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Abstract

The interaction between actin filaments and myosin molecular motors is a power source

of a variety of cellular functions including cell division, cell motility, and muscular contraction.

In vitro motility assay examines actin filaments interacting with myosin molecules that are

adhered to a substrate (e.g., glass surface). This assay has been the standard method of

studying the molecular mechanisms of contraction under an optical microscope. While the

force generation has been measured through an optically trapped bead to which an actin fil-

ament is attached, a force vector vertical to the glass surface has been largely ignored with

the in vitro motility assay. The vertical vector is created by the gap (distance) between the

trapped bead and the glass surface. In this report, we propose a method to estimate the

angle between the actin filament and the glass surface by optically determining the gap

size. This determination requires a motorized stage in a standard epi-fluorescence micro-

scope equipped with optical tweezers. This facile method is applied to force measurements

using both pure actin filaments, and thin filaments reconstituted from actin, tropomyosin and

troponin. We find that the angle-corrected force per unit filament length in the active condi-

tion (pCa = 5.0) decreases as the angle between the filament and the glass surface

increases; i.e. as the force in the vertical direction increases. At the same time, we demon-

strate that the force on reconstituted thin filaments is approximately 1.5 times larger than

that on pure actin filaments. The range of angles we tested was between 11˚ and 36˚ with

the estimated measurement error less than 6˚. These results suggest the ability of cyto-

plasmic tropomyosin isoforms maintaining actomyosin active force to stabilize cytoskeletal

architecture.
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Introduction

Force produced by actomyosin interaction is essential in a wide variety of cellular functions

[1,2], hence the organization of actin filament and myosin is diverse. While the contractile sys-

tem is stable and regularly aligned in muscle cells, continuous modulation in structures and

functions is essential in cell migration, cell division and tissue morphogenesis in non-muscle

cells. In vitro motility assay has been a powerful experimental system to study the actomyosin

interaction. This assay reconstitutes the actin and myosin interaction on a substrate (typically

a glass surface) under an optical microscope by using purified contractile proteins [3–5]. It is

often combined with additional techniques to observe interactions at the single molecule level.

Optical tweezers are a prominent example being used among these techniques. With optical

tweezers, microscopic particles such as polystyrene beads and bacteria (size can range from 20

nm to tens of μm) can be handled in a non-invasive manner and the developed force can be

quantified up to tens of pN [6–9]. Optical tweezers have been successfully used to characterize

molecular motors [10–17]. In particular, the in vitro motility assay utilizing optical tweezers

has been successful in revealing the properties of actomyosin interaction: force generation and

consequent motile mechanisms [10,13,14,18,19], and intra- and inter-molecular cooperativity

[17,20,21]. However, in the past the force measurement was carried out only in a two-dimen-

sional plane. Recently, Pollari and Milstein reported a method to measure vertical force by

using optical tweezers, and to correct the vertical component of the trap stiffness that is

affected by aberrations and interferences of laser light [22,23]. In fact, measuring the force of

actomyosin interaction in three-dimensional space is essential to characterize under the vari-

ous cellular conditions in which the contractile system is placed.

In this report, we assessed the effects of the vertical component of force in the in vitro motil-

ity assay system. Individual actin filaments, or thin filaments reconstituted from actin, tropo-

myosin (Tpm), and troponin (Tn) were attached to a bead that was optically trapped (Fig 1).

The distance between the center of the trapped bead and the coverslip (h in Fig 1) was deter-

mined based on the relationship between the bead image, the distance of the bead from the

glass surface, and the mechanical adjustment of the optical components. The angle of the force

vector (θ) and the dependence of force on θ were obtained. We found that active force (F/cosθ
in Fig 1) decreases as θ increases, and Tpm and Tn elevates the active force in the range of θ
studied.

Materials and methods

Purification of proteins

Actin and heavy meromyosin (HMM; α-chymotrypsin proteolytic cleavage of full-length myo-

sin II) were purified from rabbit white skeletal muscle [24,25]. Two rabbits were purchased

from Japan Laboratory Animals, Inc., and used for the present report. All experimental proce-

dures conformed to the “Guidelines for Proper Conduct of Animal Experiments” approved by

the Science Council of Japan and were performed according to the “Regulations for Animal

Experimentation” at Waseda University; Gelsolin from bovine plasma and bovine ventricular

Tn (complex of TnI, TnC and TnT) were purified as described previously [26,27]. Bovine sam-

ples were obtained as food by-products. The α-Tpm WT was provided from Chase laboratory

at The Florida State University [28].

Solutions

F-buffer contained 2 mM MgCl2, 1.5 mM NaN3, 100 mM KCl, 1 mM dithiothreitol (DTT),

and 2 mM 3-(N-morpholino)propane sulfonic acid (MOPS), pH adjusted to 7.0. Rigor
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solution contained 4 mM MgCl2, 1 mM ethylene glycol bis (β-aminoethyl ether) N, N0-tetraa-

cetic acid (EGTA), 25 mM KCl, 10 mM DTT, and 25 mM imidazole-HCl (Im-HCl), pH

adjusted to 7.4. Relaxing solution contained 2 mM Na2ATP (Roche Diagnostics, Indianapolis,

IN, USA), 4 mM MgCl2, 1 mM EGTA, 13 mM KCl, 6 mM KH2PO4, 10 mM DTT, 25 mM Im-

HCl, and 1 mg/ml bovine serum albumin (BSA: Sigma-Aldrich, St. Louis, MO, USA). Activat-

ing solution contained 1 mM CaEGTA (pCa = 5.0, where pCa = –log10[Ca2+]) in place of 1

mM EGTA of the relaxing solution. pCa 9.0 solution was the mixure of relaxing and activating

solutions in 99:1 ratio. Activating and pCa 9.0 solutions contained 25 mM glucose, 0.22 mg/ml

glucose oxydase, and 0.036 mg/ml catalase to remove O2 to minimize photobleaching of fluo-

rescent dye. pH of all solutions was adjusted to 7.4, except for F-buffer. All the measurements

were carried out at 24 ± 1˚C. All chemicals were purchased from Wako Pure Chemical Indus-

tries (Osaka, Japan), unless otherwise stated.

Preparation of bead-tailed actin and thin filaments

Bead-tailed actin filaments were prepared as previously described [24,29,30]. Briefly, polysty-

rene beads (1.0 μm in diameter, Blue-Fluorescent, Molecular Probes, Eugene, OR, USA) were

coated with a mixture of gelsolin and TMR-maleimide- (Molecular Probes) conjugated and

unlabeled BSA using the carboxyl group at the surface of the beads. Polymerized actin fila-

ments fluorescently labeled by rhodamine-conjugated phalloidin (Molecular probes) were

attached to polystyrene beads through gelsolin which serves as an anchor at the barbed end of

the actin filament (’bead-tailed actin filament’; 1.2 µM actin) (Fig 1). Thin filaments were

reconstituted in a test tube in the presence of bead-tailed actin filaments (0.6 µM actin), 0.6

µM Tpm, and 0.6 µM Tn in F-buffer (20 µL). The mixture was incubated for 1 h on ice [31],

Fig 1. Schematic illustration of the in vitromotility assay system showing the parameters considered. A

reconstituted thin filament (actin is illustrated by open circles, Tpm thin curved lines, and Tn black spheres) attached

to a polystyrene bead (1.0 µm in diameter) via gelsolin (red sphere) was manipulated by optical tweezers. In the

presence of ATP, the thin filament was interacted with HMM molecules that were attached to the surface of a

collodion-coated glass coverslip. The region indicated by a, the part of the thin filament which interacted with HMM

molecules that was visualized with the total internal reflection fluorescence (TIRF) microscopy system. The region

indicated by b, the distance between the center of the bead and the end of the thin filament interacting with HMM (P),

was determined from the epifluorescence microscopy. θ, the angle between the thin filament and the glass surface at P,

determined geometrically from the distance of the bead from the glass surface (h) and b as θ = arctan (h/b). The actual

size of HMM is small enough to be ignored compared to h (see text). Sliding force in horizontal direction (F) was

obtained from the trap stiffness (range: 0.042 pN/nm to 0.15 pN/nm) and the displacement of the bead in the X-Y
plane. The corrected force vector was calculated as F/cosθ.

https://doi.org/10.1371/journal.pone.0192558.g001
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followed by the ’annealing’ treatment (45˚C, 10 min) to stabilize the proper head-to-tail assem-

blies of Tpm dimers on an actin filament [32]. The samples were stored on ice until used for

experiments.

Flow cells

Glass coverslips (24 X 60 mm, Matsunami Glass, Osaka, Japan) were cleaned by sonication

sequentially in KOH (450 mM), acetone, and 100% ethanol for 15 min each. The coverslips

were rinsed with distilled water after each step. The cleaned coverslips were dried at 50˚C for

overnight and stored at room temperature (RT = 24˚C). One day before the experiment, the

surface of the coverslip was coated with collodion (0.1% dissolved in 3-methylbutyl acetate).

The coverslips were dried at RT for about 10 minutes. Further incubation at 50˚C overnight

improved the reproducibility of the data. The coverslips were stored in a dry cabinet. A smaller

coverslip (18 X 18 mm, Matsunami Glass) was glued to the larger coverslip at two opposing

sides by using double-stick tape 11 mm apart, resulting in a flow-cell with a volume of ~18 µL.

Optical setup

The experimental apparatus was placed on a pneumatic isolation table (HA-189LY, HERZ,

Kanagawa, Japan). The optical setup (Fig 2) was based on an inverted optical microscope

Fig 2. Schematic diagram of the optical setup. The optical setup for optical tweezers, bright-field microscopy and fluorescence microscopy

were built on an inverted microscope. The position of the objective lens was fixed, whereas X, Y and Z positions of the sample stage were

adjustable (indicated by arrows). The focal plane of 1064 nm laser for optical tweezers can be adjusted by shifting the position of a lens (’Lens’

with a double-headed arrow placed in the light path of 1064 nm laser) along the light path. A xenon lamp was used as the light source at 710–

900 nm to obtain bright-field images of beads. The bright-field images split by a beam sampler (BS) were projected onto two individual CCD

cameras. One CCD camera worked at 200 fps, and its images were captured by a PC and analyzed in real time to track the position of the

bead. The other CCD camera (30 fps) was connected to a multi viewer. The focal planes of these two CCD cameras were adjusted individually

by the position of the camera along the light path (indicated by double-headed arrows). For fluorescence imaging, 532 nm laser and mercury

lamp were used as light sources for total internal reflection microscopy and epifluorescence microscopy, respectively. These two fluorescence

imaging methods could be alternated by shifting the mirror position (M1, shown with a double-headed arrow). Fluorescence images were

captured by an EB-CCD camera (30 fps) serially connected with an image intensifier (I.I.) and transmitted to the multi viewer. Bright-field

and fluorescence images combined by the multi viewer were shown side-by-side and captured by a PC for recording and analysis purposes.

All images were shown in a PC display during the experiment. F, filter. M, mirror. DM, dichroic mirror. BS, beam sampler. ND, neutral

density filter. T, transmitted wavelength. R, reflected wavelength.

https://doi.org/10.1371/journal.pone.0192558.g002
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(IX71, Olympus, Tokyo, Japan). While the position of the objective lens (Apo TIRF 100X oil-

immersion, N.A. = 1.49, Nikon, Tokyo, Japan) was fixed, the sample stage was controlled by a

three-axis stepping motor (MP-285, Sutter Instrument Co., Novato, CA, USA). Nd-YAG laser

beam (T20-BL-106C, 1064 nm, 1W, Spectra-Physics, Santa Clara, CA, USA) was focused on

the sample stage by the objective lens to trap a polystyrene bead. For epifluorescence and total

internal reflection fluorescence (TIRF) microscopies, a mercury lamp (BH2-RFL-T3, filtered

to 512–555 nm, Olympus) and a green laser (532 nm, Melles Griot KK, Tokigawa, Saitama,

Japan), respectively, were reflected by a dichroic mirror (reflecting 532 nm) positioned just

behind the objective lens. These excitation light sources were alternately used depending on an

illumination purpose. A Xenon lamp (MAX-303, filtered to 710–900 nm, Asahi Spectra,

Tokyo, Japan) was used as a light source for bright-field microscopy. Fluorescence and bright-

field images were collected at 400–900 nm by a band-pass filter, and then separated by a

dichroic mirror (reflected wave length, R> 700 nm). Fluorescence images were further filtered

to 570–600 nm, amplified by an image intensifier (Video Scope international, Ltd., Dulles, VA,

USA), and recorded using an electron bombardment CCD camera (EB-CCD, MC681SPD-

ROBO, Texas Instruments, Inc., Dallas, TX, USA). Bright-field images were split by using a

beam sampler (~5% reflection, OptoSigma Co., Ltd., Hidaka, Saitama, Japan) and monitored

by two individual CCD cameras. One camera (MC-781P; Texas Instruments) was operated at

a video rate (30 fps), and the other high speed camera (IMPERX, Inc., Boca Raton, FL, USA)

was operated at 200 fps. Bright-field and fluorescence images, both monitored at 30 fps, were

combined using a multi-viewer (MV-40F, FOR-A, Tokyo, Japan) and stored in a Windows PC

via a video capture board (The Imaging Source LLC, Charlotte, NC, USA) with a custom-build

program based on LabVIEW (National Instruments Japan, Tokyo, Japan). Fluorescence inten-

sity was monitored in real time using LabVIEW program to adjust the stage position to focal

plane of fluorescence imaging. Recorded images were later analyzed by ImageJ software with

another PC (Apple Japan, Tokyo, Japan). Displacement of the bead was determined by a plug

in in ImageJ software (Particle Track and Analysis). The position of the bead was determined

by fitting the 2D distribution of pixel values to 2D Gaussian distribution. Images of the high

speed camera were captured by using another video capture board (NI PCIe-1430, National

Instruments Japan) and the displacement of the bead was tracked in real time by LabVIEW

program and displayed on a PC screen for ease of measurement. In this analysis, each image

was binarized, and the center of the bead was determined as the center of a circle approximat-

ing the bead. Relative positions of the focal planes of fluorescence and bright-field microsco-

pies and the center of the optical trap were adjusted independently by the positions of lenses

and cameras (Fig 2). Equipment and the air conditioner of the room were turned on at least

one hour earlier than measurements to control the experimental temperature to 24 ± 1˚C.

Procedure to determine the height of the trap center from the focal plane

of the fluorescence microscopy

Fluorescent polystyrene beads (1.0 or 2.0 μm in diameter, yellow-green, Molecular Probes) dis-

persed in rigor buffer (1000-fold dilution) were infused into the flow cell. After sealing two

open ends of the flow cell with non-fluorescent nail polish, the flow cell was placed on the

microscope stage. Epifluorescence microscopy was used in this measurement. The sample

stage was elevated in 200 nm steps, and a microscopic image was recorded at each step. The

images were averaged for five seconds (150 frames). The fluorescence intensity of the bead was

determined as the average of pixel values in a square region fixed over the bead. The square

regions were set to 2.2 μm X 2.2 μm or 1.8 μm X 1.8 μm for the beads with the diameter of

1.0 μm, and 3.3 μm X 3.4 μm for the beads with the diameter of 2.0 μm (cf. Fig 3).
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Calibration of the trap stiffness of the optical tweezers

The stage was moved to one direction at the velocity v = 500 μm/s to measure the displacement

of the trapped bead. The viscous force was calculated based on viscous resistance Fvis [33].

Fvis ¼
6pZrv
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Fig 3. The procedure to determine the height of the trap center from the focal plane of the fluorescence microscopy. (A)

Schematics showing the procedure to measure the trap height. Objective lens is fixed in space. (i) The focal plane of the bright-

field microscopy (dotted line, adjustable by the position of the camera) is preset at about 1 μm above that of the fluorescence

microscopy (dashed line). A floating bead is trapped. (ii) While the other bead is attached to the coverslip, the sample stage is

elevated in steps (200 nm each). (iii) When the coverslip touches the trapped bead, the bead is adsorbed to the coverslip. (iv) Both

beads are elevated together with the sample stage. (B and C) Data showing the changes in fluorescence intensity during the trap

height measurement obtained with beads with the diameter of 1.0 μm (B) or 2.0 μm (C). Dots represent the change in the

fluorescence intensity of the beads adsorbed to the coverslip when the sample stage was lifted upwards. The symbols (+, x, ^)

indicate the fluorescence intensity of the trapped beads. Three individual trials are represented by three different colors. The

fluorescence intensities were determined in square regions. The size for the beads with the diameter of 1.0 μm was 2.2 μm X

2.2 μm for the data indicated in black or 1.8 μm X 1.8 μm for the data indicated in blue and red. For the beads with the diameter

of 2.0 μm, the size was 3.3 μm X 3.4 μm. The change of the fluorescence intensities along the Z axis can be fit to the Gaussian

distribution (shown in thin curves with the same color as corresponding dots). The peak position of the Gaussian distribution is

the focal plane of the fluorescence microscopy (Z = 0, vertical dotted line). After the intensity peaks at about Z = 1 μm (arrows

with the same color as corresponding symbols), it begins to decrease in the same way as those of the bead adsorbed to the

coverslip. This is because the trapped bead is adsorbed to the coverslip and it moves together with the pre-adsorbed bead. From

the peak positions (1.1 ± 0.15 μm and 1.3 ± 0.18 μm for beads with the diameter of 1.0 μm and 2.0 μm, respectively; mean ± SD,

vertical dashed line), we estimated the distance of the trapped 1.0 μm beads from the focal plane as Z = 0.88 μm after the

correction for aberration (see main text for details).

https://doi.org/10.1371/journal.pone.0192558.g003
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, where η = 0.89 mPa�s is the viscosity of water at 25˚C [34], r = 1.0 μm is the diameter of the

bead, and h is the distance between the center of the trapped bead and the surface of coverslip.

The calibration was carried out at the same height as in the sliding force measurement to avoid

any contribution of spherical aberration on trap stiffness that depends on the distance from

the coverslip (discussed later) [22,23,35–37]. The trap stiffness was adjusted to 0.042–0.15 pN/

nm by regulating the laser power, so that the displacement of the bead was less than 200 nm,

which is within the linear range of our optical tweezers.

Measurement of the sliding force in in vitro motility assay under TIRF

microscopy

Measurement of the sliding force was carried out as reported [31,38,39]. From one side of the

flow cell, 20 μL of HMM solution (30 μg/mL in rigor solution) was injected. After 60 sec,

another 20 μL of HMM solution was injected from the other side of the flow cell. After 60 sec,

the unattached HMM molecules were washed out using 20 μL of the activating solution or pCa

9.0 solution containing BSA (5 mg/ml). After 5 min, 50 μL of the experimental solution con-

taining bead-tailed filaments was injected. For the bead-tailed thin filaments, the stored sample

was diluted to 1:100 just before the injection into the flow cell; 100 nM Tpm and 100 nM Tn

were present in the experimental solution to ensure that Tpm and Tn were bound on the thin

filaments throughout the measurements [40]. Measurements were performed using the TIRF

microscopy. The position of the trapped bead was determined by fitting the intensity of the

bright-field image of the bead to a Gaussian distribution. The length of the part of the filament

interacting with HMM (= a) was determined as the distance between the points where the

fluorescence intensity was half maximum (cf. Fig 4B). a of 2.7 ± 0.60 and 2.8 ± 0.67 μm in

reconstituted thin filament and actin filament, respectively, were obtained. The numbers of

flow cell we used were 10 and 15 for the force measurements with reconstituted thin filament

and actin filament, respectively. Measurements of up to 15 times per each flow cell were per-

formed in each condition. In order to average the various densities of HMM molecules that

were possibly present within and among preparations, multiple areas were used in each cover-

slip. All measurements were completed within 30 min to avoid a formation of rigor bonds as a

result of the ATP consumption in the flow cell.

Results and discussion

Height of the trapped bead determined from the fluorescence microscopy

We determined the distance between the center of the trapped bead and the focal plane (h in

Fig 1) from the fluorescence intensity of the bead (Fig 3). Under the epifluorescence micros-

copy with the fixed focal plane, the fluorescence intensity of the bead adsorbed to the glass cov-

erslip was monitored as the sample stage was elevated along the Z axis (Fig 3A, the bead on the

coverslip). The intensity approximated the Gaussian distribution (Fig 3B and 3C, solid lines).

This correlation is used to locate the three-dimensional position of the bead, as reported previ-

ously [41]. Here, the Z position at which the Gaussian distribution had a peak value was

defined as the focal plane of the fluorescence microscopy (Z = 0 μm). On the other hand, the

fluorescence intensity of the trapped bead had a peak at around Z = 1 μm, and decreased as the

coverslip was elevated further above the peak (Fig 3B and 3C, symbols). The oil-immersion

lens used in this study is suitable for observing specimens at the surface of the coverslip. As the

coverslip approached the trapped bead, the thickness of the water layer between the bead and

the coverslip surface decreased to reduce the effect of spherical aberration [42], which may

contribute to the increment of the fluorescence intensity before the coverslip touched the
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trapped bead. When the coverslip touched the bead, it was adsorbed to the coverslip and then

moved together with pre-adsorbed beads, i.e. the fluorescence intensity of both beads

decreased in the same way. We have tested beads with two different diameters. For the beads

with the diameter of 1.0 μm (Fig 3B) and 2.0 μm (Fig 3C), the peak positions in fluorescence

intensity were measured as 1.1 ± 0.15 μm and 1.3 ± 0.18 μm (mean ± SD, n = 3), respectively.

In general, trapped bead is shifted downstream of the focus due to a scattering force of the

trapping laser [43]. The difference in trap positions between beads with diameters 1.0 μm and

2.0 μm is consistent with the simulated results as previously reported; that the larger bead is

balanced more downstream of the trapping laser [37,44,45]. With a similar method, Lang et al.
determined h by using the signal measured by a photo diode [46]. Alternatively, h can be mea-

sured by back-focal-plane interferometry [23,36], or from the intensity of scattered evanescent

light [47]. Relative position of a particle to the focal plane is determined in magnetic tweezers

using a series of concentric circles surrounding the particle image [48]. Coherent light is used

for the illumination in this measurement.

Due to the spherical aberration, the actual distance between the center of the bead and the

coverslip was 0.8 times of the measured value (i.e. the bead moves away when the coverslip

approaches it. When the coverslip is moved away from the bead, the bead approaches the cov-

erslip) [23,36]. Thus, we estimated the value of h for the 1.0 μm bead as 0.88 μm (= 1.1 μm X

Fig 4. Analysis of sliding force and filament length. (A) A representative time course of the bead displacement during measurement. At

first, a bead-tailed reconstituted thin filament (a = 3.3 μm) was trapped in the activating solution, where the displacement of the bead is

defined as 0 (the bead is at the trap center) because there is no interaction between the thin filament and HMM (during the period shown by

a horizontal line). Then, the coverslip was elevated to the focal plane of the fluorescence microscopy, which is below the focal plane of the

bright-field microscopy and the focus of the optical tweezers. When the thin filament started to interact with HMM on the coverslip, the bead

was displaced away from the trap center (arrow). To calculate the sliding force in the X-Y plane, the displacement was multiplied by the trap

stiffness. (B) Representative fluorescence images of the same bead-tailed actin filament trapped (upper photo) and released (lower photo),

and the result of their intensity analysis. While the bead is trapped above the glass surface, only a part of the actin filament interacting with

HMM on the coverslip was visible under the TIRF microscopy. Therefore, the actin filament appears shorter when the bead is trapped (upper

photo) than when it is released (lower photo). Fluorescence images shown are the region of interest (ROI) within which the fluorescence

intensities were averaged along the columns in Y-axis to produce the 1D intensity profile along the X-axis (red and blue curves correspond to

the upper and lower fluorescence micrographs, respectively). Background signal was determined from the other ROI (set next to the actin

filament) which was subtracted from the signal of the actin filament. Frequently, the background was none. The parameter ’a’ as defined in

Fig 1 was determined as the distance between the points where the fluorescence intensity was half of the maximum (bottom).

https://doi.org/10.1371/journal.pone.0192558.g004
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0.8). Finally, the focus of the bright-field microscopy was set at the center of the trapped bead

for the subsequent force measurement.

Measurement of the sliding force and the angle of force vector

The bead to which a single filament was attached was trapped by the optical tweezers. After the

filament was aligned parallel to the coverslip by moving the sample stage in one direction on

the X-Y plane, the sample stage was positioned at the focal plane of the florescence microscopy.

This is below the focus of the bright-field microscopy and the optical tweezers, where the fluo-

rescence intensity of the field of view monitored in real time was at its maximum. Then the tip

of the filament was attached to the coverslip surface and the bead started to deviate from the

trap center as the active force developed by the actomyosin interaction (Fig 4A). Sliding force

(F) was determined as the average of the displacement multiplied by the trap stiffness of the

optical tweezers.

Reconstitution of Tpm/Tn has been shown to enhance actomyosin force generation in the

presence of Ca2+ [31,39,49,50]. This phenomenon was also observed with our experiments by

comparing the sliding force per unit length of the filament, which was obtained by dividing

force (F) by the length of the filament interacting with HMM (region a, Fig 1). Only this part

of the filament was visible under TIRF microscopy during force measurements (Fig 4B). The

F/length in the activating solution increased to 4.0 ± 1.7 pN/μm in reconstituted thin filaments

(n = 71) from 2.6 ± 1.0 pN/μm in pure actin filaments (n = 66) (Fig 5A). The efficacy of recon-

stitution was confirmed by the active force production in the absence of Ca2+ (pCa 9.0) (0.17 ±
0.081 pN/μm, n = 22) (Fig 5A). The stable attachment of reconstituted thin filaments to HMM

in the absence of Ca2+ in the in vitro motility assay system was probably caused by the electro-

static interaction as discussed previously [50].

We also have considered that the trapped bead was pulled vertically in addition to horizon-

tally due to the gap from the coverslip surface. The angle between the filament and the glass

surface, θ, is estimated as θ = arctan (h/b), where b is the distance between the end of the visible

filament closer to the trapped bead and the center of the bead (Fig 1). The height of HMM (Fig

1) can be disregarded because it is much smaller (order of 10 nm) than h (order of 1 μm).

Thus, the corrected force vector, F/cosθ/length, was obtained as 4.3 ± 1.8 and 2.8 ± 1.0 pN/μm

in reconstituted thin filament and actin filament, respectively (Fig 5B).

Estimated measurement errors

We evaluated the possible sources of errors in measuring the length of filaments (b) and the

trap height (h), and the errors in θ caused by these values. To estimate the amount of possible

errors in the measurement of a, the depth of focus was first considered. The length of the part

of the thin filament interacting with HMM, a, was determined from the fluorescence image as

the distance between the points where the fluorescence intensity is half the maximum under

TIRF microscopy. Toyoshima indicated that HMM molecules that support the filament motil-

ity were bound to the glass coverslip coated with nitrocellulose (collodion) near the junction

between HMM and light meromyosin [51]. Observation using electron microscopy suggested

that sliding filaments are not present at the tip of myosin heads but they are embedded

between the heads at the surface of mica film [52]. Based on these reports, we assumed the dis-

tance from the coverslip coated by collodion to the filament to be the sum of the size of a myo-

sin head (19 nm) [53] and the radius of an actin filament (7/2 = 3.5 nm) [54]: 19 + 3.5 = 22.5

nm. The evanescent light at 22.5 nm was calculated to be decreased by half at 80 nm from the

coverslip under the current conditions [47,55] (S1 Fig). Therefore, a part of b near the point P,

the end of the filament interacting with HMM (Fig 1), could be illuminated while it was within
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Fig 5. Correlation between corrected sliding force per unit length and angle of the force vector. (A) Distribution of sliding force (F) per

unit length of filament. Reconstituted thin filament (red circles); +Ca2+, 4.0 ± 1.7 pN/μm (n = 71);–Ca2+, 0.17 ± 0.08 pN/μm (n = 22). Actin

filament (white circles); 2.6 ± 1.0 pN/μm (n = 66). (B) Distribution of F per unit length of filament with a compensation of the angle of force

vector (cosθ). Horizontal bars indicate average values. Reconstituted thin filament, 4.3 ± 1.8 pN/μm. Actin filament, 2.8 ± 1.0 pN/μm. (C)

Correlation between (F/cosθ) per unit length of filament and the angle between the thin filament and the glass surface (θ). Regression lines (red

for reconstituted thin filament, y = – 0.092x + 6.4, R = 0.28; black for actin filament, y = – 0.078x + 4.4, R = 0.45) are for visual guide. (D)

Distribution of F per unit length of filament with a compensation of the angle of force vector (cosθ) at 0˚< θ� 25˚ or θ> 25˚. Reconstituted

thin filament; 4.6 ± 2.0 pN/μm at 0˚< θ� 25˚(n = 48), 3.7 ± 1.1 pN/μm at θ> 25˚ (n = 23). Actin filament; 3.0 ± 1.0 pN/μm at 0˚< θ� 25˚

(n = 50), 2.2 ± 0.91 pN/μm at θ> 25˚ (n = 16). Red and gray symbols indicate data obtained from reconstituted thin filaments in the presence
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80 nm from the coverslip. The part of the filament emitting fluorescence within the depth of

field, ± 182 nm (= ±λXn3 /2(N.A.)2, where λ = 532 nm, n3 = 1.52 is the refractive index of

immersion oil, and N.A. = 1.49 is the numerical aperture of the objective lens; the depth of

field can be obtained based on the wave optics for objective lens with a high numerical aper-

ture), is observed as in one same focal plane [56]. The projection of this part onto the X-Y
plane, 57.5/tanθ (57.5 nm = 80 nm– 22.5 nm), may have increased the apparent value of a
(cf. Fig 1). Because θ ranged from 11˚ to 36˚ (S2A Fig; reconstituted thin filament: 23 ± 5.6˚;

actin filament: 21 ± 5.9˚), the value 57.5 nm/tanθ could vary between 48 nm and 175 nm. Even

with 175 nm, it was only up to ~6.4% of the average length of a. Thus, we conclude that the

contribution of this error is negligible for determining a. The thickness of an actin filament

was measured as 0.57 ± 0.10 μm (n = 3) in TIRF microscopy (determined as the half-width of

fluorescence intensity along the Y axis in Fig 5B), while the actual dimension was about 7 nm.

The same ’thickening’ effect seems to take place both at the tip of the filament and at P. Conse-

quently, a should appear longer (b should be shorter) than its actual length. Therefore, we con-

clude that the value of a is overestimated by 21% (= 0.57/2.7), and, b is underestimated by the

same amount.

The trap height, h, could also contain an error. h is considered to be variable between each

measurement because the bead was pulled downwards to a different degree along the Z axis in

addition to its displacement in the X-Y plane. The displacement of the trapped bead from the

trap center in the Z axis was estimated by dividing the Z axis component of force (F X tanθ) by

the trap stiffness along the Z axis (estimated to be one-fifth of that in the X-Y plane [57]) (ΔZ;

161 ± 78 nm and 147 ± 48 nm for reconstituted thin filament and actin filament, respectively;

S2B Fig).

By including the contributions from all sources of errors considered (b’ = b + 0.57/2 μm;

h' = h–ΔZ), the largest error in θ is estimated to be about 6˚ (= θ'–θ, where θ' = arctan(h'/b');
6.0 ± 2.3˚ and 5.1 ± 2.0˚ for reconstituted thin filament and actin filament, respectively). We

believe that this value has no significant contribution in the following discussion.

Sustained force generation on reconstituted thin filament under vertical

forces

Reconstitution of Tpm/Tn not only enhanced force generation in the presence of Ca2+, but it

also stabilized the actomyosin interaction in the presence of vertical force on the filament. The

corrected force vectors were distributed broadly around the mean values in both reconstituted

thin filament and actin filament (Fig 5A and 5B). As shown in S2A Fig, θ had a range. There-

fore, we hypothesized that the broad distribution of force was caused by the range of θ. To test

this hypothesis, the actomyosin force was further plotted against θ. This analysis demonstrated

that the force on both filaments decreased as θ increased (Fig 5C and 5D). This θ-dependence

of generated force was always present in each preparation (S3 Fig). Furthermore, the force on

reconstituted thin filament was about 1.5 times larger than that on actin filament at both 0˚< θ
� 25˚ and θ> 25˚ (Fig 5D). The data in reconstituted thin filaments exhibited a larger scatter

than that in pure actin filaments. It may be thought that a part of the Tpm/Tn complex is

detached from the reconstituted thin filaments, resulting in less force generation. However,

this is not the case because we have demonstrated the efficacy of reconstitution in the absence

of Ca2+ (pCa 9.0) in which no force was generated (Fig 5A). The scatter of the data may reflect

(n = 71) and in the absence (n = 22) of Ca2+, respectively. White symbols indicate data obtained from actin filaments (n = 66). Data were

statistically compared by using two-sided student’s t-test (�0.01� p< 0.05, ��0.001� p< 0.01, ���p< 0.001).

https://doi.org/10.1371/journal.pone.0192558.g005
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a variation in the density of HMM molecules in different coverslips. Areas used for the mea-

surements were changed every time to randomly sample the preparation (see Materials and

methods).

The vertical force imposed on each actomyosin interaction may be the main reason for the

decrease in the active sliding force with increasing θ (Fig 5C and 5D). Isambert et al. reported

the persistent lengths of reconstituted thin filament and actin filament as 12 μm and 9 μm,

respectively, in the presence of Ca2+ [58]. Fujime and Ishiwata also reported similar data

obtained by quasi-elastic scattering of laser light [59,60]. The larger this parameter is, the more

rigid the polymer is. In the current study, the filaments used for measurements (reconstituted

thin filament, 4.6 ± 1.1 μm; actin filament, 5.0 ± 1.2 μm) were comparable to or shorter than

their persistent lengths. Therefore, we can consider that the trapping force vertical to the X-Y
plane is the same throughout the filament.

The reason why the force generation on reconstituted thin filament is larger than that on

pure actin filament may be attributed to more stable binding of HMM to the thin filament

than to the actin filament. In fact, we previously showed that the unbinding force of actomyo-

sin rigor bond is about 1.2 times larger in reconstituted thin filament than in the actin filament

[30]. The reconstitution recovers the kinetic constants of each elementary step of the cross-

bridge cycle, as demonstrated in muscle fibers by using the thin filament-extraction and recon-

stitution method [49,61]. The enhanced stability of actomyosin interaction by Tpm/Tn com-

plex may contribute to the sustainable force generation regardless of θ, even when the force

along the Z axis was larger on reconstituted thin filament (4.4 ± 2.0 pN, S2C Fig) than that on

actin filament (2.7 ± 0.84 pN).

Takagi et al. have demonstrated the mechanosensing property of the myosin molecule in

that the force generation of actomyosin can vary depending on the external force imposed on

the actin filament [62]. We infer from our results that the Tpm/Tn complex enhances the sta-

bility of actomyosin interaction against the pulling force in the direction perpendicular to the

long axis of the filament. In the cytosol of non-muscle cells, cytoskeletal isoforms of Tpm are

known to regulate the interactions between the actin filament and actin binding proteins

including myosin [63–66]. While the regulatory mechanisms of Tpm have been intensively

studied as a part of contractile function, Hundt et al. have suggested that cytoplasmic Tpm

plays an important role in cytoskeletal rearrangements by enhancing the processivity of myo-

sin in the presence of external force [65]. Their results suggest that detailed measurement of

the three-dimensional force generation by actomyosin in the presence of actin regulatory pro-

teins would be one important target. Rigid and stable three-dimensional lattice structure as it

exists in muscle cells is absent in the cytosol of non-muscle cells. By switching the sustainability

on and off in force production, regulatory proteins such as Tpm may play an important role to

adapt the mechanochemistry of actomyosin assembly, and to flexibly manage cellular

functions.

Supporting information

S1 Fig. Intensity of evanescent light depends on the distance from the surface of the cover-

slip. Calculated relative intensity of evanescent light as a function of the distance from the sur-

afce of the coverslip with differenct incident angles of the laser beam. Red; 60.4˚ which is the

critical angle for total reflection on coverslip (θc = sin-1(n2/n1) = 60.4˚, where n1 = 1.53 is the

refractive index of glass, and n2 = 1.33 is the refractive index of water). Orange; 64˚. Green;

68.6˚ which is the angle set in the current study. The broken line points the relative intensity at

22.5 nm from the coverslip, representing the location of the filament during measurements.

The distance where the intensity of the evanescent light is decreased by half from that at 22.5
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nm is indicated by the dotted line. Blue; 72˚. Purple; 76.9˚ which is the maximum angle to

cause evanescent light (θmax = sin-1(N.A./n1), where N.A. = 1.49 is the numerical aperture of

the objective lens). The intensity of the evanescent light [E(z)] decreases as a function of the

distance from the boundary (z) [49][57] as; EðzÞ ¼ E0e� bz (2), where b ¼ 4p

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1
sin2yi � n2

2

p
(3)

E0, intensity at the boundary. λ = 532 nm, wavelength of the laser light.

(TIF)

S2 Fig. Distributions of θ, displacement of the trapped bead in the Z axis, and vertical com-

ponent of the force vector. (A) Distributions of θ. Reconstituted thin filament, 23 ± 5.6˚.

Actin filament, 21 ± 5.9˚. (B) Displacement of the bead in the Z axis calculated from F, θ and

the trap stiffness in the Z axis that was assumed to be one-fifth of that in X-Y plane as previ-

ously reported [59]. Reconstituted thin filament; 161 ± 78 nm. Actin filament; 147 ± 48 nm.

(C) Distribution of the perpendicular component of sliding force with a compensation of the

angle of force vector (F/cosθ). Reconstituted thin filament; 4.4 ± 2.0 pN/μm. Actin filament;

2.7 ± 0.84 pN/μm. Red and white symbols represent data obtained from reconstituted thin fila-

ments (n = 71) and actin filaments (n = 66), respectively. Horizontal bars indicate average val-

ues.

(TIF)

S3 Fig. Variety in the correlations between F per unit length of filaments and θ among cov-

erslip preparations. Data were reproduced from Fig 5C for reconstituted thin filaments (A)

and actin filaments (B). Plots with the same style and color were obtained from the same prep-

aration. The number of flow cells is 10 (A) and 15 (B).

(TIF)
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56. Inoué S, Spring KR. Video microscopy: The fundamentals. 2nd ed. New York: Plenum Press; 1997.

52 p.

57. Wu P, Huang R, Tischer C, Jonas A, Florin EL. Direct measurement of the nonconservative force field

generated by optical tweezers. Phys Rev Lett. 2009; 103:108101. https://doi.org/10.1103/PhysRevLett.

103.108101 PMID: 19792342

58. Isambert H, Venier P, Maggs A, Fattoum A, Kassab R, Pantaloni D, et al. Flexibility of actin filaments

derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory pro-

teins. J Biol Chem. 1995; 270(19):11437–11444. PMID: 7744781

59. Fujime S, Ishiwata S. Dynamic study of F-actin by quasielastic scattering of laser light. J Mol Biol. 1971;

62(1):251–265. PMID: 4945533

60. Ishiwata S, Fujime S. Effect of calcium ions on the flexibility of reconstituted thin filaments of muscle

studied by quasielastic scattering of laser light. J Mol Biol. 1972; 68(3):511–522. PMID: 4672238

61. Fujita H, Lu X, Suzuki M, Ishiwata S, Kawai M. The effect of tropomyosin on force and elementary steps

of the cross-bridge cycle in reconstituted bovine myocardium. J Physiol. 2004; 556(Pt 2):637–649.

https://doi.org/10.1113/jphysiol.2003.059956 PMID: 14742733

62. Takagi Y, Homsher EE, Goldman YE, Shuman H. Force generation in single conventional actomyosin

complexes under high dynamic load. Biophys J. 2006; 90(4):1295–1307. https://doi.org/10.1529/

biophysj.105.068429 PMID: 16326899

63. Gunning P, Neill GO, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and

space. Physiol Rev. 2008; 88:1–35. https://doi.org/10.1152/physrev.00001.2007 PMID: 18195081

64. Wang CLA, Coluccio LM. New insights into the regulation of the actin cytoskeleton by tropomyosin. Int

Rev Cell Mol Biol. 2010; 281:91–128. https://doi.org/10.1016/S1937-6448(10)81003-2 PMID:

20460184

65. Hundt N, Steffen W, Pathan-Chhatbar S, Taft MH, Manstein DJ. Load-dependent modulation of non-

muscle myosin-2A function by tropomyosin 4.2. Sci Rep. 2016; 6(20554).

66. Gateva G, Kremneva E, Reindl T, Kotila T, Kogan K, Gressin L, et al. Tropomyosin isoforms specify

functionally distinct actin filament populations in vitro. Curr Biol. 2017; 27:705–713. https://doi.org/10.

1016/j.cub.2017.01.018 PMID: 28216317

Estimation of actomyosin active force under vertical forces

PLOS ONE | https://doi.org/10.1371/journal.pone.0192558 February 8, 2018 16 / 16

https://doi.org/10.1016/S0006-3495(02)75185-0
https://doi.org/10.1016/S0006-3495(02)75185-0
http://www.ncbi.nlm.nih.gov/pubmed/12080136
https://doi.org/10.1073/pnas.1422178112
https://doi.org/10.1073/pnas.1422178112
http://www.ncbi.nlm.nih.gov/pubmed/25512542
https://doi.org/10.1016/S0006-3495(02)75672-5
http://www.ncbi.nlm.nih.gov/pubmed/12023254
https://doi.org/10.1016/S0006-3495(02)75453-2
https://doi.org/10.1016/S0006-3495(02)75453-2
http://www.ncbi.nlm.nih.gov/pubmed/11806933
https://doi.org/10.1016/S0022-2836(05)80060-9
https://doi.org/10.1016/S0022-2836(05)80060-9
http://www.ncbi.nlm.nih.gov/pubmed/2146398
http://www.ncbi.nlm.nih.gov/pubmed/691054
https://doi.org/10.1103/PhysRevLett.103.108101
https://doi.org/10.1103/PhysRevLett.103.108101
http://www.ncbi.nlm.nih.gov/pubmed/19792342
http://www.ncbi.nlm.nih.gov/pubmed/7744781
http://www.ncbi.nlm.nih.gov/pubmed/4945533
http://www.ncbi.nlm.nih.gov/pubmed/4672238
https://doi.org/10.1113/jphysiol.2003.059956
http://www.ncbi.nlm.nih.gov/pubmed/14742733
https://doi.org/10.1529/biophysj.105.068429
https://doi.org/10.1529/biophysj.105.068429
http://www.ncbi.nlm.nih.gov/pubmed/16326899
https://doi.org/10.1152/physrev.00001.2007
http://www.ncbi.nlm.nih.gov/pubmed/18195081
https://doi.org/10.1016/S1937-6448(10)81003-2
http://www.ncbi.nlm.nih.gov/pubmed/20460184
https://doi.org/10.1016/j.cub.2017.01.018
https://doi.org/10.1016/j.cub.2017.01.018
http://www.ncbi.nlm.nih.gov/pubmed/28216317
https://doi.org/10.1371/journal.pone.0192558

