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Abstract

Binary cell fate decisions allow the production of distinct sister neurons from an intermediate precursor. Neurons are further
diversified based on the birth order of intermediate precursors. Here we examined the interplay between binary cell fate
and birth-order-dependent temporal fate in the Drosophila lateral antennal lobe (lAL) neuronal lineage. Single-cell mapping
of the lAL lineage by twin-spot mosaic analysis with repressible cell markers (ts-MARCM) revealed that projection neurons
(PNs) and local interneurons (LNs) are made in pairs through binary fate decisions. Forty-five types of PNs innervating
distinct brain regions arise in a stereotyped sequence; however, the PNs with similar morphologies are not necessarily born
in a contiguous window. The LNs are morphologically less diverse than the PNs, and the sequential morphogenetic changes
in the two pairs occur independently. Sanpodo-dependent Notch activity promotes and patterns the LN fates. By contrast,
Notch diversifies PN temporal fates in a Sanpodo-dispensable manner. These pleiotropic Notch actions underlie the
differential temporal fate specification of twin neurons produced by common precursors within a lineage, possibly by
modulating postmitotic neurons’ responses to Notch-independent transcriptional cascades.
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Introduction

The computing power of a brain is rooted in its complex neural

network, composed of numerous types of neurons. Understanding

how diverse neurons are specified is fundamental for elucidating

how such an intricate organ develops and evolves from simple to

higher organisms. Drosophila melanogaster has a relatively tractable

neural development, study of which has revealed multiple

mechanisms that act in sequence to diversify neuron fates [1].

To determine the interplay among serial fating mechanisms is

critical for unraveling how the large repertoire of neural fates can

be reliably established to make a functional brain.

Neurons in the Drosophila central nervous system (CNS) arise from

a stereotyped set of neural progenitors called neuroblasts (NBs)

[2,3]. Each NB generates a lineage of neurons through multiple

rounds of self-renewing asymmetric cell divisions. In most divisions,

one NB deposits a ganglion mother cell (GMC) that divides once to

produce two neurons [4,5]. Three known mechanisms underlie

neuronal diversification through the protracted process of neuro-

genesis. (1) The acquisition of lineage identity by each NB occurs

during early spatial patterning and governs the neural types it

produces [6]. (2) The specification of temporal identity within a

given lineage underlies the orderly derivation of distinct neurons

from a common progenitor [7,8]. (3) The binary cell fate decision

distinguishes fate between sister neurons made by a single GMC [9–

14].

Although much has been learned about each of the neuronal

diversification processes, scientists have just begun to elucidate

how these serial fating mechanisms are integrated to determine a

neuron’s terminal fate. A combinatorial expression of various

transcription factors may confer lineage identity based on where

the NBs originate in early embryos [6,15–21]. By contrast, a

generic temporal fating mechanism has been shown to govern

birth order/time-dependent neuron fate specification in diverse

neuronal lineages [7,8]. It involves a series of transcription factors

that express in sequence in the NBs. Each of these transcription

factors dictates the temporal identity of the neurons born during

the time of its expression [22]. However, distinct lineages show
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different lineage-characteristic temporal identity profiles, arguing

for a role of lineage identity in patterning the expression of

temporal factors. In fact, recent studies on the Drosophila

embryonic NB lineage 5–6 have demonstrated that lineage

determinants and temporal fating factors do not simply work

additively to specify a final neuron fate. Instead, lineage identity

genes may refine neuronal temporal fates by subdividing the

temporal window defined by a single temporal identity factor into

multiple subdomains with distinct transcriptional outputs [23]. As

to the binary cell fate decision in postmitotic neurons, it remains

unclear how the transition of the temporal code of the NB and

GMC precursors is differentially read out based on Notch activity.

Do sister neurons made by the same set of GMCs in a given

lineage alter temporal identity simultaneously? If not, what

mechanisms underlie the differential patterning of temporal cell

fates between the Notch-on neurons and their Notch-off sibs?

Notch/Numb has been shown to specify A/B binary cell fates of

twin neurons derived from a GMC [13,14]. Such binary fate

decision underlies the initial production of two distinct sets of

progeny in most, if not all, Drosophila neuronal lineages. However,

many CNS lineages exist as a lone hemilineage because one entire

hemilineage has undergone premature cell death [24–26]. For

instance, two of the three antennal lobe (AL) lineages, which make

projection neurons (PNs) connecting the AL to the lateral horn

(LH), yield only one viable neuron from each GMC. Notably,

Notch-off specifies the PN fates and Notch-on promotes apoptosis

in the anterodorsal PN (adPN) lineage but vice versa in the ventral

PN (vPN) lineage [24]. Mapping (delineating the serially derived

neurons based on the GMC birth order) the adPN lineage has

revealed 40 types of AL PNs that arise in an invariant sequence

from the progenitor of the lineage [27]. Unfortunately, it is not

possible to discern birth time/order-dependent fate changes

among their apoptotic sibs, preventing comparative analysis of

temporal fate transitions between sister hemilineages. By contrast,

the lAL lineage produces PNs as well as AL local interneurons

(LNs), which can be interconverted by manipulating Notch

activities [24,28]. Identifying each PN and LN and determining

their twin relationship in the lAL lineage should allow a close

examination of neuron fate specification based on the interplay

between temporal identity and binary fate decision.

Here we determined the twin neurons made by each GMC of the

larval lAL lineage, using twin-spot mosaic analysis with repressible

cell markers (ts-MARCM) that permits labeling of sister clones (e.g.,

twin neurons) derived from a common precursor (e.g., a GMC) in

distinct colors [26]. We demonstrated that the lAL lineage consists

of two distinct hemilineages that yield a PN and LN pair from each

GMC at early times and a single PN at the end of the lineage.

Stereotyped PN and LN twin clones were consistently observed at

specific time points. Notably, PNs exhibit higher morphological

diversity and thus alter temporal fates that govern morphogenesis in

a faster tempo than their LN sibs. Additional lines of evidence

indicate that the PN and LN offspring of the lAL lineage are

differentially patterned with respect to their temporal identity.

Interestingly, knocking out Sanpodo (Spdo), a positive regulator of

Notch, from the lAL NB led to duplication of the entire complement

of PNs at the expense of less dynamic LNs. This implies that twin

neurons are born with equivalent temporal codes, which may

specify different temporal fates depending on Notch activities. We

further uncovered a spdo-independent role of Notch in specifying a

set of temporal fates in the PN hemilineage. Despite the complex

binary and temporal fate transformations, Notch mutant clones

maintained the normal dynamic expressions of Chronologically

inappropriate morphogenesis (Chinmo) [29,30] and Broad complex

(Br-C) [31] during larval development. Although Notch did not

regulate chinmo expression, loss of Chinmo affected PN and LN

temporal fates in hemilineage-dependent manners, arguing that

Notch acts downstream of temporal fating factors to modulate

neuronal temporal fates. Taken together, we established the

Drosophila lAL lineage as a model system for studying the origin-

dependent neuron fate specification and demonstrated that Notch

not only underlies binary cell fate decision but also determines

temporal fates in both Notch-high and Notch-low sister neurons.

Results

Projection Neurons and Local Interneurons Are Made in
Pairs from Common Ganglion Mother Cells in the Lateral
Antennal Lobe Lineage

The lateral antennal lobe (lAL) lineage yields about 200 neurons

during larval neurogenesis [32]. Labeling the lAL progeny by

conventional mosaic analysis with a repressible cell marker

(MARCM) [33] using a pan-neural nSyb-GAL4 revealed neuronal

cell bodies packed along the lateral border of the AL. They elaborate

densely in the antennal lobe (AL) and the neighboring antennal

mechanosensory and motor center (AMMC) (Figure 1A) and further

innervate the inferior ventrolateral protocerebrum (IVLP), lateral

horn (LH), superior medial protocerebrum (SMP), and some other

brain regions (Figure 1A). It is not possible to determine the detailed

‘‘projectome’’ among the targets without single-neuron labeling.

To reveal single-cell morphology and simultaneously determine

the neuron birth order, we ‘‘sequenced’’ the larval lAL lineage

using ts-MARCM [26] with nSyb-GAL4. We determined ganglion

mother cell (GMC) progeny born in 2-h windows throughout

larval development (see Materials and Methods). We identified

lAL GMC clones based on cell body positions and neurite

trajectory patterns that match the lAL NB clones generated at

various time points (unpublished data). Except near the lineage

end (see below), both daughter neurons derived from each lAL

GMC survived into the adult stage. Notably, one projection

neuron (PN) consistently paired with one local interneuron (LN).

They exist as twin clones when differentially labeled by ts-

MARCM (Figure 1B). This confirms the previous hypothesis that

the lAL lineage is composed of one PN hemilineage and one LN

hemilineage [24,28,32]. Moreover, we obtained neuron pairs with

Author Summary

The Drosophila brain develops from a limited number of
neural stem cells that produce a series of ganglion mother
cells (GMCs) that divide once to produce a pair of neurons
in a defined order, termed a neuronal lineage. Here, we
provide a detailed lineage map for the neurons derived
from the Drosophila lateral antennal lobe (lAL) neuroblast.
The lAL lineage consists of two distinct hemilineages,
generated through differential Notch signaling in the two
GMC daughters, to produce one projection neuron (PN)
paired with a local interneuron (LN). Both hemilineages
yield distinct cell types in the same sequence, although the
temporal identity (birth-order-dependent fate) changes are
regulated independently between projection neurons and
local interneurons, such that a series of analogous local
interneurons may co-derive with different projection
neurons and vice versa. We also find that Notch signaling
can transform a class of nonantennal lobe projection
neurons into antennal lobe projection neurons. These
findings suggest that Notch signaling not only modulates
temporal fate but itself plays a role in the distinction of
antennal lobe versus nonantennal lobe neurons.

Notch in Neuronal Temporal Fate Specification
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distinct characteristic morphologies following clone induction at

different developmental times, indicating that the birth order of

GMCs has governed neuronal diversification in the protracted lAL

lineage (Figure 1B; see below).

The Lateral Antennal Lobe Projection Neurons Innervate
Brain Regions That Are Involved in Different Sensory
Modalities

The lAL PNs identified by ts-MARCM can be categorized into

five classes based on their morphology: monoglomerular PN (mPN),

unilateral PN (unPN), bilateral PN (biPN), AMMC PN, and

suboesophageal ganglion (SOG) PN (Figure 2). mPNs connect a

single AL glomerulus to the mushroom body (MB) calyx and LH

through the inner antennocerebral tract (iACT; Figure 1A) [34,35].

The mPNs target the VA4, VC2, VC1, DM1, DM2, VA5, VA7m,

DA1, DL3, VM1, DA2, or DM5 AL glomerulus (Figure 2) and have

been determined previously based on the GAL4-GH146 marker

[36,37]. The lack of additional mPNs using the more broadly

expressed nSyb marker suggests this set was already complete.

Unlike mPNs, unPNs and biPNs connect the AL(s) to various brain

regions not yet implicated in olfaction, which include the poster-

iorlateral protocerebrum (PLP), inferior ventrolateral protocereb-

rum (IVLP), and superior medial protocerebrum (SMP). unPNs

restrict their proximal elaborations to the ipsilateral AL, whereas

biPNs show bilateral AL elaborations. Eight types of unPNs and six

types of biPNs can be further distinguished based on (1) AL

Figure 1. lAL neurons are born as LN/PN pairs. (A) A lAL NB clone (green), generated upon larval hatching and labeled by nSyb-GAL4, a pan-
neural driver, in an adult brain. The brain was counterstained with nc82 mAb to reveal synaptic neuropiles (blue). The brain regions densely
innervated by the lAL neurons are indicated by white arrowheads. Two background processes are indicated by yellow arrowheads. AL, antennal lobe;
IVLP, inferior ventrolateral protocerebrum; AMMC, antennal mechanosensory and motor center; LH, lateral horn; SMP, superior medial
protocerebrum. The major tracts are indicated by arrows. iACT, inner antennocerebral tract; oACT, outer antennocerebral tract; ACdT,
antennocerebral descending tract; sAMMCc, superior AMMC commissure; iAMMCc, inferior AMMC commissure. The stars mark the cell bodies of
the lAL neurons. Scale bar: 40 mm. (B) The illustration shows the proliferation mode of the lAL NB/GMCs and how ts-MARCM labels the twin-cells born
at different times. The ts-MARCM was induced in the dividing GMCs by mild heat shock; the two daughter cells from each of the dividing GMCs were
then labeled by different fluorescent proteins. The images at the bottom are examples of the ts-MARCM clones induced at 0–2 h, 62–64 h, and 86–
88 h ALH. The LNs and PNs were pseudocolored in green and magenta, respectively. Note the sister cells from a GMC were one PN and one LN, and
the neurons with different birthdates showed different morphologies. Scale bar: 40 mm. The background clones in these images were masked as
described in Materials and Methods.
doi:10.1371/journal.pbio.1001425.g001
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innervation patterns, (2) neurite trajectories, and (3) distal targets

(Figure 2; see Table S1 for details).

In addition to the AL PNs, we obtained 16 types of AMMC

neurons and three types of SOG neurons that may account for the

AMMC and SOG elaborations seen in the lAL NB clones

(Figure 2, compared to Figure 1A). Most of the AMMC neurons

acquire some bilateral elaborations across the brain midline.

AMMC-1 to -11 connect the ipsilateral AMMC to the ipsilateral

as well as contralateral IVLPs or posterior ventrolateral proto-

cerebrum (PVLP) (AMMC-1 to -8), or only to the contralateral

IVLP/PVLP (AMMC-9 to -11). AMMC-12 and -13 elaborate

exclusively within the AMMC and wire the paired AMMC

structures together. AMMC-14 to -16 show dendrite-like processes

in the IVLP and axon-like projections in the AMMC, but AMMC-

14 only targets the ipsilateral AMMC whereas AMMC-15 and -16

innervate both ipsilateral and contralateral AMMCs. Finally, the

three types of SOG PNs show unique characteristic patterns of

proximal elaboration in the SOG and further target distinct brain

regions, including the PLP (SOG-1), the contralateral and

ipsilateral clamp surrounding the MB peduncles (SOG-2), and

the ipsilateral clamp and inferior bridge (IB) (SOG-3). Some

proximal neurites of SOG-3 further innervate the vest, which is

posterior to the AL. Please refer to Table S1 for more detailed

description of these stereotyped AMMC and SOG neurons.

In sum, the lAL NB yields not only AL PNs but also AMMC

and SOG neurons, which may contribute to distinct neural circuits

(see Discussion). Does the GMC birth order guide the derivation of

these multiclass neurons one group by another along the Notch-off

hemilineage of the complex lAL pedigree [24,28]?

Orderly, But Not Class-By-Class, Production of Distinct
Lateral Antennal Lobe Projection Neurons

The twin single-cell clones collected for this study were induced

in discrete 2-h windows to sample neurons born at different times

from larval hatching to puparium formation. Notably, distinct lAL

PNs were preferentially hit at different developmental times. To

deduce their possible birth order, we attempted to arrange the

identified lAL PN types chronologically based on when their

precursors are susceptible to mitotic recombination. We first

determined the primary window(s) of susceptibility for each lAL

PN type (shaded boxes in Figure 3A; boxes that account for less

than 10% or less of the hits at the respective timing of clone

induction are not shaded, except for rarely hit neuron types,

including AMMC-9, and AMMC-15). All but two of the 45

identifiable PN types show a single narrow window of susceptibility

that staggers in partially overlapping manners along the ,120 h of

larval development. A tentative PN birth order can then be

deduced based on the starts and/or ends of the susceptible

windows as well as their prime times of appearance (Figure 3A).

We also determined the sequence of birth for the mPNs through

analysis of GAL4-GH146-labeled NB clones (Figure 3B–M0). We

witnessed a sequential loss of the 12 glomerular targets from the

NB clones of reducing sizes. As to their paired GMC clones, we

observed the serial appearance of the VA4, VC2, VC1, DM1,

DM2, VA5, and VA7m mPNs as they sequentially disappeared

from the NB clones of reducing sizes (Figure 3B–H0). Then some

DA1 mPNs were hit before the birth of DL3 mPNs, and additional

DA1 mPNs arose later with the NB clones lacking DL3 mPNs

(Figure 3I–K0). The remaining VM1, DA2, and DM5 mPNs then

followed in the same sequence as they disappeared from the NB

clones (Figure 3L–M0). In addition, certain NB clones apparently

paired with GH146-negative progeny and existed alone when

labeled with GAL4-GH146 (unpublished data). Ignoring those

gaps, we derived the following birth sequence for the 12 types of

lAL mPNs: VA4-VC2-VC1-DM1-DM2-VA5-VA7m-DA1-DL3-

DA1-VM1-DA2-DM4. The same birth order was obtained from

the analysis of nSyb-GAL4-labeled single-cell clones (Figure 3A).

Notably, mapping the lAL lineage using a ubiquitous driver, like

nSyb-GAL4, and through analysis of numerous serially derived

single-cell clones (Figure 3A), further allowed us to (1) fill the gaps

occupied by GH146-negative PNs, (2) resolve the mixing of DA1/

DL3 mPNs, and (3) uncover the paired LNs (see below).

The complete birth order of larval-derived lAL PNs unveils

several interesting points. First, distinct PNs are born in an

invariant sequence. Second, different PN classes are born in an

intercalated sequence with analogous PN types arising in separate

windows. For example, the 12 mPN types derive in nine blocks

that span nearly two-thirds of the larval development. During the

same period of time, 14 other PN types, including 10 types of

AMMC neurons, are made. Six additional AMMC types plus

three types of atypical AL PNs are derived afterwards. In contrast

with the late AMMC siblings, the majority of atypical AL PNs and

all the SOG neurons are born prior to the mPN-producing

windows. Third, the apparently arbitrary birth order is further

complicated by the recurrent production of DA1 and DL3 mPNs.

They are first born from 46 to 58 h after larval hatching and are

also generated roughly 12 h later (Figure 3A). DA1 mPNs

precedes DL3 mPNs during their initial contiguous production.

By contrast, DL3 mPNs arise before DA1 mPNs in their second

round of birth that is further separated by the production of two

types of AMMC neurons. The early-born DA1/DL3 and later-

derived DA1/DL3 mPNs are morphologically indistinguishable

and are both positive for GAL4-GH146. Nonetheless, the DA1/

DL3 mPNs born at different times pair with distinct LNs, and the

early-born DA1 mPNs can be further divided into two groups

based on their paired LNs (Figure 3A; see below).

Taken together, the lAL NB makes distinct PNs of diverse

classes in a fixed arbitrary sequence. Neurons acquire specific fates

based on their birth order, but the actual sequence of production

Figure 2. The lAL PNs can be grouped into five classes based on neuron morphology. Single PNs labeled by ts-MARCM with nSyb-GAL4
(magenta). Their LN sibs are not shown. Brains were co-stained with nc82 mAb (blue). Based on their morphology, the lAL PNs are grouped into
classical monoglomerular PN (mPN), unilateral PN (unPN), bilateral PN (biPN), antennal mechanosensory and motor center (AMMC) PN, or
suboesophageal ganglion (SOG) PN. The dendrites of each mPN innervate a single glomerulus in AL and its axon project to mushroom body (MB) and
lateral horn (LH) through inner antennocerebral tract (iACT). The unPNs and biPNs also have proximal innervations in AL, but unPNs innervate
ipsilateral AL only and biPNs innervate both ipsilateral and contralateral ALs. Different from mPNs that project axons exclusively to MB and LH, unPNs
and biPNs have distal projections targeting many other brain regions, often not through iACT. The AMMC and SOG PNs do not innervate AL but
instead innervate AMMC and SOG, respectively. The brain regions innervated by each type of the lAL neurons are marked (arrows). The 12 types of
mPN are named according to the glomeruli they innervate in AL, and their AL and lateral horn (LH) innervation are shown separately. Scale bar:
40 mm. Except for the AL region of mPNs, the background clones in these images were masked as described in Materials and Methods. AL, antennal
lobe; cAL, contralateral AL; PLP, posteriorlateral protocerebrum; PVLP, posterior ventrolateral protocerebrum; cPVLP, contralateral posterior
ventrolateral protocerebrum; SOG, suboesophageal ganglion; IB, inferior bridge; Ca, mushroom body calyx; LH, lateral horn; AMMC, antennal
mechanosensory and motor center; cAMMC, contralateral antennal mechanosensory and motor center; IVLP, inferior ventrolateral protocerebrum;
cIVLP, contralateral inferior ventrolateral protocerebrum; SMP, superior medial protocerebrum; CRE, crepine.
doi:10.1371/journal.pbio.1001425.g002
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reveals no obvious logic behind their stereotyped temporal

deployment. Analogous neurons can arise at different times across

the protracted lineage. Moreover, identical neurons can be born

consistently in two waves. To uncover the genes that determine

specific neuron classes versus the fates within a class will be critical

for elucidating the molecular mechanisms underlying such orderly,

but not class-by-class, production of distinct neuronal siblings.

Diverse Local Interneurons Pair with Distinct Projection
Neurons to Account for 48 Serially Derived Neuron Pairs

Besides PNs, the lAL lineage yields LNs. For most of the lineage,

PNs and LNs were made in pairs, as the mitotic recombination

during GMC divisions consistently led to the labeling of one PN

paired with one LN by ts-MARCM (Figure 4). However, the final

nine PN types were not paired with another neuron or a NB clone

(Figure 4). This indicates that either the paired cell died or could

not be labeled with nSyb-GAL4. Notably, the longer PN

hemilineage exhibits higher morphological diversity than its LN

sister hemilineage.

First, unlike PNs that innervate brain regions involved in multiple

sensory modalities, their paired LNs exclusively innervate the ALs

and should be selectively involved in olfaction. Second, many

distinct PNs were paired with indistinguishable LNs. Nonetheless,

the LNs can be grouped into four classes based on the extent of their

AL elaborations. The pan-AL LNs densely innervate all the

glomeruli in the AL; the lavish LNs occupy most, but not all, AL

glomeruli; the patchy LNs invade many glomeruli in spotty patterns;

the sparse LNs, by contrast, arborize locally within a few glomeruli

(Figure 5A–D). Notably, except for the DA1 and DL3 mPNs, PNs of

a given type consistently pair with a particular class of LNs. The

DA1 mPNs may be born with lavish, patchy, or sparse LNs, and the

DL3 mPNs can pair with patchy or sparse LNs. By contrast, the

remaining 43 PN types show strict sisterhood with one of the four

LN classes. Taking both PN and LN diversities into consideration,

we have in total recovered 48 distinct PN/LN pairs (Figure 4) that

arise sequentially from the lAL lineage as implicated from the

invariant birth order of the PNs (Figure 3A).

For those five PN/LN pairs (referred to as DA1/lavish, DA1/

patchy, DA1/sparse, DL3/patchy, and DL3/sparse, respectively)

whose distinction depends on the LN diversity, we refined the PN

grouping and determined the subgroups’ windows of production.

We found that DA1/lavish, DA1/patchy, and DL3/patchy are

born earlier in a contiguous sequence and that DL3/sparse and

DA1/sparse are born later in separate windows (Figure 3A). When

these 48 recognizable PN/LN pairs were chronologically arranged

based on the derived birth order (Figure 4), we noticed that, unlike

PNs, the AL LNs of different classes have arisen in a more logical

sequence with most pan-AL LNs (Figure 4A–D,F,G) born before

the lavish LNs (Figure 4E,H–Y, AC–AD), which largely precede

the patchy LNs (Figure 4Z–AB) and ultimately transit to the sparse

LNs (Figure 4AE–AM).

The pan-AL LNs paired with distinct PNs are morphologically

indistinguishable from one another. They show analogous electro-

physiological profiles [38], further indicating the homogeneity of the

pan-AL class of LNs. How about the other three classes of LNs?

Notably, the lavish or sparse LNs that associate with a particular PN

type (thus born in a specific developmental time window) tend to

avoid or innervate a characteristic set of AL glomeruli. To examine

the LN diversity in further detail, we computed the average AL

elaboration pattern of the LNs for each of the 48 sequentially

derived PN/LN pairs. We manually annotated individual LNs’

glomerular innervation patterns and then calculated the percentage

of LNs, for a given PN/LN-pair type, whose neurites could be found

within a particular glomerulus (Figure 5E). A uniform full pattern of

elaboration was ascertained in the pan-AL LNs paired with distinct

PNs (Figure 5). By contrast, the patchy LNs innervate various

glomeruli stochastically and may jointly tile the entire AL, as they

collectively show a low-penetrant targeting to nearly all the AL

glomeruli within any of the three PN/LN groups that carry patchy

LNs (Figure 5). Unlike the pan-AL and patchy LNs, the lavish as

well as sparse LNs exhibit discriminative patterns of elaboration

depending on the identity of the associated PNs. The lavish LNs

selectively avoid certain glomeruli, while the sparse LNs preferen-

tially innervate specific glomeruli (Figure 5). The stereotyped

patterns of AL glomerular innervation observed in the LNs, paired

with distinct PNs and born at specific developmental times, argue

for the presence of distinct types of lavish and sparse LNs. This is

distinct from the lack of discernible cellular diversity among the pan-

AL or patchy LNs.

The Projection Neuron and Local Interneuron
Hemilineages Alter Temporal Identity Independently

Using the glomerular innervation frequencies to represent the

LNs associated with a particular PN type and arranging them

chronologically based on the deduced PN birth order revealed that

the PN and LN hemilineages alter temporal identity independently.

The PN hemilineage is longer and yields many more morpholog-

ically distinct neurons than the LN hemilineage. In addition,

contrasting with PNs that arise in a rather complex sequence, the

four LN classes are produced roughly in the order of pan-

ALRlavishRpatchyRsparse (Figures 4 and 5E). During the

production of the relatively homogeneous pools of pan-AL or

patchy LNs, we witnessed multiple unilateral temporal fate changes

in the PN hemilineage (Figure 5E). As to the lavish and sparse LNs

that exhibit morphological subtypes, we found that LNs showing

indistinguishable AL elaboration patterns are born in contiguous

blocks that yield distinct PNs (Figure 5E). These observations

collectively indicate that LNs alter temporal identity (that controls

morphogenesis) at a slower tempo than PNs do, although they are

derived from the same GMCs. Despite the presence of fewer LN

fate transitions, the lavish-to-patchy LN fate switch consistently

occurs without a concomitant PN fate change. It subdivides the

window of DA1 mPN neurogenesis into two blocks that differ only

on the LN side (Figures 3A, 4Y–Z, and 5E). Taken together, PNs

and LNs undergo independent temporal identity changes.

The independent PN/LN temporal fate specification is further

evidenced by two unilateral PN fate duplications. The DA1 and

DL3 mPNs were initially made at 46 to 58 h after larval hatching

(ALH) paired with lavish or patch LNs. After that, the lAL NB

switched to produce AMMC PNs paired with various LNs.

Notably, around 70 to 84 h ALH, the lAL lineage yielded

additional DL3 and DA1 mPNs in reverse birth-order and

associated with sparse LNs (Figures 3A and 4Y,Z,AF,AI). These

phenomena collectively suggest that neuronal terminal fates are

determined in hemilineage-specific manners.

Differential Notch Activity Governs the Differential
Temporal Patterning Observed between Hemilineages

It is hard to image how the temporal fates of twin neurons can

be differentially patterned, given that neuronal temporal identities

are presumably conferred in the precursors by a set of sequentially

and transiently expressed transcription factors [8,22]. However,

we have learned that the PN versus LN binary cell fates are

determined through differential Notch signaling due to asymmet-

ric segregation of Numb [24,28]. We wondered if Notch merely

specifies PN/LN binary fates or it also governs the differential

patterning of PN and LN temporal fates. LNs were grossly
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Figure 3. The lAL PNs are produced in a specific birth order. (A) The table shows the percentage (numbers in the table body) of clones
labeling individual PN types (listed in the header column) in all the clones induced at a specific developmental time (indicated as hours after larval
hatching [h ALH] in the header row). Only the boxes with the percentage of clones equal to or above 10% are filled with blue. The PNs paired with
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transformed into PNs in the lAL NB clones that lacked Sanpodo

(Spdo) (see below), a positive regulator of Notch [12,39,40].

Analyzing the temporal fates for those PNs transformed from LNs

due to loss of Notch should help elucidate the role(s) of Notch in

specifying PN versus LN temporal fates.

We examined the PN composition of the PN-only spdo mutant

lAL NB clones. We selectively marked the 12 types of mPNs, born

in multiple clusters from 18 to 96 h ALH, with GAL4-GH146. We

further checked distinct populations of AMMC neurons using

GAL4-GR20C03 and GAL4-GR72G12. We found that the spdo

mutant lAL NB clones, labeled with any of the three GAL4

drivers, show wild-type morphologies but carry two times more

cell bodies (Figure 6). These observations indicate a perfect

duplication of the PN hemilineage in the spdo mutant clones and

suggest that the transformed PN hemilineage undergoes the same

temporal identity changes as the native PN hemilineage does.

Such results argue that the differential Notch signaling not only

promotes the LN or PN fate but also governs the differential

manifestation of temporal identity changes in the LN versus PN

hemilineage.

Notch Specifies the AMMC Fates in the Notch-Low
Projection Neuron Hemilineage through a spdo-
Independent Pathway

In contrast with the faithful duplication of diverse PNs in the

spdo mutant clones, the lAL NB clones homozygous for mutations

in notch or its co-activator Su(H) exhibited abnormal PN

compositions. Labeling entire clones with nSyb-GAL4 revealed

missing of the AMMC neurite tracks specifically in the notch or

Su(H) mutant NB clones (Figure 7C,D, compared to Figure 7A,B).

There was no evidence for cell loss, given that we consistently

counted around 200 cell bodies regardless of the clone genotype.

To exclude changes in the pattern of lAL neurogenesis, we further

determined the rate of proliferation at 30 h ALH when the lAL

NB mainly produces mPNs and at 70 h ALH when the AMMC

neurons are made. The sizes of wild-type and Su(H) clones were

comparable. Moreover, they carried analogous numbers of mitotic

cells (Table S2) as revealed with the mitosis marker phospho-

histone H3 (PH3) [41]. So the PN-only notch and Su(H) mutant

clones have made GMCs that yield viable neurons in correct

numbers and at right timings, making us wonder if the prospective

AMMC neurons have adopted other PN fates and acquired non-

AMMC neurite trajectories. Given the prominence of AL

neuronal elaborations in those clones lacking AMMC trajectories,

we examined if the notch and Su(H) mutant NB clones carry many

more AL PNs at the expense of AMMC neurons. We found that

notch mutant lAL NB clones contain about five times more

GH146-positive AL neurons than wild-type controls (Figure 7E,

compared to Figure 6A). A three times increase in the numbers of

the later-born DA1, DL3, VM1, DA2, and DM5 mPNs, visualized

with GAL4-GR83D12, was also observed in Su(H) mutant clones

(Figure 7F). Note the exclusive dense innervation of the DA1,

DL3, VM1, DA2, and DM5 glomeruli by the much enlarged

Su(H) mutant clones (Figure 7F), indicating an excessive produc-

tion of normal-looking AL PNs by the lAL NB deficit in notch or

Su(H). These observations suggest that the prospective AMMC

neurons of notch/Su(H) mutant clones might have aberrantly

adopted the AL PN fates characteristic of siblings born at different

times, reminiscent of some temporal cell fate transformation.

The majority of AMMC neurons are born after 60 h ALH

(Figure 7G). If the prospective AMMC neurons had been

transformed into AL PNs, one would expect that the supernu-

merary AL PNs were largely added during the second half of the

lAL lineage. To verify this viewpoint, we examined when the

GH146-positive mPNs were made in excess by the notch mutant

lAL NB. We fed the larvae harboring GAL4-GH146-labeled wild-

type or notch clones with EdU, a thymidine analog that labels

proliferating cells, for 1 d at 0–24, 24–48, or 48–72 h ALH

(Figure 7G). The pulse labeling of EdU first confirmed that the

GH146-positive mPNs were mostly generated between 24 and

72 h ALH (Figure 7H). It further revealed that the majority of the

excessive GH146-positive neurons in the notch mutant lAL NB

clones were born after 48 h ALH when the prospective AMMC

neurons were supposed to arise. Compared to wild-type controls,

notch mutant clones yielded two times more GH146-positive

neurons at 24–48 h ALH and up to four times more at 48–72 h

ALH (Figure 7H). This increase was not due to an acceleration of

NB proliferation, because the total numbers of the EdU-positive

cells on the lateral side of the AL remained comparable to those of

the wild-type controls (Figure 7I–L). And the 4-fold increase at 48–

72 h ALH cannot be fully accounted for by the LN-to-PN fate

changes. It argues instead that, on top of the binary cell fate

transformation, most, if not all, of the PNs yielded during that

period, including those that normally adopt the AMMC neuronal

fates, have uniformly developed into GH146-positive mPNs.

In sum, Notch signaling underlies the specification of AMMC

versus AL neurons in the Notch-low PN hemilineage. Interesting-

ly, the positive regulator of Notch, Spdo, is essential for the binary

cell fate decision between LNs and PNs but dispensable for the

temporal fate specification of the AMMC versus AL PN fates.

Analogous Dynamic Chinmo Expression Governs PN and
LN Temporal Fates in Hemilineage-Dependent Manners

Notch might regulate neuronal temporal cell fates through

refining temporal codes or modulating postmitotic neurons’

responses to Notch-independent transcriptional cascades.

Chinmo and Br-C are dynamically expressed during larval

neurogenesis [30,31]. We wondered if such dynamic gene

expressions exist in the developing lAL lineage and whether

these temporal signatures vary depending on Notch activities.

Consistent with previous reports [31], we could reliably detect a

sequential birth-order-dependent expression of Chinmo and Br-C

in the neuronal offspring of most, if not all, larval brain NBs.

Chinmo preceded Br-C in the partially overlapping temporal

gene expression, such that Chinmo(+)/Br-C(2) neurons consis-

tently reside deeper in the cell body layer than their Chinmo(2)/

Br-C(+) siblings (Figure 8A,B). We quantified the lAL offspring

positive for Chinmo and/or Br-C at 70 h ALH when many

AMMC precursors should already exist. We obtained compara-

ble numbers of Chinmo(+)/Br-C(2), Chinmo(+)/Br-C(+), and

Chinmo(2)/Br-C(+) neurons in the lAL NB clones regardless of

the genotype of spdo or Su(H) (Figure 8C). We conclude that the

different types of LNs are separated and put in different rows; for example, ‘‘DA1+lavish (LN)’’ and ‘‘DA1+patchy (LN)’’ are put in separate rows. (B–M0)
The GAL4-GH146-labeled ts-MARCM neuroblast (NB) clones of the lAL lineage induced at different developmental times to reveal the birth order of
the classical monoglomerular projection neurons (mPNs). The clones are arranged by their birth order from early to late. The single-cell side of the ts-
MARCM clone is pseudocolored in magenta, and the NB side of the clone is pseudocolored in green. Brains were co-labeled with nc82 mAb (cyan; B9–
M0). The dendritic elaboration in AL (B–M9) and the axonal terminals in LH (B0–M0) are shown separately. The background clones are indicated by
arrows. Note the sequential loss of earlier born neurons from the green NB clones. Scale bar: 20 mm.
doi:10.1371/journal.pbio.1001425.g003
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ChinmoRBr-C temporal expression takes place analogously in

both PN and LN hemilineages and independently of Notch

activities.

We further examined the involvement of Chinmo in specifying

neuronal temporal fates of PNs versus LNs. Using GAL4-GH146 to

monitor the orderly production of the 12 types of mPNs with ts-

Figure 4. The larval lAL lineage yields PNs and LNs in pairs except near the lineage end. The lAL PN/LN pairs (A–AM) and the lone lAL PNs
(AN–AV) arranged by their birth order from early to late. The neurons were labeled by ts-MARCM with nSyb-GAL4; LNs were pseudocolored in green
and PNs were pseudocolored in magenta. Brains were counterstained with nc82 mAb (blue) to reveal synaptic neuropil. The axonal terminal in the
lateral horn and the dendritic elaboration in the antennal lobe are shown separately for the 12 types of classical mPNs (K,M,N,P,Q,U,W,Y,Z,AA,A-
F,AI,AJ,AK,AM). Scale bar: 40 mm. Except for the antennal lobe region of the classical mPNs, the background clones in these images were masked as
described in Material and Methods.
doi:10.1371/journal.pbio.1001425.g004
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Figure 5. Annotation of lAL LNs based on birth order and neuron morphology. (A–D) Representative images of the four major classes of
lAL LNs: pan-glomeruli (pan) (A), lavish (B), patchy (C), and sparse (D). The LNs (green) were labeled by ts-MARCM with nSyb-GAL4. Their PN sibs are
not shown. Brains were counterstained with nc82 mAb (blue). Scale bar: 20 mm. (E) The table shows the glomeruli innervation patterns of the LNs
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MARCM, we demonstrated the requirement of Chinmo for

proper specification of the VC2, VC1, DM1, and DM2 temporal

fates (Figure 9A). All of them have aberrantly adopted the VA5

temporal fate following loss of Chinmo from respective GMCs, as

evidenced by their targeting of the VA5 glomerulus and the

branching of axons reminiscent of the wild-type VA5 mPNs

(Figure 9B–G for VC2; unpublished data for VC1, DM1, and

DM2). We then examined Chinmo’s requirement for their twin

LNs. We created mutant LNs paired with wild-type PNs as

isolated two-cell clones. Based on AL elaboration patterns, the

chinmo mutant LN of the VC2 mPNs (LN2) has adopted the fate of

LN3 (the twin LN of the VC1 mPN) rather than the fate of LN6

(the twin LN of the VA5 mPN) (Figure 9A). Compared to the wild-

type LN2 innervating near all AL glomeruli (Figure 9H), the

prospective LN2 homozygous for chinmo acquired a much more

restricted pattern of neurite elaboration and resembled the next-

born LN3 (Figure 9I,J). The transformed LN2 appears distinct

from LN6 that normally pairs with the VA5 mPN (Figure 9K),

although the chinmo2/2 VC2 mPN has consistently adopted the

VA5 mPN fate (Figure 9A–G). We did not observe chinmo-related

temporal identity phenotypes for other LNs examined so far.

Taken together, we identified chinmo as a temporal fating factor

in the lAL lineage. Notably, the Notch-independent dynamic

expression of Chinmo governs LN and PN temporal fates in

hemilineage-specific (i.e., Notch-dependent) manners, arguing that

Notch acts in parallel with or downstream of temporal fating

factors to determine terminal temporal fates (Figure 9L).

Discussion

Detailed analysis of the lateral antennal lobe (lAL) lineage attests

to the stereotypy of clonal development in the Drosophila central

brain, discloses novel types of antennal lobe (AL) neurons as well

as neurons that innervate other brain regions, and exemplifies how

diverse neurons of different classes can derive from a common

progenitor. The lAL neuroblast (NB) gives rise to a rather

heterogeneous population of neurons, which is achieved through

the derivation of two distinct hemilineages that yield projection

neurons (PNs) and local interneurons (LNs), respectively. The LN

hemilineage produces LNs exclusively for the AL, while the PN

hemilineage generates not only AL PNs but also PNs of the

antennal mechanosensory and motor center (AMMC) and

suboesophageal ganglion (SOG). Furthermore, the paired hemi-

lineages yield diverse PNs and LNs concurrently but in distinct

temporal patterns. Various neurons of different LN classes are

made one class after another. By contrast, distinct PNs arise in a

complex intercalated sequence. Given that most Drosophila

neuronal lineages (possibly all except the MB lineages) consist of

paired with different PN types. Each row represents one glomerulus. Each column, separated by the dashed lines, represents the average glomerular
innervation pattern for the LNs that are paired with the PN type shown on top (n indicates how many LNs were averaged). The LNs of different classes
are labeled in different colors (pan, green; lavish, yellow; patchy, pink; sparse, blue). The chance for the LNs paired with the same PN type to innervate
a particular glomerulus is color-coded as shown on the top-right corner of the figure. The LNs and their associated PNs are arranged by their birth
order with early born on the left and later born on the right. Note the presence of several developmental windows where morphologically
indistinguishable LNs can be associated with multiple sequentially produced PN types (two such examples are marked by ‘‘I’’ on the top of the table).
A different window shows the association of one PN type (DA1 mPN) with two sequentially produced LN classes (marked by ‘‘II’’ on the top of the
table).
doi:10.1371/journal.pbio.1001425.g005

Figure 6. Complete duplication of the PN hemilineage in the absence of Spdo. (A–F) Wild-type (A,C,E) and spdo (B,D,F) MARCM NB clones
induced at newly hatched larval stage. lAL clones were labeled by GAL4-GH146 (A,B), GAL4-20C03 (C,D), or GAL4-72G12 (E,F). In all cases, the overall
morphologies are the same between the wild-type and spdo mutant clones. The cell bodies are marked by arrowheads. Scale bar: 40 mm. (G) The bar
graph shows the statistical result of the cell number of the lAL MARCM clones showing in (A–F).
doi:10.1371/journal.pbio.1001425.g006
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Figure 7. The specification of AMMC PNs requires a Spdo-independent Notch activity. (A–F) Wild-type (A), spdo (B), notch (C,E), and Su(H)
(D,F) MARCM clones (green) labeled by nSyb-GAL4 (A–D), GAL4-GH146 (E), and GAL4-83D12 (F). Brains were counterstained with nc82 mAb (blue). The
arrows in (A) and (B) indicate the neurites of the AMMC PNs. The arrowheads in (B–D) indicate several regions in the antennal lobe not covered by the

Notch in Neuronal Temporal Fate Specification

PLOS Biology | www.plosbiology.org 12 November 2012 | Volume 10 | Issue 11 | e1001425



two distinct hemilineages or exist as a lone hemilineage [25,26],

neural development and neuronal diversification appear to be

orchestrated along hemilineages instead. This suggests that

understanding hemilineage identity will clarify a central organi-

zational theme in Drosophila brain development.

Interestingly, Notch governs hemilineage identity and further

patterns the hemilineage-characteristic temporal fate changes. By

lineage mapping using ts-MARCM and through analysis of sanpodo

(spdo) mutant clones, we confirm that the lAL lineage is made up of

a Notch-high LN hemilineage and a Notch-low PN hemilineage.

Despite their derivation from common GMCs, PNs and LNs

undergo temporal fate changes independently. The lAL PNs

exhibit higher cellular diversity and thus alter their temporal fates

more frequently than their LN sibs do. However, there are also

clones. The arrow in (C–E) indicates the antennocerebral (iACT) projection mainly from the GH146-positive lAL mPNs. The arrowhead in (E) indicates a
background clone of the anterodorsal projection neuron lineage. The insect in (F) shows a wild-type GAL4-83D12 clone. Scale bar: 40 mm. (G–J) Wild-
Type (WT) and notch MARCM clones labeled by GAL4-GH146 were induced at 0–2 h after larval hatching (ALH). After clone induction, the larvae were
fed EdU for 24 h at 0–24, 24–48, or 48–72 h ALH. The EdU-positive cell numbers in the clones were counted at the adult stage. (G) The illustration
shows the normal developmental windows for mPNs and AMMC PNs, the time of heat-shock (hs) for inducing MARCM clones, and the EdU-feeding
periods along the larval development. (H) The bar graph shows the number of the EdU-positive cells (y-axis) in the GAL4-GH146-labeled WT (blue) and
notch (green) MARCM clones in the flies fed with EdU at 0–24, 24–48, and 48–72 h ALH (x-axis). The error bars are standard deviation. The p value was
calculated using Student t test. (I–L) Examples of notch- (green in I) or wild-type-clone (green in K)–containing adult brains from the flies fed with EdU
at 48–72 h ALH. The brain was counterstained with anti-EdU (magenta) and nc82 (blue) Abs. The images in (J,L) are the same as that in (I,K) but show
only the EdU staining. Note comparable numbers of EdU-positive cells on the lateral side of the ALs between the left and right hemispheres. Scale
bar: 40 mm.
doi:10.1371/journal.pbio.1001425.g007

Figure 8. The temporal transition from Chinmo to Br-C is not affected by loss of Notch signaling. (A) The asense-GAL4-labeled wild-type,
spdo, and Su(H) lAL clones (white) immunostained for Chinmo (magenta) and Br-C (blue). Single confocal planes at superficial, middle, and deep
layers are shown. The white signals indicated by arrows are background clones. Scale bar: 10 mm. (B) The illustration shows the composition of the lAL
lineage at 70 h ALH based on the Chinmo and Br-C antibody staining. At the superficial layer, the NB, GMCs, and newly generated neurons are
negative for both Chinmo and Br-C. At the middle layer, the young neurons are positive for Br-C but negative for Chinmo. The neurons located
slightly deeper are positive for Chinmo and Br-C, and the earlier born neurons in the deep layer are only positive for Chinmo. (C) The table shows the
numbers of cells positive for Chinmo, Br-C, or both in asense-GAL4-labeled wild-type (WT), spdo, and Su(H) lAL clones at 70 h ALH.
doi:10.1371/journal.pbio.1001425.g008
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Figure 9. The PN and the LN hemilineages respond to chinmo loss-of-function differently. (A) The illustration summarizes the PN and LN
temporal fate changes due to loss of chinmo function. LN1–6 represent the LNs that are normally paired with the corresponding mPNs shown on top.
Without chinmo, the cells that normally differentiate into VC2 mPNs adopt the much later VA5 mPN fate, whereas the cells that normally differentiate
into the LN2 aberrantly acquire the next temporal fate. (B–D) A GAL4-GH146-labeled ts-MARCM clone that marks a chinmo2/2 VC2 mPN in green (A)
and the rest of the lineage in magenta (C,D). The brain was counterstained with anti-nc82 Ab (cyan). The chinmo2/2 VC2 mPN mainly innervates VA5
glomerulus with residual elaboration in VC2 glomerulus (B). The rest of the lineage contains only the neurons born after VC2 mPN, such as VA5 mPN
(C) and VC1 mPN (D), but not the neurons born before VC2 mPN, such as VA4 mPN (C). Scale bar: 20 mm. (E–G) ts-MARCM clones of a chinmo2/2 VC2
mPN (E), a WT VC2 mPN (F), and a WT VA5 mPN (G). Only the single-PN side of the ts-MARCM clones and only axon projections in the lateral horn are
shown. Note the chinmo2/2 VC2 mPN is more similar to the WT VA5 mPN than the WT VC2 mPN. Scale bar: 20 mm. (H–K) The nSyb-GAL4 labeled ts-
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developmental periods when one LN interclass fate switch

consistently occurs during the continuous production of a

particular PN type. Notably, knocking down spdo through the

lAL lineage development has resulted in duplication of the entire

PN hemilineage. This indicates that the prospective LNs have

been transformed into PNs with correct PN temporal fates. It

argues that twin neurons are born with identical temporal fating

factors and that the Spdo-dependent Notch activity has not only

promoted the LN fate but also governed the birth time/order-

dependent neuronal diversification in the LN hemilineage.

And Notch mediates cell fate decision between LNs and PNs as

well as within the Notch-low PN hemilineage where Notch acts in

a Spdo-dispensable manner to promote the AMMC PN fates as

opposed to the AL PN fates (Figure 9L). In the PN-only Notch or

Su(H), but not spdo, mutant lAL NB clones, the prospective

AMMC neurons aberrantly adopted various AL PN fates. Diverse

AMMC neurons and distinct AL PNs normally arise in alternative

blocks. Regardless of the AMMC-to-AL fate transformation, the

overall temporal patterning appeared intact in the AMMC-lacking

PN hemilineages as evidenced by comparable increases in the AL

PNs of various types (Figure 7). These observations suggest that

Notch is not involved in the regulation of GMC temporal identity

but rather diversifies PN temporal fates after birth of postmitotic

neurons. At this stage, we are still naı̈ve about the nature of such

Spdo-independent Notch signaling or the sources of the dynamics

that underlie the alternation of AMMC and AL PN fates.

Two mechanisms could underlie the Notch-dependent temporal

fate specification of both PNs and LNs (Figure 9L9,L0). First,

Notch High or Low may differentially modulate the refinement of

temporal fating factors in the newborn neurons. Lineage identity

genes have been shown to participate in subpatterning of temporal

cell fates in the NB 5–6 lineage [23]. It is possible that terminal

identity genes are established in postmitotic neurons through a

combined action of lineage determinants, GMCs’ temporal

identity factors and Notch signaling (Figure 9L9). Second, Notch

targets may modulate neuronal responses to common temporal

codes. Notably, the birth-order-dependent expressions of Chinmo

and Br-C in the lAL offspring were well maintained even when

loss of Notch signaling had elicited complex binary and temporal

fate transformations. And the Notch-independent dynamic

expression of Chinmo governed both PN and LN temporal fates

but in hemilineage-specific manners. These observations imply

that Notch acts downstream of temporal fating factors to regulate

neuronal temporal fates potentially through some epigenetic

mechanisms (Figure 9L0).

As to the neuronal details and their possible functions, the lAL

lineage yields diverse classes of AL LNs and PNs, many distinct

AMMC neurons, and a small number of SOG PNs, which may

contribute to the processing of various sensory inputs. Beside the

12 types of well-characterized monoglomerular PNs (mPNs) that

connect a single glomerulus of the AL to mushroom body (MB)

calyx and lateral horn (LH) [34,35], we identified eight types of

unilateral PN (unPN) and six types of bilateral PN (biPN). The

unPNs have proximal elaboration in the ipsilateral AL and biPNs

have that in both ipsilateral and contralateral AL. Interestingly,

unPNs and biPNs often connect AL to brain regions that have not

been shown to be involved in olfaction, such as posteriorlateral

protocerebrum (PLP), superior medial protocerebrum (SMP),

inferior ventrolateral protocerebrum (IVLP), and crepine (CRE)

(Figure S1). In addition to these putative olfactory neurons, there

are 16 types of AMMC PNs and three types of SOG PNs in the

lAL lineage. The SOG PNs have proximal innervation in

suboesophageal ganglion (SOG), the primary target for the

gustatory receptor neurons [42], and therefore are candidate

downstream neurons in the gustatory processing neural circuit.

The AMMC PNs have primary innervations in the antennal

mechanosensory and motor center (AMMC), which have been

shown to be important for hearing and gravity-sensing [43]. The

AMMC PNs therefore might be part of the auditory/gravity-

sensing circuit [43,44]. Notably, like many AL PNs, most AMMC

PNs have axon-like projection into IVLP (Figure S1). Such

convergence makes IVLP a potential integration site for various

inputs. The production of diverse PNs from a single progenitor

further suggests a possible evolution of distinct networks from a

common ancestral circuit.

In sum, the lAL NB makes multiple classes of diverse neurons in

a complex yet stereotyped pattern, manifested as a series of LN/

PN pairs and orchestrated through distinct Notch activities. The

Spdo-dependent Notch action that occurs in the Numb-negative

offspring has not only conferred the LN fate but also patterned the

LN temporal identities. A novel Spdo-independent Notch action is

further utilized to increase the PN temporal fates by promoting

AMMC neuronal fates in otherwise AL PNs. Both Notch-

mediated temporal fate regulations are apparently executed after

proper deployment of temporal fating factors. Taken together,

Notch plays integral roles in the derivation of final neuronal

temporal cell fates.

Materials and Methods

Fly Strains
The fly strains used in this study include (1) GAL4-GH146 [45]; (2)

asense-GAL4; (3) FRT19A,notch[55e11],UAS-mCD8::GFP; (4) FRT40A,

UAS-mCD8::GFP,UAS-rCD2i,Chinmo[1],GAL4-GH146/CyO; (5)

hs-FLP[1];FRT40A,UAS-rCD2::RFP,UAS-GFPi; (6) FRT40A,UAS-

mCD8::GFP,UAS-rCD2i;nSyb-GAL4(2-1); (7) FRT82B,spdo[27]/TM6B;

(8) 40A,Su(H)[delta 47]/CyO [46,47]; (9) FRT19A,hs-FLP[122],tubp-

GAL80;GAL4-GH146; (10) FRT19A,hs-FLP[1];nSyb-GAL4; (11) hs-

FLP[1];GAL4-GH146;FRT82B,tubp-GAL80; (12) hs-FLP[1];FRT82B,

MARCM two-cell clones of a wild-type (WT) VC2/WT LN2 pair (H), a WT VC2/chinmo2/2 LN2 pair (I), a WT VC1/WT LN3 pair (J), and a WT VA5/WT LN6
pair (K). The PNs and LNs were pseudocolored in magenta and green, respectively. The brains were counterstained with anti-nc82 Ab (blue). Note the
chinmo2/2 LN2 (I) is more similar to the WT LN3 (J) than the WT LN2 (H) and the WT LN6 (K). Scale bar: 20 mm. (L–L0) A model illustrating how
neuronal diversity is regulated by Notch in the lAL lineage. The lAL neuroblast (NB) undergoes repeated self-renewal divisions to yield a series of
ganglion mother cells (GMCs). Each GMC divides asymmetrically to generate a Notch-high and a Notch-low sister cells. The differential Notch activity
specifies one cell as a local interneuron (LN; Notch-high) and the other as a projection neuron (PN; Notch-low) through a Spdo-dependent pathway,
except at the end of the lineage where the Notch-high cells die before adulthood. In the Notch-low PN hemilineage, Notch activity is dynamically
regulated by an unknown mechanism and promotes AMMC neuron fates through a Spdo-independent pathway. Furthermore, the hemilineage-
specific Notch activity also regulates hemilineage-specific temporal identity specification by two potential mechanisms (L9,L0). The lAL NB sequentially
expresses a series of temporal identity factors (TIFs), analogous to HunchbackRKruppleRPdmRCaster observed during embryonic neurogenesis
[22]. The lAL GMCs inherit the transiently expressed TIFs. The TIFs work together with lineage identity factors to turn on downstream temporal fate
genes such as chinmo in the postmitotic neurons. Notch might act with lineage-specific factors and TIFs to regulate the expression of temporal fate
genes other than chinmo (L9). Alternatively, differential Notch signaling could govern the derivation of terminal identity genes in hemilineage-specific
manners through the control of postmitotic neurons’ responses to common temporal fate genes (L0).
doi:10.1371/journal.pbio.1001425.g009
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UAS-rCD2::RFP-UAS-GFPi; and (13) FRT82B,spdo[27],UAS-mCD8:

:GFP-UAS-rCD2i.

MARCM and ts-MARCM Clonal Analysis
Larvae 0–2 h old with proper genotype were collected and put

into vials (80 larvae/vial) containing standard fly food. The larvae

were raised at 25uC until desired stages. To induce clones, the

larvae were heat-shocked at 37uC for 15–40 min. After heat shock,

the larvae were put back to 25uC until dissection at desired stages.

Only male flies were dissected for the detailed lineage analysis of

the lAL neurons. Because background olfactory receptor neuron

(ORN) clones often interfered with the lAL clones in the antennal

lobe, we removed antennae 1 d after adult eclosion and waited for

3 d for the ORN axons to degenerate before brain dissection. For

the ts-MARCM clones in Figures 1B, 2, and 4, the clones of

interest inevitably coexist with various background clones due to

the use of the pan-neuronal driver nSyb-GAL4. In such cases,

confocal images of the brains containing clones of the same neuron

type were carefully compared stack by stack to determine the

background clones. The brain with the least background was

chosen and the background clones were manually masked to

reveal the clone of interest.

EdU Incorporation Assay
Larvae 0–2 h old with the genotype of FRT19A,notch[1],

UAS-mCD8::GFP/hs-FLP[122],FRT19A,tubp-GAL80;GAL4-GH146,

UAS-mCD8::GFP/CyO or FRT19A,UAS-mCD8::GFP/hs-FLP[122],

FRT19A,tubp-GAL80;GAL4-GH146,UAS-mCD8::GFP/CyO were heat-

shocked at 37uC for 1 h to induce MARCM clones. To feed the larvae

EdU at 0–24 h ALH, the larvae were transferred into vials (100 larvae/

vial) containing standard fly food with 100 mg/ml EdU (Invitrogen) for

24 h at 25uC, and then transferred into vials (100 larvae/vial) with

standard fly food only until adult eclosion. To feed the larvae EdU at

24–48 h or 48–72 h ALH, the larvae, after heat-shock, were

transferred into vials (100 larvae/vial) containing standard fly food

for 24 h or 48 h at 25uC. The larvae were then transferred into vials

(100 larvae/vial) containing standard fly food with 100 mg/ml EdU for

24 h at 25uC. After the EdU feeding, the larvae were transferred back

to the vials with standard fly food and raised at 25uC until adult

eclosion. The adult brains were dissected in 16 Phosphate buffered

saline (PBS) and stained for EdU using Click-iT EdU Alexa Fluor 555

Imaging Kit (Invitrogen). After the EdU staining, the brains were

washed three times by 16PBS with 0.75% Triton X-100 (0.75% PBT;

Fisher Scientific) for 15 min each. The brains were then incubated with

rabbit anti-GFP Ab (1:1,000; invitrogen) and mouse nc82 mAb (1:50;

DSHB) at 4uC overnight. Next day, the brains were washed with

0.75% PBT three times for 15 min each and incubated with Alexa

488-conjugated goat anti-rabbit (1:200; invitrogen) and Cy5-conjugat-

ed goat anti-mouse secondary antibodies (1:400; Jackson ImmunoR-

esearch) at 4uC overnight. Next day, the brains were washed with

0.75% PBT three times for 15 min each before mounted using

SlowFade gold anti-fade reagent (Invitrogen).

Immunohistochemistry and Microscopy
Fly brains were dissected in 16PBS, fixed in 16PBS with 4%

formaldehyde (Fisher Scientific) at room temperature for 20 min,

washed by 16PBS with 0.75% Triton X-100 (0.75% PBT; Fisher

Scientific) three times for 15 min each, and incubated in 16PBS

with 0.5% goat normal serum (Jackson ImmunoResearch) for

30 min before incubation with primary antibodies at 4uC
overnight. Next day, the brains were washed in 0.75% PBT three

times for 15 min each before incubated with secondary antibodies

at 4uC overnight. Next day, the brains were washed with 0.75%

PBT for 15 min for three times and mounted using SlowFade gold

anti-fade reagent (Invitrogen). The immunofluorescent signals

were collected by Zeiss LSM confocal microscope and processed

using Fiji and Adobe Photoshop. Primary antibodies used in this

study include rat anti-mCD8 mAb (1:100; Caltag), mouse nc82

mAb (1:100; DSHB), rabbit anti-Dsred (1:500; Clontech), mouse

anti-Br-C (core) (1:100; DSHB), rabbit anti-Chinmo (1:1,000)

[30], rabbit anti-PH3 (1:250; Upstate), and rabbit anti-GFP Ab

(1:1,000; invitrogen). The secondary antibodies were Alexa 488-

conjugated goat anti-rabbit or goat anti-rat (1:200; invitrogen),

Cy3-conjugated goat anti-rabbit (1:400; Jackson ImmunoRe-

search), and Cy5-conjugated goat anti-mouse (1:400; Jackson

ImmunoResearch).

Supporting Information

Figure S1 The projectome of lAL PNs. Schematic illustration of

lAL PNs (arrows) and their projections among various brain regions.

The directions of arrows indicate putative information flow from

dendrites to axonal terminals. The mPNs, unPNs, and biPNs

(labeled in green) have dendritic arborization in the AL, probably

involved in olfactory circuit (green). The AMMC PNs (labeled in

blue) possibly contribute to the auditory/gravity-sensing neural

network (blue). The SOG PNs (labeled in gray) are likely involved in

the gustatory neural circuit (gray). The PLP receives many inputs

from the AL and thus might be another odor information-

processing center besides the MB calyx (Ca) and lateral horn

(LH). In addition, the IVLP receives inputs from AL as well as

AMMC and potentially integrates olfactory and auditory/gravity

information. AL, antennal lobe; cAL, contralateral AL; PLP,

posteriorlateral protocerebrum; PVLP, posterior ventrolateral

protocerebrum; cPVLP, contralateral posterior ventrolateral pro-

tocerebrum; SOG, suboesophageal ganglion; IB, inferior bridge;

Ca, mushroom body calyx; LH, lateral horn; AMMC, antennal

mechanosensory and motor center; cAMMC, contralateral anten-

nal mechanosensory and motor center; IVLP, inferior ventrolateral

protocerebrum; cIVLP, contralateral inferior ventrolateral proto-

cerebrum; SMP, superior medial protocerebrum; CRE, crepine.

(TIF)

Table S1 The description of the lateral antennal lobe neurons.

The different zones in AMMC and their corresponding sensory

inputs were identified based on Kamikouchi et al. [48].

(TIF)

Table S2 The average number of PH3-positive cells and

percentage of PH3-positive neuroblasts (NBs) in wild-type (WT),

spdo, and Su(H) lAL clones at 30 h and 70 h ALH.

(TIF)
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