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Molecular classification of cancers has been significantly improved patient outcomes through
the implementation of treatment protocols tailored to the abnormalities present in each patient's
cancer cells. Breast cancer represents the poster child with marked improvements in outcome
occurring due to the implementation of targeted therapies for estrogen receptor or human epi-
dermal growth factor receptor-2 positive breast cancers. Important subtypes with characteristic
molecular features as potential therapeutic targets are likely to exist for all tumor lineages including
hepatocellular carcinoma (HCC) but have yetto be discovered and validated as targets. Because
each tumor accumulates hundreds or thousands of genomic and epigenetic alterations of critical
genes, itis challenging to identify and validate candidate tumor aberrations as therapeutic targets
or biomarkers that predict prognosis or response to therapy. Therefore, there is an urgent need
to devise new experimental and analytical strategies to overcome this problem. Systems biology
approaches integrating multiple data sets and technologies analyzing patient tissues holds great
promise for the identification of novel therapeutic targets and linked predictive biomarkers allowing
implementation of personalized medicine for HCC patients.
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Introduction

ical heterogeneity have rendered the disease a formidable challenge in
oncology [4,5]. Patients with HCC have a highly variable clinical course
[3,6], indicating that HCC comprises several biologically distinct sub-

Hepatocellular carcinoma (HCC) is one of the most common cancers
in the world, accounting for an estimated 600,000 deaths annually [1].
Although much is known about both the cellular changes that lead to HCC
and the etiological agents (i.e., hepatitis B and C infections, alcohol) re-
sponsible for the majority of cases, the molecular pathogenesis of HCC
is not well understood [2-4]. Moreover, the severity of HCC, the lack of
useful diagnostic markers and effective treatment strategies, and the clin-
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groups providing an opportunity for improved classification, identification
of novel targets and improved outcomes.

Several clinical classification systems, including the Cancer of the Liver
Italian Program, the Barcelona Clinic Liver Cancer system, the Chinese
University Prognostic Index, and the Japanese Integrated Staging schema,
have been developed and are currently in use [7-10]. However, clinical
and pathological diagnosis and classification of HCC remain unreliable
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in predicting patient survival and response to therapy. The prognostic vari-
ability likely reflects a molecular heterogeneity that has not been appre-
ciated from methods traditionally used to characterize HCC combined
with a lack of a deep mechanistic understanding of the molecular mech-
anisms driving disease initiation and progression. Improving the classifi-
cation of HCC patients into groups with homogeneous prognosis, as well
as a more comprehensive understanding of the underlying biology of
HCC development at the molecular level, would improve the application
of currently available treatment modalities and offer the possibility of new
treatment strategies.

Because of the complex nature of cancers such as HCC that are highly
heterogeneous at molecular, cellular, tissue, organism, and population lev-
els, conventional “reductionist approaches,” which investigate a single
gene or protein at a time, are likely to provide only limited insight into the
pathological and biological characteristics. Moreover, the rapid advance
of technologies that collect large amounts of data from cancer patients or
tissues presents another challenge in interpretation and development of
core insights into these complex systems. Systems biology, generally re-
garded as the “comprehensive approach,” has been developed to address
these issues by blending high-throughput data collection, computational
and mathematical modeling, and generation of new hypotheses from
emergent properties [11,12]. Emergent properties are those that are not
intuitively obvious in the absence of robust and usually mathematical
models. In systems biology, large networks describing the regulation of
entire genomes, metabolic pathways, or signal transduction pathways are
analyzed in their totality at different levels of biological organization. Thus,
this approach has been used for generating new hypotheses rather than
testing existing hypotheses.

One of the most exciting developments in recent years has been the
clinical validation of targeted drugs that inhibit the action of pathogenic
gene products such as protein kinases and proteinases [13]. Treatment
with these targeted drugs has proven more efficient than conventional
therapies in altering the natural history of the disease and reducing mor-
tality for various cancers, including HCC [14-16]. However, molecular
characterization of HCC aimed at identifying driver oncogenes (potential
therapeutic targets) has lagged in comparison to other cancers. To improve
treatment options and reduce mortality for HCC, therefore, it is crucial to
develop treatment strategies that can be applied in the near future while
improving our understanding of hepatocarcinogenesis.

DNA Copy-Number Alterations in
HCC Genome

Since the discovery of aneuploidy, copy number aberrations and genetic
rearrangements in cancer [17], cytogenetic approaches have been used
extensively to uncover the chromosomal basis for genetic alterations in
cancer. The comparative genomic hybridization (CGH) technique was
developed in the early 1990s and was the first genomic tool to provide a
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genome-wide characterization of copy-number changes in cancer [18].
With improvements in microscope and labeling technologies, CGH has
become a frequently used tool to examine DNA copy-number changes
in cancer and to identify altered expression and function of genes residing
within the affected region of the genome. Such genomic loci are believed
to harbor either tumor suppressor genes or oncogenes in loci with de-
creased and increased copy numbers, respectively. Despite limited spatial
resolution of CGH mapping, approximately 10 megabasepair (Mbp) for
low copy-number gains and losses and close to 2 Mbp for high copy-
number amplifications, this technology has uncovered many candidate
loci for tumor suppressor genes and oncogenes in HCC. Identification of
genomic loci with copy-number aberrations combined with the capacity
to identify the genes residing in these loci led to a better understanding of
the development of these cancers. For example, increased copy number
of the 8q24 region has been reported in many studies, and the most potent
oncogene residing in 8q24 is MYC [19-22]. CGH data revealed that gains
of chromosomal material were most prevalent in (besides 8q) 1q, 6p, and
17q, and losses were most frequent in 8p, 16q, 4q, and 17p [19,22].

Sensitivity in detecting copy-number variations improved significantly
with the emergence of microarray-based technology; in array-based CGH,
arrays of genomic sequences such as BAC clones and oligonucleotides
replaced metaphase chromosomes as hybridization targets [23]. Coupled
with improved annotation of genome sequence data, these technologies
are facilitating identification of new genomic loci that are associated with
cancer progression.

Microarray-Based Technologies

The genetic or epigenetic basis of complex diseases such as cancer re-
mained largely indefinable until completion of the human genome project
and the arrival of new microarray-based technologies that have enabled
investigators to describe genetic variation across the entire genome. Com-
pletion of the human genome sequence was a crucial prerequisite for cat-
aloging our genetic makeup. However, comprehension of the sequence
data alone is not sufficient to decipher the complex physiological processes
in play during tumor development.

Microarrays are the technologies most frequently used now to collect
data on a global scale from any biological system of interest. Recent ad-
vances in our knowledge of the chemistry of oligonucleotides and the
availability of genome information helped us to miniaturize northern blots
to measure thousands of gene expressions simultaneously. The microarray
technology for gene expression is a quantitative assessment of the relative
amount of the specific mRNA that is directly related to the biological ac-
tivity of that particular gene. The amount of the mRNA transcript present
in tissues can be measured indirectly after hybridization of a complemen-
tary labeled cDNA with a complementary probe that has been previously
deposited on its solid surfaces. This array contains a known set of gene
sequences (genome). The intensity of each labeled cDNA directly reflects
the expression level of its corresponding gene. Microarray assays allow
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Fig. 1. Applications of microarray-based technology. HCC, hepa-
tocellular carcinoma; CGH, genomic hybridization; RPPA, reverse-
phase protein array.

massive parallel data acquisition and analysis. Although parallelism
greatly increases the speed of data collection, the massive resulting dataset
presents daunting challenges to processing and interpretation.

Microarray-based gene expression profiling studies in a variety of can-
cers have discovered consistent gene expression patterns associated with
pathological or clinical phenotypes, and have identified subtypes of cancer
previously undisclosed with conventional technologies [24-26]. This new
technology has been used successfully to predict clinical outcomes and
survival rates and to identify potential therapeutic targets and prognostic
marker genes [27-29].

Application of this technology is not limited to collection of gene ex-
pression data from cells or tissues, but extends to identification of DNA
copy numbers in cancer genomes, methylation status of gene promoters,
single nucleotide polymorphisms associated with cancer risk, protein ar-
rays, and even re-sequencing of whole genomes (Fig. 1). Array-based
CGH, in which arrays of genomic sequences are used as hybridization
targets, was quickly established as a substitute for conventional CGH
[30,31]. The biggest advantage of array-based CGH is the ability to per-
form copy-number analyses with much higher resolution than was ever
possible with conventional CGH, which used metaphase chromosomes
as hybridization targets.

Protein microarrays have been developed by adopting the knowledge
and technical innovations that have made DNA microarrays possible. The
technical aspects of miniaturizing traditional methods, such as western
blotting and protein dotting onto nitrocellulose or nylon membranes, were
quickly adapted to protein microarray technology. The two approaches
for producing protein microarrays are forward-phase protein array (FPPA)

and reverse-phase protein array (RPPA). In a forward-phase array, anti-
bodies are immobilized on the surface of slides and each array is incubated
with one test sample such as a tissue lysate or serum sample; multiple
protein features such as expression and phosphorylation from that sample
are measured simultaneously. In contrast, the RPPA format immobilizes
an individual tissue lysate in each array spot, and thus an array comprises
thousands of different patient samples. Each array is then incubated with
one antibody, and a protein feature is measured and directly compared
across multiple samples. FPPA (antibody array) is particularly ill suited
for tissue-based analysis since it requires a substantial amount of tissue
lysate for incubation, thus RPPA (tissue lysate array) is better choice of
platform in cancer research [32-35].

Next Generation Sequencing

During the last few years, there have been remarkable advances in DNA
sequencing technologies, with the emergence and rapid evolution of mas-
sive parallel sequencing or 2nd generation sequencing. These technologies
have dramatically reduced both cost-per-base and time of these analyses,
making it possible to determine the nucleotide sequence of the human
genome [36]. They provide unprecedented opportunities to examine every
nucleotide sequence of the DNA from cancer cells and to compare it to
that of normal cells to identify the genetic changes that occur during cancer
development. Many different platforms have been developed by different
companies: Life Technologies (sequencing by Oligonucleotide Ligation
and Detection or SOLiD, Carlsbad, CA), Illumina (Genome Analyzer I1,
San Diego, CA), Roche Applied Science (454 Genome Sequencer FLX
System, Indianapolis, IN), and Helicos BioSciences (HeliScope™ Single
Molecule Sequencer, Cambridge, MA).

Gene Expression Profiling of HCC

Conventional approaches to the prognostic classification of HCC
largely rely on single or multiple clinicopathological variables such as
severity of liver impairment or characteristics of the tumor (i.e., size, num-
ber of nodules, vascular invasion, distant metastasis, and tumor differen-
tiation grade). However, the utility of existing prognostic factors is limited
because they measure tumor differentiation and bulk but do not otherwise
characterize and/or measure underlying biological properties that likely
dictate clinical outcomes and responses to targeted therapies.

In previous studies [26,37-40], an unbiased analytical approach applied
to gene expression data from human HCC identified distinct subtypes of
HCC significantly associated with patient survival. These findings suggest
that gene expression profiling signatures accurately reflect biological and
clinical differences between subtypes of HCC and would be highly valu-
able in determining patient prognosis. The current clinical challenge is to
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identify patients who do not derive much benefit from conventional ther-
apies and to offer alternative treatments. If key (or master) regulators
(genes, pathways, and/or networks) driving the biology of the tumor can
be identified, they might lend themselves to therapeutic exploitation. In
this context, it is not enough to rely entirely on gene expression signatures
that are indicative of prognosis, since the profiles may fall short of ex-
plaining at the molecular level what drives the prognostic difference be-
tween subtypes of tumors.

Integration of Multiple Data
Sets: Cross-species and
Cross-platforms

Although the process of cancer development in humans has differences
from that in mice, the similarities are particularly striking [41,42], leading
many investigators to exploit the mouse as a model organism for the study
of this complex disease. Previous studies provide clues on how to extend
gene expression profiling studies beyond the current general practice of
collecting massive data from human cancers. In an effort to identify the
mouse HCC models that best mimic the human disease, gene expression
data from patients were integrated with those from mouse HCC [43].
Gene expression patterns of mouse HCC were obtained from several
HCC mouse models. Orthologous human and mouse genes from both
datasets were selected before gene expression data were integrated. In
analysis of integrated data, gene expression patterns of HCC developed
in Myc, E2f1, and Myc/E2f1 transgenic mouse models had the greatest
similarity with those of the longer surviving group of humans with HCC,
while the expression patterns of HCC in the Myc/Tgfa transgenic mouse
model were most similar to those of the poor survival group of humans
with HCC. These results suggest that these two classes of mouse models
might most closely recapitulate the molecular patterns of the two sub-
classes of human HCC.

Recent studies demonstrated that Sav/ and Mst1/2 knockout in liver
leads to development of HCC [44-47], strongly indicating that MST1/2
and SAV'1 are important tumor suppressors in liver. In future studies, there-
fore, it will be necessary to cross-compare well-defined molecular signa-
tures of these mouse models to those from human HCC to determine the
clinical relevance of inactivation of MS71/2 and SAV1 in human HCC.
We anticipate that unique molecular identities of each subclass of HCC
uncovered by comparative analysis of a genome-wide survey of gene ex-
pression from human and animal models will provide new therapeutic
strategies to maximize the efficacy of treatments.

Cancer cells do not invent new pathways. They evolved from normal
cells by using pre-existing pathways in different ways or by combining
components of these pathways in a way that effectively drives tumorige-
nesis. By mapping and refining pathway maps in developing or normally
functioning liver, gene expression profiling studies might provide insight
into the connectivity of these pathways in HCC. In a previous study, the
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gene expression signature unique to rat fetal liver progenitor cells was in-
tegrated with those from human HCC in an attempt to determine the frac-
tion of human HCC that shares gene expression patterns with liver
progenitor cells [40]. This approach identified a novel subtype of HCC
that may arise from hepatic progenitor cells. This new subtype accounts
for around 20% of HCC cases examined in this study and is associated
with extremely poor prognosis.

Previous studies in diffuse large B-cell lymphoma and T-cell acute lym-
phoblastic leukemia indicated that the cellular origins of a tumor largely
dictate the clinical outcome [24,48], since mitogenic, motogenic, and mor-
phogenic responses as well as the propensity for apoptosis may vary at
different stages of normal differentiation. Genes involved in an invasive
phenotype (MMP1, PLAUR, TIMP1, CD44, and VIL2) were strongly ex-
pressed in the subtype with hepatic progenitor cell features and may ac-
count for the extremely poor prognosis. This subtype showed marked
activation of AP-1 complex, which is essential for normal hepatogenesis
during embryonic development and critical for initiation of HCC devel-
opment in mice [49,50]. Cancer cells arise from normal cells following
accumulation of genetic alterations. One of the most important conse-
quences of this process is the resurrection of pre-existing but dormant sig-
naling pathways that were active during embryonic development [51].
Thus, this finding supports the growing appreciation that signaling path-
ways that control vertebrate embryonic development are also important
in human carcinogenesis.

Searching for
Therapeutic Targets

Many studies clearly demonstrated the gene expression signature as a
utility that can classify tumors and provide prognostic information
[5,26,40,43,52-54]. The current research focus has shifted toward identi-
fying genetic determinants that are components of specific regulatory
pathways altered in cancers, potentially leading to the discovery of novel
therapeutic targets [4,55-57]. However, selection of relevant candidate
genes for further studies from lengthy gene lists generated by gene ex-
pression profiling studies is a significant challenge due to the many con-
founding factors embedded in the gene expression profile data from
human cancers. Moreover, since the gene expression profile from patients
is only a “snapshot” of gene-to-gene interactions that lacks information
on interactive time-dependent changes during tumorigenesis, it is difficult
to discriminate the genes (drivers) that drive the tumorigenic process from
genes (passengers) whose expression patterns simply reflect loss of organ
function and/or degree of differentiation of the cancer cells.

As already discussed, CGH, and more recently array-based CGH
analyses, have identified a number of recurrent regions of DNA copy-
number changes in many cancers, including frequent DNA copy-number
gains at 1q, 8q, and 20q, and losses at 1p, 4q, 8p, 13q, 16q, and 17p in
HCC [4]. Some of these genomic loci contain well-characterized and/or
putative oncogenes and tumor suppressor genes. Moreover, a number of
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genes in these regions have been linked to disease pathogenesis and clin-
ical behavior. For example, associations of DNA copy-number aberrations
with prognosis have been found for a variety of tumor types, including
prostate cancer, breast cancer, gastric cancer, multiple myeloma, lym-
phomas, and HCC [57-62]. However, some amplified or deleted regions
are large, and many of the genes residing in recurrent regions appeared to
be silent in their expression in normal tissues as well as in tumors. More-
over, functional validation of genes residing in these loci is impractical
when confronted with hundreds of candidate genomic loci. Therefore,
there is an inevitable need for development of a new strategy that can
overcome the limitations of gene expression data and array-based CGH
data.

In a recent study in HCC, investigators tested the possibility that inte-
grating gene expression and gene copy-number data from the same patient
cohort would help identify potential driver genes [63]. The results clearly
demonstrate that gene copy-number data provided extra prognostic rele-
vance compared to when only gene expression data were available. Inte-
grative analysis of gene expression and gene copy-number data also
uncovered 50 potential drivers that are activated by recurrent gene ampli-
fications in HCC and show an association with aggressive tumor types.

Alterations of expression patterns and genomic copy numbers of thou-
sands of genes are fundamental properties of cancer cells. Since the ap-
plication of high-throughput genomic technologies based on microarray,
mass spectrometry, and 2nd generation sequencers for the analyses of
cancer inevitably generates many false-positive results, it is almost im-
possible to select reasonable numbers of candidate genes to be further
evaluated as therapeutic targets and/or biomarkers for diagnosis and prog-
nosis. Therefore, it is important to cross-compare and integrate two or
more genomic scale datasets (i.e., coding and noncoding gene expression
and array-based CGH data or promoter methylation) independently col-
lected from the same patient cohort.

Integration of Multiple-omics

While gene expression and copy-number profiling can provide impor-
tant information on somatic genetic events during tumor progression, they
are unable to provide an effective recapitulation of fluctuating protein-
based signaling events that are the direct executors of cellular function.
RPPA is a newly developed high-throughput functional proteomic tech-
nology [32-35] that provides quantitative analysis of the differential ex-
pression of signaling proteins. Moreover, the phosphorylation status of
proteins can be detected and measured using specific anti-phospho-protein
antibodies. Through the use of these phospho-specific antibodies, it is pos-
sible to evaluate the state of entire portions of a signaling pathway by look-
ing at dozens of kinase substrates at the same time through multiplexed
phospho-specific antibody analysis.

With RPPA, all samples are spotted at the same time and analyzed with
a single antibody, making this method ideally suited for analysis of large
numbers of specimens. However, its assessment of signaling pathways is

limited by the number of available antibodies, which is far smaller than
the number of gene probes in expression microarrays. This limitation of
these datasets can be overcome by integrating datasets together during
analysis (Fig. 2). Integration of genomic and proteomic data will undoubt-
edly enhance our understanding of tumor progression by increasing the
dimensionality of molecular features. Moreover, identification of driver
or contributor genes can be greatly accelerated by integration of more than
one dimension of genomic information systems.

Epilogue

The anticipated benefits of the systems biology approach in HCC,
which has extremely heterogeneous properties (definite but various eti-
ologies, diverse residual liver function, and heterogeneous tumor biology)
would be more reliable determination of prognosis than conventional stag-
ing systems, optimized prediction of response to respective treatments,
and novel identification of better therapeutic targets. In contrast to other
solid tumors, many HCC develop in patients with considerably impaired
organ function, which inhibits appropriate therapy and ultimately shortens
survival. Therefore, it is crucial to develop a prognosis prediction system
thatis able to differentiate as well as integrate the impacts of liver function
and tumor burden. Several distinct treatment options have been applied
to HCC patients [64]: liver transplantation, resection, local ablation, tran-
scatheter intraarterial chemoembolization, and novel targeted therapy so-

Protein Gene Promoter Gene
expression expression methylation copy number

%.

W Over-expression
[ Under-expression

W Over-expression W Hypo
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Fig. 2. Integration of genomics and proteomics. Genomics data (ex-
pression, promoter methylation, and copy number of genes) or pro-
teomics data (expression and posttranslational modification of
proteins) alone provide too many candidate driver genes or proteins.
Integrating these independently generated data from the same spec-

imens greatly enhances the probability of identifying true driver
genes or therapeutic targets.
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rafenib. Moreover, the indications for respective therapies frequently over-
lap, and which therapy is optimal is still being debated. Therefore, it will
be necessary to develop discrimination systems that would identify the
best treatment for an individual patient. Systems biology approaches with
genomic and proteomics tools hold promise for personalized medicine in
the management of HCC.
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