
of mosquitoes [13,15]. Regarding bite rates and feeding habits, at 17 ˝C, mosquitoes take a human
blood meal every four days, while at 25 ˝C, they feed on humans every two days [13]. Altitude has an
indirect relationship with temperature, and as such, areas above 1500 m in Africa have little or no risk
of malaria transmission [16]. Relative humidity above 60% does not substantially affect the longevity
of mosquitoes, but relative humidity lower than 10% results in death within hours [17], while malaria
parasites develop between 55% and 80% humidity [18]. The aforementioned climatic variables have
been shown to be important malaria transmission indicators that can be used to determine and predict
the spatial and temporal distribution of the disease. Consequently, this can guide malaria control
managers in decision and policy making in distributing cost-effective intervention resources in time
and space [19].

There has been a wide interest in the development of reliable malaria risk maps, forecast models or
integrated malaria early warning systems based on the combination of historical malaria case data and
selected climatic/environmental variables [6,8–12,20] so that intervention resources can be channeled
before an epidemic occurs [19]. This further indicates the importance of acquiring and utilizing historic
climatic variables to adequately study and understand the role they play in the temporal and spatial
heterogeneity of malaria. Historical climatic variables obtained from meteorological stations have
proven to be vital in identifying and modelling malaria transmission [21]. However, limited numbers of
meteorological stations, which are additionally located far apart, and malfunctioning of meteorological
station resources make it challenging to obtain historical and spatially-continuous observations of
climatic/environmental variables on a wider geographical scale in SSA [22]. Therefore, the need to
search for and acquire alternative, indirect or proxy data from remote sensing (RS) is essential [20,22].

The emergence of RS satellites provided a wide array of environmental variables at different
spatial and temporal scales [23–28], which then created an avenue to increase our understanding of
the association between malaria disease and a variety of environmental/climatic variables [4,29,30].
Detailed assessment, evaluation and understanding of this technology in relation to malaria is
needed to adequately harness its potential, which in turn, would enhance spatial risk modelling
and identification of reliable malaria transmission predictors. Therefore, the aim of this review
is to appraise the utilization and applications of RS technology and to discuss its contribution in
enhancing the understanding of malaria transmission dynamics in SSA with a focus on RS-driven
climatic/environmental variables. This paper will serve as a framework for health practitioners and
researchers aiming to identify relevant climatic/environmental variables that are highly related to
malaria in particular localities and regions in SSA.

The paper is organized in the following main sections. Initially, we described how the reviewed
articles were searched and retrieved. Secondly, we illustrated the malaria risk stratification of the
study region, and thirdly, we summarized studies by region (East, Southern, West and Central Africa)
that used RS-derived variables in modelling malaria transmission and risk. Finally, we discussed the
relevance and implication of the RS-derived variables peculiar to regions and the possible rationale
behind their usage. Furthermore, we suggested ways in which the usage of RS-derived variables can
be maximized in determining reliable malaria transmission predictors.

2. Materials and Methods

2.1. Search Strategy

A systematic search to retrieve relevant literature and referenced articles began in September 2014,
and the final search was conducted in March 2015. The search was aimed at identifying epidemiological
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studies in SSA that utilized RS-derived climatic/environmental variables in mapping, modeling or
forecasting malaria by carrying out a search on Google Scholar and the ISI Web of KnowledgeSM

databases: PubMed, Web of Science and ScienceDirect. The database queries were formulated using
Boolean operators to combine two or more keywords. The keywords were identified and selected from
public and environmental health studies, epidemiological studies and subject headings. The keywords
were “remote sensing”, “geographical information system”, “Earth observation”, “spatial techniques”,
“geo-spatial analysis”, “geo-spatial techniques”, “malaria”, “forecasting”, “modelling”, “mapping”,
“prediction”, “epidemic”, “climate change”, “climatic factors”, “climatic variables”, “environmental
proxies”, “temperature”, “rainfall”, “normalized difference vegetation index (NDVI)”, “humidity”,
“EL Nino Southern Oscillation”, “West Africa”, “Central Africa”, “East Africa”, “Southern Africa”
and “Sub-Saharan Africa”. Titles and abstracts were initially examined to determine their relevance.
Thereafter, the full texts were downloaded to ascertain if they met the selection criteria listed below.
Finally, the reference list of each relevant article was assessed to identify other relevant article(s). The
search strategy, screening and selection processes are illustrated in Figure 1.
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Figure 1. Flow chart of publication screening and selection processes.

2.2. Selection Criteria

The selection criteria involved post hoc inclusion and exclusion criteria suggested by Arksey and
O’Malley [31] and Levac et al. [32]. They were developed based on familiarity with the subject matter
through reading articles and reviews around malaria epidemiology. The authors discussed and agreed
on the study inclusion and exclusion criteria at the beginning of the selection process, and various
stages of the conceptual review stages and the selection criteria were refined until the final selection
criteria were accepted. This enables us to eliminate studies that were outside the scope of our study
aim and ensured consistency.

The articles finally selected were:
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1. Original peer-reviewed articles published in English between 1 January 2000 and 31 December
2014. The search period was selected because since 2000, robust appreciation and application
of RS in malaria studies occurred, which can be attributed to the easy access of RS data and the
emergence of improved remote sensing sensors. Furthermore, this period coincides with the
availability of MODIS data [33].

2. Articles that applied RS-derived climatic/environmental variables and/or climatic proxy
indicators in evaluating malaria risk, distribution, transmission and mapping.

3. Studies that assessed the impact of inter-annual climate variability on malaria transmission.
Studies in which climate change projections were used to estimate future malaria distribution
were excluded.

4. Publications that used malaria incidence and/or prevalence data in their epidemiological study
design (descriptive/explorative, spatial and/or temporal analysis and time series analysis).
Studies that used only entomological data were excluded.

5. Studies conducted in Sub-Saharan Africa. Continental-wide studies were excluded because many
African countries have made significant progress in fighting malaria, and malaria is clustered in
small areas.

2.3. Description of the Study Region

SSA can be sub-divided into four regions (East, West, Central and Southern Africa) as shown
in Figure 2. Malaria is endemic in a substantial part of SSA where the climate supports 20%–100%
suitability (Figure 3) [34]. At the fringes of this region, there are areas where malaria rarely occurs
because the climate is not always suitable. Nevertheless, variation in weather or climatic conditions
could instigate an epidemic. The changes in climatic conditions are normally due to higher than
normal rainfall and temperature in desert and highland fringes, respectively [34,35].
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Malaria stratification in East Africa varies notably and can be attributed to the varying and
complex climate associated with the region [36]. The climate of the endemic parts of East Africa favors
a seasonal and perennial transmission of malaria, while in substantial parts of Kenya and parts of the
Horn of Africa, malaria transmission is strongly seasonally prone to epidemics (1–3 months) owing
to low rainfall and inter-annual variability [34]. The White Nile River, Blue Nile River, Lake Victoria,
Lake Albert, Lake Tanganyika and Lake Malawi, coupled with the varying climate, are significant risk
factors for endemic and epidemic malaria in the region.

Monthly temperature variations, which peak in the rainy season [37], coupled with rainfall
that increases towards the Equator, may be responsible for the highly seasonal and varied malaria
suitability in Southern Africa [36]. The climate in the malaria-free areas does not totally support
malaria endemicity. However, environmental factors, such as the Orange River, which runs through
Lesotho, Namibia and South Africa, and the Zambezi River in Botswana, can potentially support
malaria epidemicity, while the parts of Southern Africa endemic to malaria are supported by suitable
climate and water bodies (Limpopo and Zambezi Rivers) that favor seasonal malaria transmission [34].

The endemicity of malaria spans across West Africa substantially, excluding only the desert and
semi-desert areas. The region is characterized by the Sahelian, Sudanian, tropical humid and equatorial
climates. In this region, temperature increases northwards while rainfall increases southwards [36].
The region supports seasonal (4–6 months) and perennial (7–12 months) malaria transmission [34]. In
addition, major water bodies like rivers (Benue, Niger, Volta and Senegal) and lakes (Volta and Chad)
can sustain malaria transmission in the region.

Central Africa is significantly endemic to malaria. Suitable climatic conditions (relatively high
and reliable rainfall over the coastal and central parts and a temperature range between 19 ˝C and
28 ˝C) [36] coupled with the Congo River, Lake Tanganyika and Lake Albert, contributes to the
perennial transmission of malaria experienced in the region [34].
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3. Results

Initially, 739 related publications were identified. After going through them thoroughly and
carefully according to the search strategy and selection criteria, 35 articles were finally selected. From
the selected articles, most of the study sites were located in East Africa (14 studies; Table 1), followed by
Southern Africa (11 studies; Table 2) and then West Africa (nine studies; Table 3). The only study that
covered the Central Africa region utilized datasets covering both Central and West Africa (Table 4). The
study area(s), malaria case data, climatic variables and their sources, the statistical methods used and
the main findings are provided for each study in Tables 1–4, while Table 5 provides an overview of the
RS variables commonly used in SSA, and Table 6 provides the characteristics of the satellites/sensors
used in the selected articles.

3.1. East Africa

In East Africa, country-specific studies took place mainly in Kenya (four studies), Eritrea (two
studies) and Somalia (two studies). Other study locations were Ethiopia, Burundi and Tanzania. Three
cross-national studies were identified. One study used data that cuts across Kenya, Ethiopia and
Uganda [38], while two other studies used national data from Kenya, Uganda and Tanzania [39,40]
(Table 1). The East African countries identified in Table 1 are currently in the control phase of
the World Health Organisation (WHO) malaria elimination continuum [41]. Studies conducted
in the region mainly used National Oceanic and Atmospheric Administration (NOAA) Advanced
Very High Resolution Radiometer (AVHRR) imagery as a source of proxy climatic/environmental
variables for modelling malaria transmission both at the country and cross-national level. NDVI
was observed to be the most assessed RS-derived variable and also the most statistically-significant
malaria transmission predictor across East Africa. In the province of Karuzi in Burundi,
Gomez-Elipe et al. [42] used NDVI extracted from NOAA-AVHRR at an 8 km ˆ 8 km spatial resolution,
while rainfall and maximum and minimum temperatures were obtained from the metrological stations.
After employing the autoregressive integrated moving average (ARIMA) model, NDVI, rainfall and
maximum temperature were observed to correlate with malaria cases, and hence, it constituted the
best predicting model (R2

adj = 82%, p < 0.0001 and 93% predicting accuracy). Ceccato et al. [43] used
Spearman’s and Pearson’s rank correlations to assess the relationship between malaria incidence
and climate/environmental variables anomalies (to eliminate the similar seasonal pattern possessed
by both dependent and independent variables) in Eritrea. The climatic/environmental variables
used by these authors included NDVI from NOAA-AVHRR at 8 km ˆ 8 km spatial resolution,
rainfall estimates (RFE) from Climate Prediction Centre Merged Analysis of Precipitation (CMAP) at a
2.5˝ ˆ 2.5˝ grid and rainfall data from metrological stations.
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Table 1. Overview of studies that used RS-derived climatic variables and malaria epidemiological data in East Africa.

Reference(s) Study Area(s)
Malaria

Epidemiological
Data

Climatic/Environmental Data Gotten
via RS Technology Environmental/Climatic

Data from Other
Sources

Statistical
Method(s)

Main Findings
Climatic/Environmental

Data
Source(s) of

RS Data

[44] Kenya: Western
Kenya

Monthly inpatient
confirmed cases

Multivariate El Nino
Southern Oscillation

Index (MENSOI)
NOAA

Monthly rainfall,
mean monthly
temperature

Time-series
technique of spectral

density analysis
(SDA)

MENSOI did not influence
teleconnection with monthly
malaria incidence.

[39]
Kenya Historic malaria

distribution maps

NDVI, MIR, LST NOAA-AVH R,
Meteosat,

USGS-DEM
-

Temporal Fourier
analysis (TFA),

discriminant analysis

LST was noted to be the best predictor
of malaria transmission intensity.
NDVI and CCD were identified as
secondary predictors of transmission
intensity. Altitude significantly
improved the predictions.

Uganda CCD,
Tanzania altitude

[45]
Kenya: Kisii Central,
Gucha, Nandi, and

Kericho

Malaria cases
(outpatients) RFE USGS Seasonal climate

forecast

WHO quartile,
Cullen and

cumulative sum
(C-SUM) epidemic
detection methods

Rainfall was able to forecast an
epidemic one month in advance, but
the outcome of seasonal climate
forecast was erroneous
and unreliable.

[24]
Kenya: Kisii Central,
Gucha, Nandi, and

Kericho

Malaria cases
(outpatients) RFE USGS Seasonal climate

forecast

WHO quartile,
Cullen and C-SUM
epidemic detection

methods

Seasonal climate forecasts did not
predict the heavy rainfall. Rainfall
estimates gave timely and reliable
early warning, but monthly
surveillance of malaria cases gave no
effective warning.

[38]
Kenya Malaria cases

(outpatients)

Maximum
temperature,

minimum
temperature and
monthly rainfall

National Climate
data Centre, NOAA

-
t-test, WHO Cullen
epidemic detection
methods, forward

stepwise regression

Malaria incidence was significantly
associated with monthly rainfall and
maximum and minimum temperature
at a time lag of 1–2 and 2–5 months,
respectively.Ethiopia

Uganda

[40]
Kenya

Uganda
Tanzania

Malariometric data
from Mapping
Malaria Risk

in Africa
(MARA/ARMA)

(children between 0
and 15 years)

NDVI, MIR, LST
CCD,

altitude,
land cover

NOAA-AVHRR,
Meteosat,

USGS-DEM,
Landsat TM

TFA, discriminant
analysis

NDVI, CCD and water body area
were associated with malaria in the
dry Ecozone 1. In Ecozone 2 where it
was assumed that water was not
generally limiting, LST and MIR were
most abundant among the predictor
variables selected.
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Table 1. Cont.

Reference(s) Study Area(s)
Malaria

Epidemiological
Data

Climatic/Environmental Data Gotten
via RS Technology Environmental/Climatic

Data from Other
Sources

Statistical
Method(s)

Main Findings
Climatic/Environmental

Data
Source(s) of

RS Data

[43] Eritrea Monthly clinical
malaria cases RFE, NDVI CMAP,

NOAA-AVHRR
Interpolated rainfall

gauge data

Spearman and
Pearson rank
correlations,

principal component
analysis (PCA),

non-hierarchical
clustering analysis.

NDVI anomalies were highly
correlated with malaria incidence
anomalies, particularly in the
semi-arid north of the country and
along the northern Red Sea coast,
which is a highly epidemic-prone
area. CMAP rainfall correlated with
malaria incidence anomalies, with a
lead time of 2–3 months; while
weather station rainfall correlated
with malaria anomalies with a lag of
2 months.

[42] Burundi: Karuzi
Monthly inpatient

confirmed and
unconfirmed cases

NDVI AVHRR-NOAA
Rainfall, minimum

and maximum
temperature

ARIMA

NDVI, rainfall, mean maximum
temperature and number of cases
constituted the formation of the best
predicting model (R2

adj = 82%,
p < 0.0001 and 93% forecasting
accuracy in the range ˘4 cases per
100 inhabitants). NDVI, rainfall and
maximum temperature were noted to
correlate with malaria cases.

[25] Eritrea Monthly clinical
malaria cases RFE, NDVI CMAP

NOAA-AVHRR Regression analysis

The Poisson regression analysis
showed that CMAP rainfall estimates
were significantly associated with
malaria with a lead time of 2–3
months in Gash Barka. NDVI showed
a similar relationship in Anseba.

[46] Somalia
Survey of

P. falciparum parasite
rate (PfPR)

EVI MODIS

Precipitation,
temperature,
distance to

permanent water
bodies

Logistic regression
models, kriging,

Bayesian binomial
generalized linear

geostatistical models

The non-spatial bivariate logistic
regression analysis showed that EVI,
precipitation, maximum and
minimum temperature and distance
to water were highly significantly
associated with PfPR. After
employing the above covariates in the
multivariate Bayesian geostatistical
model, only temperature and
precipitation remained significant
(odds 95% confidence interval (CI)) at
the southern part of Somalia.
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Table 1. Cont.

Reference(s) Study Area(s)
Malaria

Epidemiological
Data

Climatic/Environmental Data Gotten
via RS Technology Environmental/Climatic

Data from Other
Sources

Statistical
Method(s)

Main Findings
Climatic/Environmental

Data
Source(s) of

RS Data

[47] Kenya: Nandi and
Kisii

Confirmed and
unconfirmed,

monthly inpatient
and outpatient cases

Dipole mode index
(DMI), El

Nino-Southern
Oscillation (ENSO)
index Nino 3 region

(NINO3)

NOAA Rainfall

Time series
regression, Poisson
generalized linear

model (GLM),
Pearson’s correlation

No strong association was found
between NINO3 and the number of
malaria cases after adjusting for the
effect of DMI. Malaria cases increased
by 3.4%–17.9% for each 0.1 increase
above a DMI threshold value lagged
at 3–4 months. Malaria cases
increased by 1.4%–10.7% for each
10-mm increase in monthly rainfall
lagged at 1–3 months.

[48] Tanzania

Survey of confirmed
malaria cases among
children less than 5

years old

LST, NDVI, altitude MODIS
DEM-USGS

Rainfall, permanent
water bodies

Multivariate logistic
regression, Bayesian

kriging

The bivariate analyses showed that
altitude was negatively associated
with malaria risk at the 5%
significance level, indicating that
children at above 1500 m had a lower
risk of malaria. Rainfall, NDVI, day
and night LST were positively
associated with parasitemia risk.

[20] Ethiopia: Amhara
region

Monthly confirmed
outpatients cases

LST, NDVI,
enhanced vegetation
index (EVI), actual
evapotranspiration

(ETa), RFE

MODIS
TRMM, NASA, and
the Japan Aerospace
Exploration Agency

(JAXA)

Seasonal
autoregressive

integrated moving
average (SARIMA)

RFE, EVI, LST and ETa served as
suitable malaria predictor as they
improved the model fit, and they
revealed a lagged positive association
with malaria cases. ETa, which was
utilized in malaria epidemiological
study for the first time, showed a
significant positive correlation with
malaria at lags from 1–3 months in 3
of the 12 sites studied. EVI had a
3-month lag at 3 sites, while rainfall
lagged by 1–3 months at 5 sites. LST
exhibited a positive association
lagged by 1–6 month at 6 sites.

[49] Somalia
Survey of PfPR data
among children of 2
to less than 10 years

EVI MODIS

Annual mean
precipitation,
temperature

suitability index
(TSI), distance to

larva breeding sites.

Linear regression,
Space-time

model-based
geostatistical (MBG)

method

The inclusion of 1 km2 MODIS EVI
(odds ratio (OR) = 0.81,
95% CI = 0.19–1.44, p-value = 0.011)
and other covariates (precipitation,
floodplains, distance to main water
bodies) in the analysis served as the
best predictor for PfPR.
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Table 2. Overview of studies that used RS-derived climatic variables and malaria epidemiological data in Southern Africa.

Reference(s) Study Area(s)
Malaria

Epidemiological
Data

Climatic/Environmental Data Obtained via
RS Technology

Environmental/Climatic
Data from Other

Sources

Statistical
Method(s)

Main Findings
Climatic/Environmental

Data
Source(s) of RS

Data

[50] Zimbabwe

Monthly confirmed
and unconfirmed

cases (children less
than 5 years old)

NDVI NOAA-AVHRR

Rainfall, maximum
temperature,

minimum
temperature, vapor

pressure

Bayesian Poisson
model

Vapor pressure, rainfall, mean
monthly (28–32 ˝C) and maximum
temperature (24–28 ˝C), showed a
significant positive correlation with
malaria incidence, while NDVI, high
monthly maximum and minimum
temperatures showed a negative
association.

[51] Botswana Confirmed malaria
incidence data

RFE, sea surface
temperature (SST) CMAP

Stepwise regression,
Spearman’s rank
order, Pearson’s
product moment

correlation,
quadratic test,

logistic regression,
Mann–Whitney

U-tests

Negative anomalies of
December–January SSTs were
significantly associated with
December–January rainfall estimates
(Pearson’s R = ´0.55 (´0.76 to ´0.22)
and Spearman’s R = ´0.59 (´0.81 to
´0.18)), as well as with the
standardized malaria incidence
anomalies and accounted for nearly
25% of the inter-annual variance in
malaria incidence.

[52] Zimbabwe

Annual confirmed
and unconfirmed

malaria case
(children less than

5 years old)

NDVI NOAA-AVHRR
(NASA)

Rainfall, vapor
pressure, mean

temperature,
maximum

temperature,
minimum

temperature

Markham’s
seasonality index,
Negative binomial
regression analysis,
Bayesian negative
binomial models

In the bivariate analysis NDVI, vapor
pressure, rainfall, average monthly
(28 ˝C–32 ˝C) and maximum
(24 ˝C–29 ˝C) temperature range
revealed a significant positive
correlation (p < 0.001) with malaria
incidence. After employing the
spatiotemporal model, NDVI became
insignificant.

[53] Botswana Confirmed malaria
incidence data RFE CMAP SST

Probabilistic
prediction,

Kolmogorov–Smirnov
test, quadratic test

Higher than expected malaria years
were associated with above-average
rainfall, while the lowest malaria
years were associated with below
average rainfall.

[54] Botswana

Malaria prevalence
data (children
between 1 and
14 years age)

NDVI, RFE NOAA-AVHRR,
CMAP

Elevation, surface
water land cover,

temperature vapor
pressure

Univariate logistic
regression analysis,
stepwise bootstrap

method

RFE (OR = 2.01, 95% CI = 1.47–2.70),
annual mean temperature (OR = 5.75,
95% CI = 4.14–8.08) and elevation
(OR = 1.82, 95% CI = 1.49–2.22) were
significantly associated with malaria
prevalence after allowing for spatial
correlation.



Int. J. Environ. Res. Public Health 2016, 13, 584 11 of 29

Table 2. Cont.

Reference(s) Study Area(s)
Malaria

Epidemiological
Data

Climatic/Environmental Data Obtained via
RS Technology

Environmental/Climatic
Data from Other

Sources

Statistical
Method(s)

Main Findings
Climatic/Environmental

Data
Source(s) of RS

Data

[28] Angola

Survey of confirmed
malaria cases

(children less than
5 years old)

Day LST, night LST,
NDVI, altitude MODIS, USGS-DEM Rainfall

Bayesian logistic
regression, Bayesian

kriging

NDVI (95% CI = 6.28, 17.94;
OR = 10.62) and rainfall
(95% CI = 6.00, 19.43; OR = 10.80)
showed a significantly positive
relationship with malaria incidence
after carrying out a bivariate analysis.

[55] Zambia

Survey of confirmed
malaria cases among

children less than
5 years old

Day LST, night LST,
NDVI, land cover,

altitude
MODIS, USGS-DEM

RFE, water bodies
(lakes, rivers and

wetlands)

Lag time analysis,
bivariate and

multiple
geostatistical logistic
regression analysis,

Bayesian kriging

NDVI, night LST at 1-km2 spatial
resolution and rainfall within the last
2.7 months showed positive
significant association, while day LST
reflected a significant negative
relationship.

[56] Namibia: Northern
Namibia

Monthly confirmed
malaria cases EVI, precipitation

MODIS,
TRMM-NASA and

JAXA

Temperature
suitability index

(TSI)

Non-spatial Poisson
regression, Bayesian

spatio-temporal
zero-inflated
conditional

autoregressive (CAR)
model, zero-Inflated
Poisson (ZIP) model

Initially, the univariate non-spatial
regression analysis indicated that the
EVI (coefficient of regression,
95% CI: 6.55, 4.25–8.87, p < 0.001), the
temperature suitability index
acquired from the Malaria Atlas
project (7.57, 5.34–9.96, p < 0.001) and
precipitation (0.02, 0.01–0.03,
p = 0.002) were significant predictors.
However, after employing the best
performing predictive model (the
multivariate model), only EVI
(coefficient of regression, 95% CI:
14.29, 9.24–19.42, p < 0.001) was
positively correlated.
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Table 2. Cont.

Reference(s) Study Area(s)
Malaria

Epidemiological
Data

Climatic/Environmental Data Obtained via
RS Technology

Environmental/Climatic
Data from Other

Sources

Statistical
Method(s)

Main Findings
Climatic/Environmental

Data
Source(s) of RS

Data

[57] Swaziland

Monthly confirmed
malaria cases

(imported and
locally-acquired)

NDVI, NDWI,
elevation, TWI

Landsat-7 ETM+,
SRTM

Temperature, rainfall,
distance to nearest

water body

Satterthwaite t-tests,
logistic regression

mixed model,
random forest

Case households during the high
transmission season tended to be
located in areas of lower elevation,
closer to bodies of water, in more
sparsely-populated areas, with lower
rainfall and warmer temperatures
and closer to imported cases than
random background points (all
p < 0.001). In relation to model
accuracy, NDWI was the most
important RS-derived variable
followed by NDVI and, lastly, TWI.

[58] Malawi
Monthly confirmed
and unconfirmed

cases

Precipitation,
altitude

NOAA Climate
Prediction Centre

SRTM
temperature

Negative binomial
generalized linear

model (GLM),
generalized linear

mixed model
(GLMM), Kernel

density

The negative binomial with only fixed
effects was used to determine the best
time lags between climatic variables
and malaria. It showed that at the
0.05 significance level, precipitation
and temperature were statistically
significant at Lag 1–3. The maximum
relative malaria risk is observed to be
the maximum temperature of 28 ˝C
and precipitation of 6.24 mm¨ day´1.

[26] Zambia: Southern
Province

Weekly confirmed
malaria cases

Rainfall, NDVI, DWP,
LST, elevation

TAMSAT, MODIS,
ASTER -

Kruskal-Wallis tests,
Ljung–Box Q

statistics, Kriging,
ARIMAX

NDVI, DWP and night LST were the
highly significant predictors at the
high and low malaria transmission
malaria zones partitioned in the
study area.
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Table 3. Overview of studies that used RS-derived climatic variables and malaria epidemiological data in West Africa.

Reference(s) Study Area(s)
Malaria

Epidemiological
Data

Climatic/Environmental Data Gotten via RS
Technology

Environmental/Climatic
Data from Other

Sources

Statistical
Method(s)

Main Findings
Climatic/Environmental

Data
Source(s) of RS

Data

[59] Mali

Malaria prevalence
data extracted from
the MARA/ARMA

database

NDVI NOAA-AVHRR

Rainfall, average
maximum

temperature, average
minimum

temperature,
distance to the

nearest water body

Logistic regression
analysis, kriging

Mean NDVI from June–November
(wet season), mean maximum
temperature from March–May,
months with more than 60 mm of
rainfall and distance to water bodies
were the significant independent
variables for predicting
malaria prevalence.

[60] Mali

Malaria prevalence
data extracted from
the MARA/ARMA

database

NDVI NOAA/NASA-AVHRR

Temperature,
duration of rainy

season, distance to
water

Garki mode,
Bayesian models and

kriging

During the raining season, NDVI and
temperature had no statistical
relationship with entomological
inoculation rate (EIR). Distance to
water was significantly related to
transmission intensity, indicating
high transmission in the areas within
4 km of the water source.

[27] Mali

Malaria prevalence
data from the

MARA/ARMA
database (children

between 1 and
10 years old)

NDVI NASA-AVHRR
Temperature, rainfall,
water bodies, season

length

Bayesian logistic
regression, Bayesian

non-stationary
model, Bayesian

kriging

The non-stationary model showed
that NDVI and minimum
temperature had a positive statistical
relationship with malaria risk, awhile
rainfall had a negative
statistical relationship.

[61] Côte d’Ivoire: Man

Confirmed
P. falciparum survey
in children between

6 and 16 years

NDVI, LST, RFE MODIS-USGS
Meteosat 7

Distance to the
nearest river

Bivariate logistic
regression models

In bivariate non-spatial models,
NDVI, RFE and distance to rivers,
were significantly associated with a
P. falciparum infection. However, after
employing the spatial correlation,
NDVI showed only a ‘borderline’
significance with P. falciparum
prevalence.

[23] Mali: Bancoumana

Confirmed
P. falciparum survey
in children between

0 and 12 years

NDVI NOAA-AVHRR ARIMA

The seasonal analytical approach
revealed that the seasonality of
P. falciparum incidence was
significantly explained by NDVI with
s 15-day lag (p = 0.001). The NDVI
threshold was 0.361 (p = 0.007).
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Table 3. Cont.

Reference(s) Study Area(s)
Malaria

Epidemiological
Data

Climatic/Environmental Data Gotten via RS
Technology

Environmental/Climatic
Data from Other

Sources

Statistical
Method(s)

Main Findings
Climatic/Environmental

Data
Source(s) of RS

Data

[6] West Africa

MARA/ARMA
Malaria prevalence

date among children
between 1 and 10

years

NDVI, land use NOAA-AVHRR
USGS

Temperature, rainfall,
soil water storage

index (SWS), water
bodies,

agro-ecological zones

Logistic regression
model,

non-parametric
regression models

NDVI was not associated with
malaria in any of the four defined
agro-ecological zones (Equatorial
forest, Guinea savannah, Sahel region,
Sudanese savannah).

[62] Côte d’Ivoire: Man

Survey of confirmed
malaria cases among

school children of
Grades 3–5

NDVI, LST, RFE
DEM

MODIS-USGS
Meteosat 7 SRTM

Bayesian negative
binomial regression

models, Bayesian
kriging

The bivariate non-spatial analysis
identified NDVI, RFE, LST and close
proximity to standing water (rivers,
swamps and irrigated fields) as
significant risk malaria factors. After
employing the spatial analyses, only
mean RFE remained significant over
the malaria transmission season
(June–August).

[63] Senegal

Survey of confirmed
malaria cases among

children less than
5 years old

Day LST, night LST,
NDVI, altitude MODIS USGS-DEM Rainfall, permanent

rivers and lakes

Bayesian
geostatistical
zero-inflated

binomial (ZIB),
Bayesian kriging

Night LST (OR 1.16; 95% CI (0.66,
1.86)) and NDVI (OR 1.48; 95% CI
(0.88, 2.48)) were noted to have a
positive association with
malaria parasitemia.

[64] Côte d’Ivoire

Malaria prevalence
data for children

aged less than
16 years

LST, NDVI Elevation MODIS, USGS-DEM
Rainfall, distance to

the nearest
water body

Binomial regression
models, Bayesian
non-spatial and

geo-statistical logistic
regression models,
Bayesian kriging

In the non-stationary spatial model
(the best model), the covariates
rainfall (OR = 0.76; Bayesian credible
interval (BCI) = 0.70, 0.83) and
maximum LST (OR = 0.72; BCI = 0.64,
0.79) were significantly negatively
associated with Plasmodium
prevalence.
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Table 4. Overview of a study that used RS-derived climatic variables and malaria epidemiological data covering Central and Western Africa.

Reference(s) Study Area(s)
Malaria

Epidemiological
Data

Climatic/Environmental Data Gotten
via RS Technology

Environmental/Climatic
Data from Other

Sources

Statistical
Method(s)

Main Findings
Climatic/Environmental

Data
Source(s) of RS

Data

[65] West Africa and
Central Africa

Malaria prevalence
data extracted from
the MARA/ARMA

database

NDVI, land use NASA-AVHRR
USGS-NASA

Temperature, rainfall,
soil water storage

index, water bodies,
agro-ecological

zones, transmission
seasonality

Multivariate analysis,
Garki model,

Bayesian linear
geostatistical model,

Bayesian kriging

NDVI, distance from water,
length of season, rainfall and
maximum temperature correlated
significantly with malaria
transmission intensity and were
included in the best fitting model.
NDVI had a significant positive
association with malaria
transmission, except for areas
distant from water bodies. This
negative association between
malaria transmission and
distance to water was observed in
regions with NDVI values greater
than 0.6.



Int. J. Environ. Res. Public Health 2016, 13, 584 16 of 29

Table 5. Commonly-used RS variables in SSA.

RS Variables Description Sources

NDVI
This is an indicator of the greenness of the biomass and varies between ´1 and +1.

It is calculated as [66,67]: pNIR´Redq
pNIR` Redq

MODIS, NOAA-AVHRR

LST (day and night) This can be estimated from thermal infrared sensors. It is sensitive to the thermal characteristics of the
ground and atmospheric effects of spectral radiation [68]. MODIS, NOAA-AVHRR

RFE/CCD This provides indirect estimates of rainfall based on the detection of precipitation particles or the
duration a cloud top is below a threshold temperature [69]. TRMM, CMAP, Meteosat

EVI

EVI provides an alternative to NDVI because it improves sensitivity over areas of denser vegetation. It
is calculated as [66]: G pNIR´Redq

pNIR`C1 ˆRed´C2ˆBlue`Lq , where G is a gain factor, C1 and C2 are aerosol
resistance coefficients and L is the canopy background adjustment that addresses nonlinear,

differential NIR and red radiant transfer through a canopy.

MODIS

Elevation/altitude This correlates negatively with temperature and positively with precipitation and can be applied as a
surrogate indicator [69]. USGS-DEM, ASTER, SRTM

Land use and land cover This is related to the natural and physical environment and the human activities on the landscape [66]. MODIS, Landsat TM, USGS-NASA
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Table 6. Overview of the RS satellites/sensors used in the malaria epidemiological studies in SSA.

Satellite/Sensors Spectral Range Spatial Resolution Revisit Time Swath Width Radiometric Resolution

NOAA/NASA-AVHRR 0.58–12.50 µm 1.1 km 12 h 2900 km 10 bit

MODIS 0.40–14.50 µm 250 m, 500 m, 1 km 1–2 days 2330 km 12 bit

Landsat TM 1 0.45–12.5 µm 30 m, 120 m 16 days 185 km 8 bit

Landsat-7 ETM+ 2 0.45–12.5 µm 15 m, 30 m, 60 m 16 days 185 km 9 bit (8 bit transmitted)

Meteosat 1–7 0.50–12.5 µm 2.5 km, 5 km 30 min - 8 bit

Meteosat 8–10 0.40–14.40 µm 1 km, 3 km 15 min 10 bit

TRMM VIRS 3: 0.63 µm, 1.60 µm,
3.75 µm, 10.7 µm, and 12 µm

VIRS: 2 km
TMI 4: 5–45 km

PR 5: 4.3 km
3 hourly, daily, monthly

VIRS: 720 km
TMI: 780 km
PR: 215 km

-

SRTM - 30 m 16 times per day C-radar: 225 km
X-radar: 50 km

C-radar: 8 bit
X-radar: 6 bit

ASTER
VNIR 6: 0.52–0.86 µm
SWIR 7: 1.60–2.43 µm
TIR 8: 8.125–11.65 µm

VNIR: 15 m
SWIR: 30 m
TIR: 90 m

5 days
16 days
16 days

60 km
60 km
60 km

VNIR: 8 bit
SWIR: 8 bit
TIR: 12 bit

CMAP - 0.25˝ ˆ 0.25˝ 5 days, monthly - -
1 Thematic Mapper; 2 Enhanced Thematic Mapper plus; 3 Visible Infrared Scanner; 4 TRMM Microwave Imager; 5 Precipitation Radar; 6 Visible Near Infrared; 7 Shortwave Infrared;
8 Thermal Infrared.
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NDVI anomalies were highly correlated with malaria incidence anomalies, particularly in the
semi-arid north of the country and along the northern Red Sea coast, which is a highly epidemic-prone
area. CMAP rainfall correlated with malaria incidence anomalies, with a lead time of 2–3 months,
while weather station rainfall correlated with malaria anomalies with a delay of two months. Generally,
the correlation coefficients were between 0.6 and 0.8. Similarly, Graves et al. [25] analyzed the effects of
impregnated nets, larval control, malathion and DDT on malaria cases, while analyzing the effects
of RS-derived climate variables, such as NOAA-AVHRR NDVI (8 km ˆ 8 km spatial resolution) and
CMAP RFE (2.5˝ ˆ 2.5˝ grid) in Eritrea at the district level. The Poisson regression analysis employed
showed that the relation between the climatic variables and malaria cases varied by zones. The increase
in malaria cases was significantly associated with RFE with a lead time of 2–3 months (0.0007711,
p < 0.001) in the Gash Barka zone and NDVI anomalies in the current and previous months (1.820668,
p < 0.0001). NDVI also exhibited the same relationship in the Anseba zone, but with a greater coefficient
(11.22517, p < 0.001). Gosoniu et al. [48] employed Bayesian geostatistical models to analyze the effects
of parasitemia risk (malaria cases among children less than five years old) with age, socio-economic
status (wealth index and residence), malaria intervention (bed nets) and climatic/environmental
factors (Moderate Resolution Imaging Spectrometer (MODIS) land surface temperature (LST), MODIS
NDVI, altitude from the United States Geological Service (USGS) digital elevation model (DEM), RFE
data from the Meteosat-7 satellite obtained from the Africa Data Dissemination Service (ADDS) and
distance to nearest water body obtained from Health Mapper) in Tanzania. The spatial resolution of
the environmental/climatic factors used was 1 km ˆ 1 km, except rainfall, which was 8 km ˆ 8 km.
Altitude was negatively associated with malaria risk at the 5% significance level, indicating that
children living above 1500 m had a lower risk of malaria, while rainfall, NDVI and day and night LST
were positively associated with parasitemia risk. In a study by Omumbo et al. [39], malariometric data
and RS-derived variables (NDVI, mid-infrared (MIR) reflectance, cold cloud duration (CCD), land
surface and air temperature indices and altitude) from Kenya, Uganda and Tanzania were used to
update the spatial resolution of their malaria transmission risk map. These authors pre-processed the
RS-derived data using the temporal Fourier analysis, and the discriminant analysis that was employed
subsequently revealed that NOAA-AVHRR LST was the best predictor of malaria transmission
intensity, while NOAA-AVHRR NDVI and CCD derived from the Meteosat satellite were identified as
secondary predictors of transmission intensity. The forecast was significantly improved by altitude
derived from USGS-DEM. Areas with moderated malaria were under-forecasted (false negative
rate = 27.7%), while malaria-free areas were over-forecasted (false positive rate = 26.3%). In a similar
study that used data covering Kenya, Uganda and Tanzania, Omumbo et al. [40] discovered that NDVI,
CCD and water body area were associated with malaria in the “dry” Ecozone 1 (arid and highland,
with a climate that favors few months of mosquito proliferation). In Ecozone 2 (diverse, with a climate
that supports the propagation of mosquitoes for longer transmission seasons), temperature variables
were identified as the most abundant variables in the prediction model. The addition of ecological
zoning improved the overall model accuracy by 6.1%, and kappa values increased from 0.397–0.477.

3.2. Southern Africa

Studies in Southern Africa in which the relationship between RS-derived climatic variables and
malaria incidence and/or prevalence were identified are summarized in Table 2. Study sites in Southern
Africa mainly included Botswana (three studies), Zimbabwe (two studies) and Zambia (two studies).
Other locations included Angola, Namibia, Swaziland and Malawi. Most Southern African countries,
including Mozambique, Angola, Zimbabwe, Malawi and Zambia, are in the malaria control stage of the
malaria elimination continuum [41]. South Africa, Botswana and Namibia are in the pre-elimination
stage [41], while Swaziland is in the elimination stage [70]. RS-extracted climatic and environmental
variables used in this region were obtained mainly from NOAA-AVHRR and MODIS satellite sensors.
NDVI was observed to be the major RS-derived variable linked to malaria transmission in the region
followed by RFE. Gosoniu et al. [28] fitted Bayesian geostatistical models to assess the effects of malaria
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intervention (insecticide-treated nets) among children less than five years old in Angola between 2006
and 2007 after adjusting for socio-economic status and climatic/environmental factors (MODIS LST,
MODIS NDVI, altitude derived from USGS DEM, distance to nearest water body from Health Mapper
and rainfall from ADDS). These authors examined the association between malaria incidence and
climatic/environmental factors and found that NDVI (95% CI = 6.28, 17.94; OR = 10.62) and rainfall
(95% CI = 6.00, 19.43; OR = 10.80) had a significantly positive relationship with malaria incidence.
Similarly, Riedel et al. [55] investigated the relationship that existed between malaria interventions
and malaria risk after adjusting for selected RS (MODIS LST, MODIS NDVI, MODIS land cover,
ADDS RFE, altitude from USGS DEM, water bodies) and socio-economic variables in Zambia. A
spatially independent and Bayesian geostatistical model was generated that used malaria cases from
the Zambia Malaria Indicator Survey conducted in 2006. NDVI, night LST and rainfall (the last
2.7 months) were identified as positive significant predictors of malaria and were fitted in the model.
Cohen et al. [57] conducted a study aimed at generating a case-based risk map for Swaziland using the
2011 malaria case data obtained from the Swaziland National Malaria Control Programme. Ecological
variables, such as rainfall (from weather stations), temperature (from worldClim), NDVI, normalized
difference water index (NDWI), elevation, topographic wetness index (TWI) and water bodies (from
the Food and Agriculture Organisation of the United Nations) were assessed for their relevance in
the formulation of a high spatial and temporal resolution malaria risk map. NDVI and NDWI data
were calculated from a high spatial resolution imagery (30-m spatial resolution) from the Landsat
7 Enhanced Thematic Mapper plus (ETM+) sensor. The Landsat 7 ETM+ is an improvement of the
previous Landsat satellite series that provides medium-resolution multispectral imagery of the Earth’s
surface [33]. Elevation and TWI were obtained from the Shuttle Radar Topography Mission (SRTM) at
90-m spatial resolution. These authors suggested that during the high transmission season, malaria
cases tend to cluster in areas of lower elevation, closer to water bodies, in less populated areas, with
lower rainfall and lower temperatures (all p < 0.001). In relation to the model accuracy, NDWI was
the most important RS-derived predictor followed by NDVI and TWI. Finally, models formulated
from the random forest classification were used to produce predicted probability case-based maps.
Nygren et al. [26] explored the relationship between RS-derived environmental malaria transmission
and forecasted malaria cases in the Southern Province of Zambia. The RS-derived variables included
MODIS NDVI, MODIS nocturnal dew point (DWP), MODIS LST, rainfall and elevation. The rainfall
data were obtained from the Tropical Application of Meteorology using satellite data and ground-based
observations (TAMSAT). TAMSAT rainfall data are rainfall estimates obtained from Meteosat (from
the thermal infrared channels) and calibrated against rainfall data from rain gauges [71,72]. In
addition, elevation data at 30-m spatial resolution was derived from the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER), which is a sensor on-board the Terra satellite
for DEM creation [33]. NDVI, DWP and night LST were the highly significant predictors in the high
and low malaria transmission areas, and the NDVI and DWP improved the ARIMAX models in all
areas significantly. The mean average error of the forecast models was between 0.7% and 33.5%.

3.3. West Africa

In West Africa, country-specific studies took place mainly in Mali (four studies) and later Côte
d’Ivoire (three studies). Others studies were conducted in Gambia and Senegal. One regional study
used malariometric data obtained from Mapping Malaria Risk in Africa (MARA/ARMA), which
covered West Africa, but excluded Cape Verde [6]. All of the West African countries are in the control
stage of the WHO malaria elimination continuum, except Cape Verde, which is in the pre-elimination
stage [41]. A summary of studies in West Africa that used RS climatic/environmental variables to
identify climatic/environmental predictors of malaria is given in Table 3 above. In West Africa, the
most frequently-utilized RS climatic/environmental variables were from NOAA-AVHRR and MODIS
sensors. In the region, NDVI was identified as the major RS climatic predictor of malaria risk and
transmission. Giardina et al. [63] used malaria prevalence data from Senegal’s Malaria Indicator
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Survey to determine spatially-explicit climatic/environmental variables associated with malaria in
Senegal by incorporating Bayesian variable selection methods within a geostatistical framework. The
formulated model included night LST (OR = 1.16; 95% CI (0.66, 1.86)), NDVI (OR = 1.48; 95% CI
(0.88, 2.48)), urban area (OR = 0.19; 95% CI (0.07, 0.45)) and rural area (OR = 1), and they were noted
to have a positive association with malaria parasitemia risk. Similarly, Gosoniu et al. [27] estimated
the burden of malaria in Mali by using a Bayesian non-stationary model. Malaria prevalence data
were extracted from the MARA/ARMA, 1998 database, NDVI from NASA-AVHRR, temperature
and rainfall obtained from Hutchinson et al. [73], water bodies from World Resources Institute [74]
and season length from Gemperli et al. [65]. The best sets of variables included in the non-stationary
model were NDVI and minimum temperature, which had a positive significant relationship with
malaria risk. Contrarily, rainfall had a negative significant relationship. The authors further suggest
that stationarity assumptions are vital due to their influence on the significance of environmental
parameters and parasitemia risk map. Gaudart et al. [23] incorporated RS-derived variables into a
temporal model to predict malaria transmission in the locality of Bancoumana, Mali, characterized
by Sudanese savannah. Confirmed P. falciparum data obtained from a field study of children aged
0–12 years and 15-day composites of NDVI data derived from NOAA-AVHRR between 1981 and 2006
were incorporated in the ARIMA time series. The analysis revealed that the seasonality of P. falciparum
incidence was significantly explained by NDVI with a 15-day lag (p = 0.001), and the threshold
was 0.361 (p = 0.007). The deterministic malaria transmission model, with stochastic environmental
variables, forecasted an endemoepidemic pattern of malaria, and the value of the adjusted R2 was
89%. Similarly, in a study conducted by Kleinschmidt et al. [59], malaria risk was determined on a
large scale by identifying important ecological parameters, and subsequently, a malaria risk map was
produced for Mali. These authors used an automatic stepwise variable selection procedure to identify
the most reliable predictors of malaria prevalence for the multiple logistic regression model. NDVI
from June–November (wet season), mean maximum temperature from March–May, months with
more than a 60-mm rainfall and distance to water bodies were the significant independent variables
for predicting malaria prevalence and were incorporated into the final multiple logistic regression
model; and finally, a map of malaria risk was formulated. On the other hand, Silue et al. [61] used the
Bayesian model to produce spatially-explicit risk maps of malaria transmission in Man, Côte d’Ivoire.
Initially, these authors analyzed the relationship of malaria prevalence data with possible malaria
transmission risk factors, including age, use of bed nets, socio-economic status, distance to health
facilities, NDVI, rainfall, LST and distance to rivers. NDVI and LST were extracted from MODIS at a
1 ˆ 1 km spatial resolution, while RFE from the Meteosat-7 satellite was obtained from the ADDS at an
8 ˆ 8 km spatial resolution. In bivariate non-spatial models, NDVI, RFE and distance to rivers were
significantly associated with a P. falciparum infection. However, after employing the spatial correlation
analysis, only age was noted to be a significant risk factor for malaria prevalence, while NDVI showed
a “borderline” significance.

3.4. Central Africa

In the Central African region, the only study we identified that examined the association of
malaria with RS climatic and environmental characteristics is given in Table 4. This is a cross-regional
study that used Malaria prevalence data obtained from the MARA/ARMA database and numerous
malaria transmission factors, including population density, NDVI, land use, temperature, rainfall,
water bodies, soil water storage index, agro-ecological zone and transmission seasonality covering
Central and West Africa [65]. The authors discovered that NDVI extracted from the NASA-AVHRR
sensor at an 8 ˆ 8-km spatial resolution had a high relationship with malaria across the region, except
in areas far away from water bodies. Furthermore, a negative association was recorded between
malaria transmission and distance to water, and this was observed in regions with NDVI values greater
than 0.6. The spatial and non-spatial variations were 0.398 and 41.98, respectively. With reference to
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the WHO malaria elimination continuum, all of the Central African countries are still in the control
phase [41], excluding São Tomé and Príncipe, which are currently in the pre-elimination stage.

3.5. Commonly-Used RS Variables and Features of Satellites/Sensors Used by the Authors in the
Articles Reviewed

Table 5 provides an overview of the RS variables commonly used in SSA, while Table 6 presents
the satellite sensors used in the various selected studies (these sensors have different spatial, spectral
temporal, radiometric and swath width properties). NOAA-AVHRR and MODIS were the most
frequently-utilized sources of RS-derived indices, such as NDVI, EVI, LST, ETa and DWP across
SSA. In addition, Meteosat [26,39,40,61,62,75] and the Climate Prediction Centre Merged Analysis of
Precipitation (CMAP) [25,43,51,53,58] were also used extensively to extract RFE and precipitation data.

4. Discussion

Our review highlights the contribution of RS technology in modelling malaria transmission
and risk in SSA after taking account of potential climatic/environmental variables that can be
used to predict malaria transmission. Malaria disease exhibits seasonal and spatial heterogeneity
across localities, districts, provinces, countries and also in sub-continental regions. This can be
attributed to the complex nature of malaria resulting from the diverse climatic, environmental,
social and natural elements supporting the disease. The combination of these factors plays an
important role in the endemicity and epidemicity of an area. RS serves as a means of obtaining
potential climatic/environmental malaria variables and opens an avenue to better understand and
model the environmental/climatic processes fundamentally responsible for the temporal and spatial
heterogeneity of malaria disease.

RS has proven to be a vital tool in malaria modelling and prediction. It can contribute to malaria
intervention planning and control programs at both local and broad scales and at different malaria
risk stratifications. The scarcity of reliable meteorological data, national health policies and priorities,
research/institutional capacity, availability and the cost of high resolution RS data for research and
public health purposes determines the use of RS in malaria modelling [76]. This notwithstanding,
RS-derived variables are gaining widespread acceptance and application in malaria risk modelling
in SSA because of the nature and characteristics of a variable of interest can reflect the ecological
relevance and contribution to malaria transmission. For instance, RFE provides indirect estimates
of rainfall based on the detection of precipitation particles or the duration a cloud top is below a
threshold temperature [69]. LST can be used as a proxy for temperature, and its values are obtained
from land surface emissivity or surface reflectance in relation to their wavelengths and spectral
characteristics [68], while NDVI can serve as a surrogate for rainfall, temperature, land use and land
cover, near-surface humidity and surface water [20,77]. Thus, RS-derived variables have the potential
to provide information that directly exhibits the state of the vector habitat and to inform us about the
potential role that ecology can play in malaria transmission [29,68].

The robust utilization of RS-derived variables across SSA has shown that malaria predictors
and models are peculiar and subject to the influence of the reference data, scale of observation
and environmental condition of the study area. For example, in sub-continental East Africa, we
observed that NDVI extracted from NOAA-AVHRR at 8 km ˆ 8 km and MODIS at 1 km ˆ 1 km
spatial resolutions is an important predictor of malaria transmission at the country level in Kenya,
Tanzania [48], Burundi [42] and Eritrea [25,43]. However, at the local level, in the rich herbaceous
and cropland vegetation of the Amhara region, which constitutes the Ethiopian Highlands, NDVI
obtained from MODIS at a 1 km ˆ 1 km spatial resolution was not significantly related to malaria.
Instead, ETa (which was only recently assessed for its relevance in malaria risk profiling), EVI and
LST variables extracted from MODIS at a 1 km ˆ 1 km spatial resolution were observed to be the
suitable malaria predictors in Amhara, Ethiopia [20]. This can be explained by the fact that NDVI loses
sensitivity in areas of higher vegetation density and at higher EVI values. The vegetation index EVI
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can be used as a substitute for NDVI, because it preserves more sensitivity over heavier vegetation;
hence, good account of the variation and the change in a rich canopy can be recorded [78,79]. However,
the application of EVI in malaria risk profiling and modelling was used sparingly in the East African
sub-region and other SSA regions.

The pronounced climatic diversity in relation to malaria suitability at the country level in
Southern Africa may have contributed to the diverse RS variables identified as significant malaria
predictors in the sub-region. However, NDVI extracted from MODIS at 1 km ˆ 1 km [26,28] and
0.25 km ˆ 0.25 km [55] and Landsat 7 ETM+ at 30 m ˆ 30 m spatial resolutions [57] can be used
to explain the geographical spread of malaria in greater parts of the malaria endemic areas when
compared to other RS-derived variables identified as significant predictors of transmission. On the
other hand, in the malaria endemic region of Northern Namibia, Alegana et al. [56] found that MODIS
EVI at a 1 km ˆ 1 km spatial resolution and precipitation derived from TRMM at a 0.25˝ ˆ 0.25˝ spatial
resolution, which was re-sampled to a 1 km ˆ 1 km spatial resolution, were the best malaria predictors,
but it must be noted that NDVI was not considered in the study.

NDVI continued to exhibit its dominance in usage and significance pertaining to malaria risk
determination across the SSA regions. NDVI extracted from either NOAA-AVHRR at an 8 km ˆ 8 km
spatial resolution or MODIS at a 1 km ˆ 1 km spatial resolution, respectively, was identified as a suitable
malaria predictor in Western Africa, especially in settings characterized by the Sahelian or Sudanian
climate at the local level (Bancoumana, Mali) [23] and the country level (Mali and Senegal) [27,59,63].
However, in areas characterized by persistent moisture and heavy vegetation, different outcomes
were observed. In the Man region of Côte d’Ivoire, Raso et al. [62] identified RFE data obtained from
the Meteosat 7 satellite at an 8 km ˆ 8 km spatial resolution as the predictor for malaria prevalence.
Furthermore, a significant negative association between plasmodium prevalence and MODIS LST at a
1 km ˆ 1 km spatial resolution was recorded in a study that used data covering Cote d’Ivoire [64].

In the Central African region (characterized by climatic suitability for malaria proliferation and
heavy vegetation), the only study we identified and reviewed indicated that NDVI calculated from the
NASA-AVHRR sensor at an 8 ˆ 8 km spatial resolution returned a better result for modelling malaria
transmission [65]. EVI, which has been suggested to be an alternative predictor over denser vegetation
than NDVI, may have been identified as a better malaria predictor in the Central African region, but it
was not included in the study. Furthermore, other climatic/environmental factors used in the study
may have been identified as suitable malaria predictors, but the authors did not consider the differences
that might exist in the climate-malaria relationship across the study area. In addition, they did not take
into account the non-stationary characteristics of malaria data covering large areas. Disregarding this
characteristic could result in the wrong specification of the spatial correlation and, therefore, erroneous
values of the standard error of the predictors and prediction. In a somewhat similar study conducted
by Gosoniu et al. [6], the authors used data covering West Africa and addressed the above-mentioned
issues by partitioning the study area into four agro-ecological zones and then employed a different
non-parametric model in each zone. There is a possibility that more studies in the Central African
region may be available, but could not be identified, as the region is dominated by French-speaking
countries. Hence, researchers from the region may have their articles published in French.

The tremendous improvements in the RS sensors, better turnaround time and availability of some
RS low and medium resolution datasets at no cost [80,81] may have also contributed to the considerable
utilization of various RS datasets across SSA. The freely available RS datasets obtainable via MODIS
and AVHRR satellites can be used to explain the frequent usage of these satellites as compared to RS
datasets from other RS sources [33,82]. Furthermore, MODIS has made it possible to evaluate new and
previously unidentified environmental-related malaria predictors. For example, contemporary studies
have shown that MODIS DWP at a 5 km ˆ 5 km spatial resolution and MODIS ETa at a 1 km ˆ 1 km
spatial resolution can be used to explain and define malaria transmission risk and malaria incidence in
the Southern Province of Zambia and the Amhara region of Ethiopia, respectively.
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Countries in SSA are at different stages in their fight towards malaria elimination, and this has
to be taken into account in line with the characteristics of the RS imagery intended to be used. Low
and medium spatial resolution RS data can be useful in studies conducted at national and regional
levels in the malaria endemic countries that are still at their malaria control stage; in addition, to derive
generalized spatio-temporal models and a malaria risk map for the robust application of intervention
resources. However, in Angola, Botswana, Cape Verde, Namibia, Swaziland and South Africa with
significantly low malaria cases [41], high spatial resolution RS data at a local level would be essential
to carry out the cluster analysis and detection of foci and hotspots of malaria transmission. This
would support adequate monitoring of the disease and delivery of interventions to specific location(s)
and/or seasons, ultimately leading to malaria reduction. New generation satellites, such as Landsat-8,
Copernicus: Sentinel-2, the Global Precipitation Measurement (GPM) mission, the Soil Moisture
Active/Passive (SMAP) mission, SPOT 6 and SPOT 7 [33], with improved spatial and radiometric
resolutions, have potential for malaria transmission and risk modelling, especially in regions where
malaria cases are low (Table 7). Furthermore, future satellite mission, like Copernicus: Sentinel-3, which
would introduce data reliability for long-term monitoring, could also be vital in modelling spatial and
temporal malaria transmission and research [33]. The cost of obtaining high spatial resolution datasets
remains a challenge in SSA. Hence, lessons can be drawn from the collaborative venture that exists
between China and Brazil, which allows their researchers to obtain high spatial resolution data (2.5 m)
freely [83].

Table 7. Overview of new generation RS satellites/sensors with improved characteristics for
malaria modelling.

Satellite/Sensors Spectral Range Spatial Resolution Revisit Time Swath Width Radiometric
Resolution

Landsat-8 0.43–12.5 µm 15 m, 30 m, 100 m 16 days 185 km 12 bit

Copernicus:
Sentinel-2 0.43–2.28 µm 10 m, 20 m, 60 m 5 days 290 km 12 bit

GPM - 250 m, 500 m 3 h 120 km, 245 km,
885 km -

SMAP - 3 km, 10 km, 40 km 2 days, 3 days 1000 km -

SPOT 6 and
SPOT 7 0.45–0.89 µm 1.5 m, 2 m, 6 m, 8 m 1–5 days 60 km 12 bit

In a bid to identify relevant and potential risk factor(s) or malaria transmission predictors at
local, national or regional levels that can be further incorporated into forecast models/early warning
systems and malaria risk maps, the statistical methodology employed should accommodate procedures
that suit a particular context and setting. According to Tables 1–4, generalized linear models (linear
regression, logistic regression and Poisson regression) were used frequently in Eastern, Southern and
Western Africa as compared to other analytical approaches, but to a varying degree. This can be
attributed to the simplistic, flexible and intuitive way this approach accommodates predictors [84]. On
the other hand, in the only study we identified that was conducted in Central Africa, a multivariate
analysis was carried out. This further illustrates the relevance of these approaches in evaluating
the relationships between georeferenced environmental variables and prevalence data, identifying
potential risk factor(s)/predictor variable(s), explaining the observed variable(s) and forecasting
prevalence at unsampled locations. The reliability of predictive geostatistical models formulated
from a multivariate regression analysis is important in malaria mapping, and it depends on the
selected variables fitted in the model. Researchers intending to employ either of the above-mentioned
approaches should bear in mind that they do not intrinsically consider correlation in the errors [85].
Erroneous serial autocorrelation is likely to result in underestimated standard errors, and in addition,
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the evaluation of the impact of predictors would be biased. To account for the impact of autocorrelation
on estimates, de Jong and Davidson [86] exhibited the relevance of applying heteroscedasticity and
autocorrelation consistent estimators. A variety of statistical approaches have been applied across SSA
to varying degrees and settings. The exploration and comparison of different statistical approaches
and models for a particular setting would be useful in identifying and evaluating prediction accuracy.
It will also be useful in identifying approaches that would provide accurate and reliable predictors for
either short, long or intermediate prediction [87].

Overall, the quantitative models employed across localities and countries in SSA consistently
revealed variability in the relationship between malaria and climatic/environmental variables.
However, NDVI was observed to be the most significant predictor of malaria transmission followed by
LST and RFE, and thus, they constituted the RS variable(s) that provided the best-fit model. To improve
the overall predictive power and model robustness, we recommended the following: (1) Large datasets
should be used over longer periods. For example, Nygren et al. [26] generated predictive models
employing 126 weeks of data. Therefore, it will be difficult to know if the identified RS predictors of
malaria transmission and the relationships they found will be sustained over time. (2) The incremental
validity approach, which involves incorporating variables as supplemental to an identified predictor,
should be practiced, as it can improve the predictive power [88]. For example, the study conducted by
Ceccato et al. [43] revealed that NDVI predicted about 1%–20% of the variance in the southern and
southeastern areas of Eritrea. This means that other RS-derived variables can explain 80%–99% of
the variance. However, the addition of other RS-derived variables would be dependent on whether
they improve the predictive validity of what the identified predictor predicts. (3) Linear models have
been widely used across SSA. However, these models can result in inappropriate static regression
and impose unrealistic or general assumptions. Thus, Bayesian models, which provide extensions
of generalized linear models and are formulated to overcome some of the setbacks of linear models,
should be employed.

The reviewed studies have shown that RS technology can contribute to the understanding of
the complex nature of malaria across SSA. It can provide the potential climatic and environmental
variables needed to identify significant spatially-explicit variable(s) associated with malaria risk and
transmission. In areas like the Horn of Africa and Kenya, where malaria is highly seasonal, unstable
and epidemic, the process of deciding climatic monitoring targets should be handled with caution
to avoid the generation of unreliable malaria transmission models. Therefore, we are in support of
regular capacity building and multidisciplinary collaboration between relevant departments, e.g.,
ecology, geography, biological science, epidemiology, entomology, information technology, statisticians,
mathematical modelers, public health decision makers and stakeholders, in generating reliable
prediction models. Furthermore, although this study can serve as an informative tool for public
and environmental health workers, as well as researchers aiming to model potential climatic factors
related to malaria and to delineate climate monitoring targets in SSA, some limitations should be noted.
Firstly, relevant reports published in languages other than English and/or unpublished reports were
excluded from this review. Secondly, studies that used only entomological data were also excluded.

5. Conclusions

We conclude that RS technology is a vital tool in determining malaria risk predictors at regional,
national and local scales in diverse regions of SSA. Our review suggests that the utilization of RS
in determining reliable malaria transmission predictors and developing environmental monitoring
would require a tailored approach that takes into account the geographical/climatic setting, the
stage of the malaria elimination continuum, the characteristics of the RS variables and the analytical
approach, which in turn, would support the channeling of intervention resources sustainably. The
improvement of this technology has encouraged the acquisition and evaluation of a wide array of
historical climatic/environmental variables at different spatial and temporal resolutions depending
on the setting and intended usage. This therefore makes RS a relevant tool for identifying reliable
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climate-related malaria predictors that can be incorporated into an integrated malaria early-warning
system or prediction model. Previously unidentified remotely-sensed variables, such as ETa and DWP,
were found to be malaria transmission predictors, and EVI was also noted to be a suitable substitute for
NDVI in denser vegetation, which needs to be further explored extensively across relevant localities
and regions of SSA. Furthermore, the assessment of different statistical methods and models for a
particular location would be useful in identifying and evaluating prediction accuracy depending on the
length of prediction. The application of this technology can be further harnessed in generating reliable
prediction models by devising means by which relevant skills and training and the easy acquisition of
relevant RS-derived variables can be achieved. Therefore, relevant multidisciplinary collaborations,
symposiums and capacity development are encouraged.
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SSA Sub-Saharan Africa
RS remote sensing
ISI Institute for Scientific Information
NDVI normalized difference vegetation index
NOAA National Oceanic and Atmospheric Administration
AVHRR Advanced Very High Resolution Radiometer
MODIS Moderate-resolution Imaging Spectrometer
WHO World Health Organisation
ARIMA autoregressive integrated moving average
RFE rainfall estimates
CMAP Climate Prediction Centre Merged Analysis of Precipitation
LST land surface temperature
USGS United States Geological Service
DEM digital elevation model
ADDS Africa Data Dissemination Service
MIR mid-infrared
CCD cold cloud duration
ETa actual evapotranspiration
EVI enhanced vegetation index
MARA/ARMA Mapping Malaria Risk in Africa
NDWI normalized difference water index
TWI topographic wetness index
ETM+ Enhanced Thematic Mapper plus
SRTM Shuttle radar Topography Mission
DWP nocturnal dew point
TAMSAT Tropical Application of Meteorology using satellite data and ground-based observations
GPM Global Precipitation Measurement mission
SMAP Soil Moisture Active/Passive mission
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