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Abstract: Recent findings have demonstrated that the desalination and purification of
contaminated water and the separation of ions and gases, besides solutions to other related
issues, may all be achieved with the use of membranes based on artificial nanoporous
materials. Before the expensive stages of production and experimental testing, the opti-
mum size and form of membrane nanopores could be determined using computer-aided
modeling. The notion that rectangular nanopores created in a multilayered hexagonal
boron nitride (h-BN) membrane in a way that results in different inner lining atoms would
exhibit unique properties in terms of the water penetration rate is put forth and examined
in the current study. Nanopores in boron nitride sheets can be generated with the inner
lining of boron atoms (B-edged), nitrogen atoms (N-edged), or both boron and nitrogen
atoms (BN-edged). In this study, we compared the three different inner-lined nanopores
of boron nitride nanosheets to a comparable-sized graphene nanopore and evaluated the
water conduction.

Keywords: graphene; porous nanosheet; multilayered membrane; water transport; boron
nitride; hexagonal boron nitride

1. Introduction
Due to the rapid increase in the world’s population, industrialization picking up

speed, and environmental pollution, the recent clean water issue has garnered a lot of
attention around the world [1–4]. One of the most significant issues of our time is finding
adequate and clean water supplies [5]. The desalination of saltwater and decontamination
of contaminated water are two processes that have recently attracted a lot of attention.
There are several different techniques for decontaminating water, including flocculation,
adsorption, chemical oxidation, and photocatalysis [6–14]. For desalination, there are
three basic categories of water purification technologies, namely membrane technologies,
distillation processes (thermal technologies), and chemical approaches [15]. Membrane
technologies use either pressure-driven or electrical-driven types. Technologies utilizing
pressure-driven membranes include reverse osmosis (RO), nanofiltration (NF), ultrafiltra-
tion (UF), and microfiltration (MF) [16–19]. The RO method has the benefits of no phase
transitions, minimal energy usage, and high desalination efficiency among pressure-driven
membrane methods [20]. The commercial RO method membrane design commonly uses
polyamide membranes and cellulose acetate membranes. Polyamide membrane compos-
ites that are used in the commercial RO method were developed thirty years ago. The
water flux of the material has only increased about two-fold in the past 20 years, and the
performance of commercial RO membranes has not improved significantly in terms of
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selectivity and permeability [21–24]. Existing synthetic membranes suffer a ubiquitous,
pernicious trade-off: highly permeable membranes lack selectivity, and highly selective
membranes lack permeability [23].

However, materials with both high permeability and high selectivity are beginning to
emerge. To increase the water flux of RO membranes, a wide range of nanomaterials have
been tested. Nanomaterials such as graphene, carbon nanotubes (CNTs), boron nitride
nanotubes (BNNTs), and boron nitride sheets are the commonly studied nanomaterials for
desalination as they show improved water flux.

Researchers have discovered that single-layer porous graphene membranes produce
significant levels of water flux [25–28]. But making single-layer graphene membranes
was difficult, and the cost of creating large-area single-layer graphene membranes is still
very high. Also, the single-layer material is prone to cracks and overlapping of graphene
sheets, which prevents the practical application of single-layer porous graphene mem-
branes in RO seawater desalination. This is true even though many studies have looked
into the continuously improving preparation methods of graphene, such as particle bom-
bardment and chemical etching [29–31]. This holds true even when producing single-layer
boron nitride nanosheets (BNNSs) for RO membranes. BNNSs’ mechanical characteristics
are comparable to those of graphene sheets [32]. Compared to single-layer sheet mem-
branes, multilayer membranes are easier to prepare, have higher efficiency, and are less
expensive [24]. Research conducted in 2013 showed that multilayered graphene exhibits
hydrophobicity larger than single-layered graphene. It also showed that multilayered
graphene membranes can trap salt ions and exhibit better salt ion rejection when compared
to single-layered membranes [33]. To study their desalination potential, many molecular
dynamics (MD) investigations have been conducted on single-layered graphene, multilay-
ered graphene, and single-layered boron nitride sheets; however, the number of studies on
multilayered boron nitride is minimal.

A recent study conducted on ultrafiltration-grade polysulfone-based mixed matrix
membranes (MMMs) incorporating two-dimensional boron nitride nanosheets (BNNSs)
revealed that by adding BN to the membrane matrix, water permeability and humic acid
rejection significantly increased as a result of an increase in pore size and surface negative
charge [34]. The presence of grain boundaries and surface charge can cause a decrease in the
water permeation performance of hBN membranes, according to recent research on water
transport through nanopores in bi-crystalline hBN [35]. A 2018 study found that adding
hydrophilic chemical functionalities like fluorine (-F) and hydroxyl (-OH) to nanoporous
boron nitride nanosheet (BNNS) membranes can increase water permeability even at low
pressures [36]. According to another study conducted in 2018, C-doped BN membranes
can be favorably compared to the MoS2 membranes. C-doped BN’s high carbon content
clusters water molecules at membrane pores, which lowers the hydration free energy and
pore energy barriers and increases water flux through the pores [37].

The structural analogs of graphene are hexagonal BN sheets [38,39]. Multilayered
boron nitride nanosheets have a graphite-like structure in a regularly stacked planar
network of BN hexagons. An h-BN has an equal number of boron and nitrogen atoms [38].
It differs from graphene in that it is resistant to heat, is chemically inert, and does not
conduct electricity. The fact that it appears white gives it the name “white graphite” as
well [40–45]. In a study published in 2020, researchers discovered that the water transport
processes of the armchair and zigzag hexagonal boron nitride (hBN) nanosheets with
slit-like orifices are sensitive to edge patterns and are caused by fascinating electrostatic
interactions between hBN and solution particles. The armchair nanoslits hardly distinguish
between ions and water molecules, while the nanoslits with zigzag edges function together
to prevent ion permeation and enable rapid water conduction [46]. In comparison to
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a pore with nitrogen atoms on the edge functionalized with hydrogen atoms, a boron
nitride sheet with a nanopore with boron atoms on the edges functionalized with hydrogen
atoms of the pore demonstrated improved desalination performance in terms of increased
water flux [47]. In an investigation carried out to remove Hg2+ from industrial wastewater
contaminated with Hg2+ using a triangle-shaped nanoporous boron nitride membrane, the
researchers discovered that a N-edged pore encourages water molecules to pass through
the nanopore when compared to a B-edged triangular pore [48].

As mentioned earlier, a previous work [46] was carried out on armchair and zigzag
membranes with rectangular pores, pores that have both boron and nitrogen inner lining.
The other work [48] that used a triangular pore shape investigated only boron inner-lined
and nitrogen inner-lined nanopores. It is possible to create nanopores in boron nitride
sheets with a boron edge (B-edged), a nitrogen edge (N-edged), or both a boron and
nitrogen edge (BN-edged). So, in this work, we have investigated B-edged, N-edged, and
BN-edged multilayered boron nitride nanosheet membranes with rectangular pores for
water transport and have compared the results with those of a multilayered graphene
membrane with a rectangular pore of similar size.

2. Simulation Model and Methods
In this study, SAMSON 2022 R1 (Software for Adaptive Modeling and Simulation of

Nanosystems) software [49] was utilized to model the nanoporous multilayered membranes
used in this investigation. The nanoporous multilayered membrane system used in this
study consists of 5 layers. With a 3.5 Å interlayer space between the layers, these membrane
layers are densely packed. On both sides of the nanoporous multilayered membrane
structure, there are water molecules followed by the pistons. The graphene sheets that
serve as the pistons on both ends have a size of ≈30 × 30 Å. In order to reduce the
computational expense, the nanoporous membrane used in this simulation was kept frozen.
Figure 1 depicts the simulation setup that was employed in this investigation.
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Figure 1. Simulation domain [magenta—boron atoms, blue—nitrogen atoms, cyan—carbon atoms,
yellow—Cl− ions, green—Na+ ions, red—oxygen atoms, white—hydrogen atoms].

The size of the overall simulation box used in this study has a dimension of
30 Å × 30 Å × 210 Å. When the system is modeled for the investigation that involves fresh
water, a total of 2140 water molecules are used, of which 1712 water molecules are in the
feed region and 428 water molecules in the permeate region. For the investigation that
involves saline water, a total of 2052 water molecules are used, of which 1624 are in the
feed region along with 16 Na+ ions and 16 Cl− ions. In this study, the TIP3P water model
was chosen from various available models. Park et al. have published a detailed discussion
on the selection and application of different water models [50]. Table 1 shows the list of the
force field parameters employed in this investigation.
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Table 1. Force field parameters.

σ (Å) ε (kcal/mol)

O 3.178 0.15587

B 3.453 0.0949

N 3.365 0.1448

C 3.3997 0.0859

Na 2.217 0.3519

Cl 4.849 0.01838

To determine the Lennard–Jones (L-J) interactions between the various atoms em-
ployed in this work, we applied the Lorentz–Berthelot mixing rule. The simulations were
run for 10 nanoseconds with a timestep of 1 femtosecond. To determine the long-range
electrostatic interactions, we employed a pppm (particle–particle particle–mesh)-style
solver [51]. The L-J interaction cutoff employed in this investigation is 10 Å. The simula-
tions are performed using the LAMMPS software 2020 [52]. For the visualization of the
simulation system, we used VMD 1.9.4a55 (visual molecular dynamics) software [53]. In
this work, the canonical ensemble NVT and the Nosé–Hoover thermostat [54] are used
along with SHAKE algorithm to constrain water molecules [55].

In this study, to simulate the pressure-driven flow, the piston at the end of the feed
area is subjected to a pressure of approximately 150 MPa, while the piston at the end of the
permeate region is maintained at atmospheric pressure [56]. Since the time scales for flow
scale linearly with applied pressure, prior studies [27] have demonstrated that the results
will be true at low pressures as well, despite a pressure of 150 MPa being substantially
higher than that of an average desalination system, which is only a few MPa. In this study,
two crucial characteristics for water transport were examined: the pore size and the inner
lining atoms of the pore. We used two different pore sizes for our investigation, each with
a B-edged boron nitride membrane, N-edged boron nitride membrane, BN-edged boron
nitride membrane, and C-edged graphene membrane. The schematic of the pores used in
this work is given in Figure 2. The larger pore is created by the removal of 30 atoms per
layer of the membrane, and the smaller pore is created by the removal of 20 atoms per layer
of the membrane. We also used both porous boron nitride nanosheets as well as porous
graphene nanosheets for the membrane construction. As the bond length of the carbon
atoms in the graphene sheet is different from the bond length between the boron and
nitrogen atoms of the boron nitride nanosheets, the effective pore size also varies between
the pore created in the graphene and the pore created in the boron nitride nanosheets. The
dimensions of the rectangular nanopores used in this work are listed in Table 2.
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Figure 2. Schematics of the pores: (a–d) small pore, (e–h) large pore, (a,e) B-edged boron nitride,
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atoms, blue—nitrogen atoms, cyan—carbon atoms].

Table 2. Dimensions of the pores used in this study.

Type Length (Å) Width (Å)

B-edged (small pore) 10.12 7.51

N-edged (small pore) 10.12 7.51

BN-edged (small pore) 10.12 7.51

C-edged (small pore) 9.93 7.37

B-edged (large pore) 14.46 7.51

N-edged (large pore) 14.46 7.51

BN-edged (large pore) 14.46 7.51

C-edged (large pore) 14.18 7.37

3. Results and Discussion
3.1. Occupancy and Free Energy of Occupancy Fluctuations

The occupancy of water molecules inside the nanopore aids in our understanding of
the free energy within [57]. The shape and structure of the pore have a considerable impact
on the water occupancy inside it. Figure 3 depicts how many water molecules are found
inside each nanopore of the various membranes. It is evident that there are significantly
more water molecules inside the nanoporous boron nitride nanosheet instances than their
graphene counterparts. The fact that the effective pore volume of the graphene nanopore is
smaller than that of the boron nitride nanopore is a major factor in this. When compared to
the nanopores of boron nitride nanosheets, the effective pore area of graphene’s pores is
roughly 3.7% less.
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Figure 3. Number of water molecules inside different porous membranes: (a) B-edged small pore,
(b) N-edged small pore, (c) BN-edged small pore, (d) C-edged small pore, (e) B-edged small pore
with ions, (f) N-edged small pore with ions, (g) BN-edged small pore with ions, (h) C-edged small
pore with ions, (i) B-edged large pore, (j) N-edged large pore, (k) BN-edged large pore, (l) C-edged
large pore, (m) B-edged large pore with ions, (n) N-edged large pore with ions, (o) BN-edged large
pore with ions, and (p) C-edged large pore with ions.
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The free energy of occupancy fluctuations of water molecules inside the nanopore of
different membranes used in this study are given in Figure 4. Free energy of occupancy
changes have been extensively discussed in numerous earlier works [50,57–60]. For the
smaller pore configurations, the highest water molecule occupancy inside the nanopore
is observed in the N-edged nanopore with its feed region having ions with 21 water
molecules, while the graphene nanopore exhibited numerous empty states. All the BN
configurations showed partially and fully filled states. No empty states were observed
in these configurations. The most probable number of water molecules varied from case
to case. The larger pore also exhibited similar kinds of occupancy states to those of the
smaller pore configurations. The highest number of water molecules observed inside the
nanopore is 31. Similar to the small pore configuration, only the graphene nanoporous
membrane showed empty states. This shows that the flow of water molecules through the
multilayered nanoporous graphene membrane occurs in a pulse-like manner.
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3.2. Density Profiles

Density profiles of the oxygen atoms inside the nanopore for the different membranes
and pore sizes used in this study are shown in Figure 5. From these density profiles, the
difference depending on the particle’s charge can be observed. The graphene membrane,
composed of electrically neutral particles, shows relatively flat profiles without any peaks,
whereas the BN membrane, made of charged particles, exhibits significant peaks in oxygen
density at various locations inside the nanopore. The calculations that include Na+ and
Cl- ions show larger peaks compared to those without these ions, indicating that the ions
trapped in the membrane lead to the stagnation of water molecules. These peaks result from
the stagnation of water molecules inside the pore, caused by the ions trapped within the
membrane pores. The trapped ions not only reduce the effective volume of the nanopore
but also slow down the movement of water molecules due to the increase in the energy
barrier inside the nanopore. Consequently, this results in the clogging of the nanopore.
Even though the clogging observed inside the BN-edged nanopore is relatively low, the
clogging observed inside the B-edged and N-edged nanopores is relatively high.
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3.3. Water Conduction

The plot of the number of water molecules filtered by nanoporous boron nitride
with different inner lining atoms of the graphene nanopore for two different pore sizes
is given in Figure 6. From the plot, we can observe that the N-edged pore shows better
water transport than the B-edged pore. This is similar to the observations from previous
studies [48,61] as the nitrogen atoms of the porous boron nitride nanosheet and water
molecules have a greater van der Waals (vdW) interaction than boron atoms. A 2007
study [61] reveals that, although vdW attractions between water molecules and boron
atoms (εB-O = 0.5082 kJ/mol) are stronger than those between water molecules and carbon
atoms (εC-O = 0.4340 kJ/mol), they are still not strong enough to allow water molecules
to enter the BN pore. Water conduction in the BN pore is primarily driven by vdW
interactions between water molecules and nitride atoms (εN-O = 0.6277 kJ/mol). Another
key observation is the decrease in the amount of water filtered when the ions are introduced
in the feed region of the boron nitride cases. This reduction is due to the ions that become
trapped inside the membrane pore. In the B-edged pore, we found that numerous Cl−

ions were trapped inside the pore, whereas the Na+ ions become trapped easily inside
the N-edged pore. These observations are similar to a previously reported work [62]. The
occluded pore was the significant reason for reducing the transport of water molecules in
the BN-edged large pore membrane. The armchair edges of the pore are another major
factor contributing to the reduction in water transport through the membrane [63]. Previous
studies discovered that nanoporous multilayered BN has lower water surface tension than
nanoporous multilayered graphene [64]. The long-range wetting of the interfacial water that
causes this decrease in surface tension also causes a reduction in water transport through
the multilayered BN nanopore as compared to the multilayered graphene nanopore.
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4. Conclusions
In this work, we performed non-equilibrium molecular dynamics simulations to

understand the water transport and ion rejection of nanoporous multilayered boron nitride
sheets with pores having different inner lining atoms. Our study shows that water transport
through the membrane is contingent on the atomic type of the inner lining atoms of the
boron nitride pores. As the BN nanosheets are formed with boron and nitrogen atoms,
which have partial charges, the nanopores that are created have unique characteristics.
Consequently, this also leads to undesirable qualities such as the trapping of ions inside the
pore that results in clogging of the pore. By properly functionalizing the pore, undesired
properties like the trapping of ions can be altered into desirable unique properties. By
increasing the interlayer spacing of the nanosheets, it is conceivable to enhance the water
transport phenomenon of the multilayered nanoporous boron nitride sheets.
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