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Type 2 diabetes (T2D) is a metabolic disease with impact on brain function through
mechanisms that include glucose toxicity, vascular damage and blood–brain barrier
(BBB) impairments, mitochondrial dysfunction, oxidative stress, brain insulin resistance,
synaptic failure, neuroinflammation, and gliosis. Rodent models have been developed for
investigating T2D, and have contributed to our understanding of mechanisms involved
in T2D-induced brain dysfunction. Namely, mice or rats exposed to diabetogenic
diets that are rich in fat and/or sugar have been widely used since they develop
memory impairment, especially in tasks that depend on hippocampal processing.
Here we summarize main findings on brain energy metabolism alterations underlying
dysfunction of neuronal and glial cells promoted by diet-induced metabolic syndrome
that progresses to a T2D phenotype.
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INTRODUCTION

Diabetes mellitus is among the top 10 causes of death in the world. Insulin-resistant diabetes
(or T2D) often progresses from obesity, a pandemic that is favored by a sedentary lifestyle and
the widespread consumption of food products rich in saturated fat and refined carbohydrates
(Swinburn et al., 2011). Many factors of the metabolic syndrome impact brain function,
such as chronic hyperglycemia, microvascular complications, insulin resistance, dyslipidemia,
and hypertension (Duarte, 2015; Gaspar et al., 2016). There is also a growing body of
epidemiological evidence suggesting that insulin resistance is associated with increased risk of
developing age-related cognitive decline, mild cognitive impairment (MCI), vascular dementia,
and Alzheimer’s disease (AD) (Frisardi et al., 2010; Spauwen et al., 2013; de la Monte, 2017).
Brain insulin signaling deficits have been proposed to impact the brain through mechanisms that
include the modulation of energy metabolism, synaptic plasticity, learning and memory, as well
as interacting with Aβ and tau, the building blocks of amyloid plaques and neurofibrillary tangles
(Craft et al., 1998; Steen et al., 2005; Zhao and Townsend, 2009). In addition, a plethora of studies
in rodent models of diabetes suggest that both glucose neurotoxicity and deficient insulin signaling
impair brain structure and function leading to behavioral and cognitive alterations (e.g., Duarte
et al., 2012a, 2019; Calvo-Ochoa et al., 2014; Girault et al., 2019; Lizarbe et al., 2019b).

Abbreviations: Aβ, amyloid β; AD, Alzheimer’s disease; BBB, blood–brain barrier; CMRglc, cerebral metabolic rate of
glucose; FDG, [18F]-fluorodeoxyglucose; GK, Goto-Kakizaki; HFD, high-fat diet; IGF1, insulin-like growth factor 1; IR,
insulin receptor; MCI, mild cognitive impairment; MRS, magnetic resonance spectroscopy; NAA, N-acetylaspartate; PET,
positron emission tomography; T2D, type 2 diabetes.
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Hyper-caloric feeding is able to trigger insulin resistance, and
diet is also a modulator of brain function and neurodegeneration.
In cognitively normal individuals without obesity or
diabetes, nutritional patterns were found to associate with
11C-Pittsburgh compound-B (marker of β-amyloid plaques) and
[18F]-fluorodeoxyglucose (FDG; marker of glucose metabolism)
accumulation (Berti et al., 2015). Berti et al. verified that an
AD-protective diet includes high intake of fresh fruit and
vegetables, whole grains, fish and low-fat dairies, and low
consumption of sugar, high-fat food products, and processed
meat. Sugar intake was also found positively associated
with cerebral amyloid burden measured by [18F]-florbetapir
positron emission tomography (PET), and negatively correlated
with cognitive performance in cognitively normal subjects
(Taylor et al., 2017).

Dietary imbalances may trigger metabolic disorders and
obesity, which in the long-term may progress to insulin
resistance and T2D. Clinical studies set obesity and associated
metabolic derangements as important risk factors for dementia
(Pedditzi et al., 2016; Singh-Manoux et al., 2018; Bandosz
et al., 2020). Li et al. (2017) observed that cortical Aβ

deposition by [18F]-florbetapir PET was decreased in T2D
patients while Aβ levels increased in the cerebral spinal fluid.
Insulin resistance is associated with AD markers, such as
accumulation of 11C-Pittsburgh compound-B and FDG in PET
scans (Willette et al., 2015a,b), or Tau-protein levels in the
cerebral spinal fluid (Laws et al., 2017). Takenoshita et al.
(2019) investigated AD markers, namely, amyloid and Tau
protein deposition by PET, in AD associated to T2D, and
concluded that there are patient subgroups with neuronal
damage independent of AD pathology. It is apparent that
a diabetes-related dementia can be considered a different
entity from AD itself.

Although several mechanisms underpin brain dysfunction
that leads to poor cognitive performance in T2D (Gaspar et al.,
2016), confusion and controversy landed in the field due to the
variety of phenotypes generated in experimental animal models
of T2D. Nevertheless, our knowledge on brain dysfunction
mechanisms upon exposure to diabetogenic diets is increasing,
and may help preventing cognitive deterioration associated to
poor life styles.

MEMORY DYSFUNCTION INDUCED BY
DIABETOGENIC DIETS

Many studies in T2D animal models have employed diets rich
in sugar and/or fat in order to induce T2D, namely, high-
fat diet (HFD), high-sucrose diet, high-fructose diet, or the
combination of some of them. Glucose intolerance develops
promptly in rodents exposed to HFD, followed by a progressive
increase of fasting insulin levels and metabolic derangements
such as hepatic lipid accumulation (Soares et al., 2018). We
have also recently reported that increasing the dietary amount
of lard-based fat from 10 to 45 or 60% leads to slightly
different diabetic phenotypes: compared to controls that were
exposed to the low-fat diet, increased fed glycemia and plasma

corticosterone were observed in mice fed a 60%- but not 45%-fat
diet (Lizarbe et al., 2019b).

Similar degree of insulin resistance and of stress biomarkers
in liver and pancreas have been observed in rats exposed to
HFD, high-fructose diet, or the combination of both, compared
to control diet (Balakumar et al., 2016). In mice, HFD feeding
was found to cause elevated basal insulin levels, which was not
observed in mice fed a combined high-fat and high-sucrose diet,
despite similar energy intake and degree of glucose intolerance
(Omar et al., 2012). The authors attributed this difference to the
distinct effect on insulin secretion and insulin sensitivity.

In addition to the employment of different animal species or
strains, such differences in dietary fat and sugar amounts are
likely to explain that a variety of metabolic profiles are developed
by experimental animal models in different studies.

Major hypothalamic injury has been proposed to occur within
a few days of HFD feeding, this preceding weight gain (Thaler
et al., 2012). Thus, early hypothalamic alterations are important
determinants for the loss of whole-body metabolic control
upon exposure to obesogenic diets. Indeed, regulation of energy
balance relies on glucose sensing by neuronal networks that
control food intake, hepatic glucose production, and pancreatic
counter-regulatory hormone secretion. The hypothalamus is a
primary site for integration of peripheral and central neuronal
signals and hormonal inputs (Jordan et al., 2010). Impaired
hypothalamic glucose sensing is key in developing T2D in obese
humans and animal models (Colombani et al., 2009; Thaler et al.,
2012; Gaspar et al., 2018).

Despite differences in metabolic phenotypes, all these
diabetogenic diet interventions generate metabolic syndrome
phenotypes that impact brain function, particularly the
performance in hippocampal-dependent memory tasks (Soares
et al., 2013; Beilharz et al., 2014; Hsu et al., 2015; Lemos
et al., 2016; de Souza et al., 2019; Lizarbe et al., 2019b). For
example, rats exposed to one week of high-fat and fructose diet
displayed impaired hippocampal insulin signaling, and smaller
hippocampal size with synaptic degeneration, reduced neuronal
processes, and astrogliosis (Calvo-Ochoa et al., 2014). Rats under
a similar diet for 5 days displayed impaired performance in place
but not object recognition tasks (Beilharz et al., 2014), which
are dependent on hippocampus and perirhinal cortex function,
respectively. HFD alone also impairs hippocampal-dependent
memory (McNay et al., 2010; Pistell et al., 2010; Lizarbe et al.,
2019b). Rodents that were allowed to drink a 35% sucrose
solution for 2–3 months while fed a low fat diet also develop
hippocampal-dependent spatial memory impairment (Soares
et al., 2013; Lemos et al., 2016).

While memory assessments have been mostly focused on
spatial memory that depends on hippocampal functioning, other
functional domains remain to the thoroughly investigated.

HYPERGLYCEMIA AND BRAIN
GLUCOSE TOXICITY

It is well established that glucose neurotoxicity upon uncontrolled
hyperglycemia contributes to cellular dysfunction through (i)
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increased polyol pathway flux, (ii) increased advanced glycation
end-product formation, (iii) activation of protein kinase C
(PKC) isoforms, and (iv) increased hexosamine pathway flux
(Brownlee, 2001). Since the brain has about fivefold less glucose
than plasma (Gruetter et al., 1998; Choi et al., 2001; Duarte
et al., 2009b), endothelial cells in cerebral vessels are more
susceptible to damage by hyperglycemia than cells in the brain
parenchyma. Deterioration of the cerebral vasculature can lead
to impaired BBB permeability in diabetes, as well as in aging and
neurodegenerative disorders (Ueno et al., 2016). However, there
is controversial evidence regarding cerebral microcirculation
pathology and BBB dysfunction in rodent models of diabetes or
in vitro models of chronic hyperglycemia (Andaloussi et al., 2018;
Rom et al., 2019, and the references therein).

Measurements of brain-to-plasma glucose concentrations
in vivo have not confirmed a substantial degree of BBB
leakage in streptozotocin-induced diabetic rats maintained under
hyperglycemia (>20 mmol/L) for 1 month (Duarte et al., 2009a;
Wang et al., 2012), or in insulin resistant GK rats that show
sustained fed glycemia of 9–16 mmol/L (Duarte et al., 2019;
Girault et al., 2019). Accordingly, Andaloussi et al. (2018) have
not observed BBB permeability alterations or morphological
changes in brain vasculature of Ins2AKITA mice that display
sustained hyperglycemia above 20 mmol/L. Nevertheless, gene
expression profiles in brain microvessels isolated from models of
diabetes point toward deregulated expression of genes related to
angiogenesis, inflammation, vasoconstriction and vasodilation,
and platelet activation pathways (Rom et al., 2019). Proteomic
analyses suggest impaired metabolic activity in microvessels
from the cerebral cortex of HFD-exposed mice compared to
controls (Ouyang et al., 2014), even though HDF exposure
results in limited increases of blood glucose levels (Soares
et al., 2018; Lizarbe et al., 2019b). Such alterations are likely
to impact brain perfusion and to limit nutrient delivery for
fueling neuronal energetics (Glaser et al., 2012; Bangen et al.,
2018). In mice, exposure to HFD impairs vascular reactivity
(relaxation and contractile responses) and cerebral blood flow
of the middle cerebral artery and of intraparenchymal micro
vessels in prefrontal cortex and hippocampus, without changes
of baseline perfusion (Pétrault et al., 2019). Accordingly,
HFD feeding also exacerbates memory impairment induced by
carotid occlusion without changes in basal cerebral blood flow
(Zuloaga et al., 2016).

In sum, BBB breakdown mechanisms in diabetogenic diets are
unlikely to be directly linked to hyperglycemia, but may include
alterations of endothelial functions.

BRAIN INSULIN RESISTANCE

Various metabolic hormones (ghrelin, insulin, leptin, glucagon-
like peptide 1), which are key in central regulation of appetite
through activation of receptors expressed in brain regions
such as the hypothalamus, also play a role in learning and
memory (Suarez et al., 2019). Insulin has been considered
of particular importance for dementia and early changes
of glucose metabolism (Duarte, 2015; Gaspar et al., 2016;

Lee et al., 2018). However, it has been debated whether
brain insulin resistance and metabolic changes are cause
or consequence of neurodegeneration (Stanley et al., 2016;
Mullins et al., 2017).

Insulin resistance (when cells do not respond to insulin)
occurs in T2D, is associated to increased dementia risk, partly
due to poor insulin signaling in neurons (Duarte, 2015). Brains
from subjects with dementia and AD downregulated insulin
receptors (IRs) and pointed toward a major role of neuronal
insulin signaling in AD (Duarte, 2015; Barone et al., 2016; Sharma
et al., 2019). Glucose utilization by the brain declines with age
and is notably impaired in subjects with early AD, which may be
related to insulin action in key areas for memory/cognition (Lee
et al., 2018). Interestingly, insulin resistance may be differentially
associated with either glucose hypo- or hyper-metabolism across
different brain areas (Willette et al., 2015b). In fact, Willette
et al. found that peripheral insulin resistance is correlated with
reduced glucose metabolism in the brain of AD patients, while
a positive correlation was observed in the brain of individuals
with MCI that then progress to develop AD. Work on animal
models of AD, T2D, or insulin resistance also points toward
an association between insulin signaling and AD-like pathology
(Duarte, 2015; Triani et al., 2018; Sharma et al., 2019). Diverse
clinical trials testing the efficacy of insulin to treat AD and MCI
are being conducted (Craft et al., 2012; Chapman et al., 2018;
Lee et al., 2018).

Insulin is of particular importance in some specific brain
areas: the hypothalamus that centrally regulates body energy
homeostasis, the fusiform gyrus that plays a role in object
recognition tasks, prefrontal areas that process sensory
information, and the hippocampus that is key for memory
formation (Heni et al., 2015). Binding of insulin to the IR
activates the IR substrates IRS1 and IRS2, which in turn activate
signaling cascades for brain function regulation, including
metabolic processes in the different brain cells (Mullins
et al., 2017). Importantly, insulin regulates the expression of
genes necessary for memory consolidation, namely, via the
mitogen-activated protein kinase (MAPK) pathway (Kelly
et al., 2003; Dou et al., 2005). Insulin also participates in
controlling the main cellular metabolic sensor AMP-activated
protein kinase (AMPK) (Hardie, 2004; Marinangeli et al.,
2016), which might provide a means to afford neuroprotection
through metabolic control (Marinangeli et al., 2016). Thus,
impaired insulin signaling might contribute to poor fueling of
brain activity.

Brain glucose uptake is not dependent on insulin, but might
be under control of insulin in specific subcellular compartments
(Figure 1). For example, activity at synapses was shown to trigger
the mobilization of GLUT4 (the insulin-sensitive glucose carrier)
from intracellular sources into axonal plasma membranes, a
process that is mediated by the metabolic sensor AMPK, and is
necessary for increasing glucose flux into neurons during periods
of high metabolic demand, such as during learning (Pearson-
Leary and McNay, 2016; Ashrafi et al., 2017). Interestingly, it has
been shown that toxic Aβ oligomers impair insulin signaling and
decrease plasma membrane translocation of the insulin-sensitive
GLUT4 in the hippocampus (Pearson-Leary and McNay, 2012),
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FIGURE 1 | Possible mechanisms by which insulin might regulate fueling of
neurons to sustain adequate brain function.

which might result in poor support of energetic demands within
active synapses.

While the focus of insulin signaling has been mostly on
neurons, astrocytes also have receptors for insulin and IGF1
that may be key for maintaining GLUT1 at the plasma
membrane (Fernandez et al., 2017), and thus regulating
glucose utilization. In addition, glycogen metabolism, which
is crucial for fueling glutamatergic neurotransmission and
memory (Alberini et al., 2018), has also been proposed to
be under insulin and IGF-1 regulation in cultured astrocytes
(Muhič et al., 2015). Although insulin-dependent glycogen
metabolism regulation in vivo remains to be elucidated, brain
glycogen is mobilized rapidly for supporting glutamatergic
neurotransmission in vivo (Gibbs et al., 2007), or metabolism
during reduced fuel supply (Swanson et al., 1989; Choi et al., 2003;
Duarte et al., 2017).

Mitochondria are the power-house of the cell, and
mitochondrial dysfunction has been shown to be involved
in neurodegenerative processes (Belenguer et al., 2019). Insulin
might also control oxidative metabolism in mitochondria of
neurons and astrocytes by regulating mitochondrial dynamics,
biogenesis or autophagy, oxidative stress and apoptosis (Santos
et al., 2014; Westermeier et al., 2015; Ruegsegger et al., 2019).
The network of mitochondria is regulated by a fine balance of
fission, involving the GTPase dynamin-like protein 1 (DRP1),
and fusion processes involving Mitofusin 1 (Mfn1), Mitofusin 2
(Mfn2), and optic atrophy 1 (OPA1) protein (Belenguer et al.,
2019). Mitochondrial dynamics dysregulation plays a role in
hypothalamic dysfunction upon HFD exposure (Dietrich et al.,
2013), and a diabetes-induced increase of DRP1 phosphorylation
was observed in the cerebral cortex (Santos et al., 2014). Recently,
Ruegsegger et al. (2019) observed increased DRP1 as well as its
phosphorylation without changes in Mfn1/2 and OPA1, as well as
the expected mitochondrial fragmentation in the HFD-exposed
hippocampus. Smaller mitochondria have been associated to
reduced oxidative phosphorylation and ATP production rates
(Schmitt et al., 2018; Belenguer et al., 2019). Therefore, the loss

of mitochondrial metabolism regulation by insulin might result
in impaired fueling of neuronal and astrocytic functions.

SYNAPTIC DYSFUNCTION

Damage of synapses is the most important step for brain
dysfunction (Morrison and Baxter, 2012), and the degree of
synaptic changes correlates with the severity of cognitive decline
(Sheng et al., 2012). Synaptic dysfunction and neurotoxicity in
age-associated dementia and AD are mainly caused by amyloid
plaques, but also neuroinflammation with reactive microglia
(Moore et al., 2019). Mitochondria are also involved in synaptic
degeneration due to compromised ATP synthesis (energy
failure), as well as impaired Ca2+ handling, increased production
of reactive oxygen species (ROS), impaired production
of metabolites that are neurotransmitter precursors, and
dysregulation of mitochondrial dynamics and mitochondria-
dependent cell signaling transduction (Tait and Green, 2012;
Guo et al., 2017; Belenguer et al., 2019).

Cognitive dysfunction connected to diabetes is particularly
associated with significant changes in the integrity of the
hippocampus, a brain region considered to mediate memory
formation in animals, and electrophysiological analyses indicate
that diabetes impairs synaptic plasticity in hippocampal slices
(Biessels et al., 2002; Trudeau et al., 2004; Duarte et al., 2019).
Based on this, the vast majority of translational studies in animal
models of diabetes were dedicated to the study of hippocampal
structure and function. Impaired hippocampal-dependent spatial
learning and memory have been demonstrated in different animal
models of diabetes (e.g., Flood et al., 1990; Duarte et al., 2012a,
2019; Lizarbe et al., 2019b).

Diabetic conditions, including short- and long-term exposure
to diets rich in fat and/or sugar, lead to synaptic deterioration
that results in defective neurotransmission and synaptic plasticity
in the hippocampus (Nitta et al., 2002; Duarte et al., 2009a,
2012a, 2019; Calvo-Ochoa et al., 2014; Girault et al., 2019;
Lizarbe et al., 2019b). Interestingly, intranasal insulin treatment
in insulin-deficient mice was shown to ameliorate synaptic
degeneration and deficits in learning and memory, without
preventing hyperglycemia (Francis et al., 2008). This indicates
that impairment of central insulin signaling is indeed an
important factor for diabetes-induced brain injury.

INFLAMMATION AND GLIOSIS

The neurodegenerative process in the hippocampus of diabetes
models is accompanied by neuroinflammation and astrogliosis
(e.g., Saravia et al., 2002; Baydas et al., 2003; Duarte et al.,
2009a, 2012a, 2019; Calvo-Ochoa et al., 2014). Inflammation
and activation of microglia have been observed in animal
models fed diabetogenic diets and have been linked to memory
impairment. However, the activation of microglia as consequence
of diabetogenic diet exposure has not been consistently observed.

Seven days of feeding a diet rich in fat and fructose
induced hippocampal dendritic damage, accompanied by an
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increase of reactive astrocytes associated with microglial changes
(Calvo-Ochoa et al., 2014). Long-term HFD consumption
(4 months) increased expression of pro-inflammatory cytokines
in hippocampus of rats, namely, IL-6, IL-1β, and TNFα (Dutheil
et al., 2016). In contrast, astrogliosis (elevated levels of GFAP)
and microgliosis (elevated levels of Iba1) were not observed
in the hippocampus of mice exposed to HFD for 6 months
(Lizarbe et al., 2019b). Denver et al. (2018) showed astrogliosis
and microgliosis in cortex and dentate gyrus of mice fed a HFD
for 18 days, but not after 1 month, even though the expression
of inflammatory genes such as IKKβ, ERK2, mTOR, NF-kB1,
and TLR4 persisted upregulated for 5 months on HFD (Denver
et al., 2018). It should be noted, however, that levels of GFAP or
Iba1 alone might not report on changes in cellular morphology,
and such simplistic assessments might contribute to reported
controversies (Gzielo et al., 2017).

Proliferation of microglia might also depend on the age of
HFD exposure. Aged animals appear to be more susceptible to
develop HFD-induced neuroinflammation (Spencer et al., 2019).
Hsu et al. (2015) also observed age-dependent inflammation
effects of exposure to sugar-rich diets. Namely, diabetogenic diets
rich in sucrose or fructose for 1 month, which that do not result
in obesity, triggered memory impairment with some degree of
neuroinflammation in the hippocampus of adolescent rats, but
not in adults (Hsu et al., 2015).

In sum, neuroinflammation profiles not only change with the
duration of HFD exposure, but also depend on the age of onset.

BRAIN ENERGY METABOLISM IN
DIET-INDUCED T2D

Brain function requires continuous supply of glucose and oxygen
and a tight regulation of metabolic interactions between neurons
and astrocytes (Sonnay et al., 2017). Loss of this metabolic
regulation that fuels neuronal activity has been proposed to be the
culprit of memory dysfunction (Alberini et al., 2018), followed by
an important neurodegenerative process (de la Monte, 2017).

The predominant glucose carrier isoforms involved in cerebral
glucose utilization are GLUT1 and GLUT3. GLUT1 is expressed
in all brain cells including the endothelial cells and with very
low neuronal expression, while GLUT3 is almost restricted to
neurons (Simpson et al., 2007). Levels of the main BBB carrier
GLUT1 were found reduced in the hippocampus of insulin
resistant GK rats (Soares et al., 2019). In contrast, Vannucci
et al. (1997) reported no changes in the density of GLUT1 or
GLUT3, in the brain of db/db mice, relative to wild-type mice.
Nevertheless, both studies found T2D-induced reduced cerebral
glucose utilization (Vannucci et al., 1997; Soares et al., 2019).
Lower levels of both GLUT1 and GLUT3 were found in the
brain of mice under a diet rich in fat and sugar for 3 months
(Kothari et al., 2017). Mice fed an HFD for 3 months also showed
reduced density of the neuronal GLUT3, and of the insulin-
dependent GLUT4 that is key for synaptic fueling (see above),
when compared to controls (Liu et al., 2015). Altogether, this
suggests that brain cells, and especially neurons, have reduced
access to glucose in the insulin resistant brain.

PET scans using FDG are commonly used to evaluate
brain glucose uptake in both humans and animal models, as
well as the CMRglc utilization. Although insulin is the main
regulator of peripheral glucose metabolism, it is considered
to not control glucose uptake and utilization in the healthy
brain (e.g., Hasselbalch et al., 1999). In contrast, insulin was
shown to stimulate brain glucose metabolism in subjects with
impaired glucose tolerance (Hirvonen et al., 2011) and there have
been reports of inverse relations between insulin resistance and
CMRglc (Baker et al., 2011; Willette et al., 2015b). Using FDG-
PET, Liu et al. (2017) observed lower glucose uptake in the brain
of mice fed an HFD for about 2 months, relative to controls.

Mitochondria are key in neurodegeneration processes,
namely, due to oxidative phosphorylation dysfunction, impaired
Ca2+ homeostasis and signaling, and oxidative stress (Belenguer
et al., 2019). Impaired mitochondria dynamics resulting in
mitochondrial fragmentation was observed in the hippocampus
of mice exposed to HFD (Ruegsegger et al., 2019), which might
result in reduced energy production (Schmitt et al., 2018). Park
et al. (2018) showed that mitochondrial activity is affected in
mice fed with HFD. More specifically, they suggested enhanced
mitochondrial production of H2O2, impaired O2 consumption,
and lower Ca2+ retention capacity in the hippocampus of HFD-
exposed mice compared to controls. Moreover, the hippocampus
of mice fed an HFD for 6 months showed deficits in the
respiratory chain and oxidative phosphorylation (at the level
of complexes I, II, III, and IV), as well as reduced levels of key
proteins for mitochondrial health, such as PGC-1α and TFAM
(Petrov et al., 2015). Decrease in mitochondrial respiration,
membrane potential, and energy levels was also observed in
the cerebral cortex and hippocampus of mice exposed to high
sucrose (20%) in the drinking water, defects that are associated
to reduced levels of key proteins for mitochondrial function,
such as ATG7, LAMP1, ND1, and NRF2 (Carvalho et al., 2015).
Although not all diet-induced diabetic phenotypes comprise
baseline fed hyperglycemia, increased glucose levels in the brain
might contribute to mitochondrial defects (Hinder et al., 2012).
Unfortunately, studies of mitochondria from diabetes models
have not been designed to distinguish between the different
cellular compartments, that is, whether mitochondria originate
from neurons or other brain cells. It is plausible that neuronal
mitochondria, especially those locate within or near synapses,
are key in the process of synaptic deterioration. On the other
hand, altered metabolism within processes of reactive astrocytes
is likely to contribute for poor support of neurons and synapses.

Neuron–Astrocyte Metabolic Interactions
There is abundant knowledge on the plethora of molecular
events in neurons that define synaptic activity and the
electrophysiological basis of memory. By contrast, mechanisms
by which other brain cells regulate synaptic functions are
less understood. Astrocytes are brain cells that surround
synapses, and are well equipped to modulate neuronal functions,
namely, those involved in memory formation: they are
excitable through Ca2+ fluctuations when responding to
neurotransmitters released at synapses, synchronize to nearby
astrocytes by Ca2+ waves, release gliotransmitters that influence
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synaptic plasticity, communicate to blood vessels thus coupling
neuronal activity to nutrient supply from circulation, and
regulate energy metabolism in support of neurons (Sonnay
et al., 2017). Indeed, there is a tight coupling between
oxidative metabolism in astrocytic mitochondria and excitatory
glutamatergic neurotransmission, defined by the rate of the
glutamate-glutamine cycle (Sonnay et al., 2016, 2018), which is
crucial for brain function and memory (Alberini et al., 2018).
Notably, astrocytes are also the brain reservoir of glucose storage
in the form of glycogen, which is nearly absent in neurons (Duran
et al., 2019), and lactate produced by glycogenosis and glycolysis
in astrocytes has been proposed to be necessary for fueling
brain function and memory (Alberini et al., 2018). While healthy
astrocytes support neurons, neuroinflammatory microglia release
molecules that favor the formation of a neurotoxic subset of
astrocytes called A1. A1 astrocytes lose their normal functions,
and also secrete harmful factors that may damage neurons
(Liddelow and Barres, 2017). Upon this astrogliosis process, the
metabolic support from astrocytes to neurons is likely disrupted.

In non-obese, insulin-resistant GK rats, T2D is
associated to impaired glucose utilization and glutamatergic
neurotransmission in neurons, while astrocytes in vivo display
exacerbated oxidative metabolism and impaired glutamine
synthesis (Girault et al., 2019). According to increased
mitochondrial metabolism in astrocytes, Liu et al. (2017)

reported higher labeling incorporation from [13C]acetate (an
astrocyte-specific metabolic tracer) into glutamine in HFD-fed
mice than controls, without substantial changes of labeling from
[13C]glucose. Astrocytic glutamine production is particularly
importance for excitatory glutamatergic neurotransmission.
Furthermore, work on GK rats shows that insulin resistance
is associated with defects of astrocytic glycogen metabolism,
namely, in the hippocampus that controls learning/memory
(Soares et al., 2019). These observations suggest that energy
metabolism in astrocytes is dysregulated in diabetes and might
contribute to synaptic dysfunction (Figure 2). Such energy
metabolism changes result in modified brain metabolic profiles
in GK rats, as measured in vivo by 1H magnetic resonance
spectroscopy (MRS), and are accompanied by astrogliosis, loss of
synaptic proteins required for neurotransmission, and impaired
synaptic plasticity (Duarte et al., 2019). Similar decreased density
of proteins that depict synaptic degeneration was verified in the
hippocampus of mice fed a HFD for 6 months (Lizarbe et al.,
2019b), and obese NONcNZO10/LtJ mice (Duarte et al., 2012a).

Brain Metabolic Profiles
Modifications of brain metabolism in diet-induced obesity and
diabetes are likely to be reflected in brain metabolic profiles,
which can be measured in vivo by MRS. In diabetes patients,
studies have generally observed a reduction in the levels of the

FIGURE 2 | Brain energy metabolism alterations in insulin resistant GK rats (A). Down and up arrows indicate decreased and increased rate of pathways in
insulin-resistant GK rats, respectively (Girault et al., 2019; Soares et al., 2019). These alterations are supported by findings of increased astroglial markers (GFAP and
vimentin) and reduced levels of synaptic proteins in the hippocampus of GK rats, relative to control Wistar rats (B). Mice exposed to 60% HFD for 6 months also
show synaptic degeneration in the hippocampus, as suggested by reduced levels of synaptic proteins, versus 10% fat-fed control mice (C). MAP2 is a neuronal
marker, PSD95 and gephyrin are post-synaptic density markers, SNAP25, synaptophysin, and syntaxin-1/4 are located in the presynaptic button, and vGluT1/2 and
vGAT are transporters in synaptic vesicles. Data in graphs of B and C are from Duarte et al. (2019) and Lizarbe et al. (2019a), respectively, and are shown as% of
controls (mean ± SD). Tglc, glucose transport; CMRglc, cerebral metabolic rate of glucose; PC, pyruvate carboxylase; TCA, tricarboxylic acid; GLUergic NT,
glutamatergic neurotransmission.
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putative neuronal marker N-acetylaspartate (NAA), as well as
an increase in myo-inositol content (Duarte, 2016). Levels of
myo-inositol in brain MRS are considered to reflect the size of
the astrocytic metabolic pool (discussed in Duarte et al., 2012c).
Alterations in the concentration of these two brain metabolites
are generally patent in neurodegenerative disorders, namely,
AD, Parkinson’s disease, and Huntington’s disease (Duarte
et al., 2014). Moreover, concentrations of both NAA and myo-
inositol were found to be associated with insulin sensitivity
(Karczewska-Kupczewska et al., 2013).

Higher concentrations of myo-inositol were also observed in
hypothalamus but not hippocampus or cortex of mice fed a
60% HFD during 6 months (Lizarbe et al., 2019a,b). However,
rather than reduced NAA levels, these MRS experiments have
found an increase of NAA content particularly prominent in
the hippocampus. This NAA increase may be linked to changes
of osmolarity since the concentration of other major osmolites
such as taurine and creatine was also observed. In rats under
60% HFD for 5 months, Raider et al. (2016) have observed no
changes in hippocampal NAA but reduced levels of myo-inositol,
compared to controls. Hassan et al. (2018) also observed HFD-
induced metabolic changes in extracts from the prefrontal cortex,
namely, higher relative concentrations of lactate, alanine, taurine,
and myo-inositol, and lower GABA levels. Some metabolic
alterations were also observed in the mouse striatum, but not
in the hippocampus and hypothalamus. Differences between
metabolic profiles in vivo and post mortem might contribute to
the differences in these studies. However, further work must be
undertaken to understand the cause of metabolic profile changes
in the hippocampus of mice under diabetogenic diets.

CONCLUSION

Diet-induced metabolic syndrome or T2D in rodents show
variable phenotypes depending on the employed diet.
Nevertheless, all models show robust effects on memory
performance, particularly in spatial tasks that rely on adequate
hippocampal function. Across the available literature, one
observes that metabolism alterations underlying memory
impairment include alterations of glucose utilization in neurons
and astrocytes, dysfunctional mitochondria in neurons but
exacerbated oxidative metabolism in astrocytes, which is likely
required to sustain T2D-induced astrocyte hyper-reactivity.
Despite increased astroglial metabolism, the metabolic support
from astrocytes to neurons is not adequate, and might contribute
to synaptic dysfunction and memory derangements. The
mechanisms by which insulin differentially regulates metabolism
in neurons and astrocytes require further investigation, in order
to understand brain insulin resistant development and how it
leads to impaired cognition.

The interaction of insulin with other neuromodulation
systems that regulate cell signaling and metabolism has been
proposed but insufficiently investigated. For example, IRs interact
with the endocannabinoid system (Dalton and Howlett, 2012;
Kim et al., 2012) that modulates neuronal and astrocytic
metabolism (Duarte et al., 2012b; Köfalvi et al., 2016), and with
biliverdin reductase-A that modulates cellular stress responses
(Barone et al., 2016). Such signaling interactions may be key for
insulin to fulfill its glucose uptake-unrelated roles, and may reveal
to be therapeutic targets against brain dysfunction.

Finally, while aging is a key factor on the development
of insulin resistance, there is a major knowledge gap on
the T2D-aging interaction leading to dysregulation of cerebral
metabolism. Suggestions of the time complexity of brain
insulin resistance mechanisms come from longitudinal studies
in humans. For example, it is known that mid-life obesity is
associated with an increased risk of incident dementia (see
above), but late-life obesity was found to be negatively associated
with incident dementia (Pedditzi et al., 2016). Moreover, insulin
resistance was proposed to be associated with glucose cerebral
hypo-metabolism in AD patients, but associated to hyper-
metabolism in subjects with MCI that will later progress to AD
(Willette et al., 2015b). Further research is needed to identify
trajectories of insulin-dependent brain metabolism dysregulation
leading to brain dysfunction.
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