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A single-cell sequencing data set has always been a challenge for clustering because of its
high dimension andmulti-noise points. The traditional K-means algorithm is not suitable for
this type of data. Therefore, this study proposes a Dissimilarity-Density-Dynamic Radius-
K-means clustering algorithm. The algorithm adds the dynamic radius parameter to the
calculation. It flexibly adjusts the active radius according to the data characteristics, which
can eliminate the influence of noise points and optimize the clustering results. At the same
time, the algorithm calculates the weight through the dissimilarity density of the data set,
the average contrast of candidate clusters, and the dissimilarity of candidate clusters. It
obtains a set of high-quality initial center points, which solves the randomness of the
K-means algorithm in selecting the center points. Finally, compared with similar algorithms,
this algorithm shows a better clustering effect on single-cell data. Each clustering index is
higher than other single-cell clustering algorithms, which overcomes the shortcomings of
the traditional K-means algorithm.
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1 INTRODUCTION

Since the start of genome Project, genome sequencing has been carried out rapidly, and a large
amount of genome data has been mined. In order to obtain the information needed by people,
bioinformatics emerges as The Times require (Li and Wong, 2019; Liu et al., 2021). It is an
interdisciplinary subject composed of life science and computer science, which can dig out the
biological significance contained in the chaotic biological data (Sun et al., 2022). Transcriptome
is an important research field in bioinformatics, which can study gene function and gene
structure from an overall level, and reveal specific biological processes and molecular
mechanisms in the process of disease occurrence (Qi et al., 2021; Tang et al., 2020). In
order to study the transcriptome, it must be sequenced first, but traditional sequencing
techniques ignore the critical differences of individual cells, which will mask the
heterogeneous expression between cells and make it difficult to detect subtle potential
changes (Huang et al., 2017; Liu et al., 2020). To solve this problem, the single cell RNA
sequencing (scrNA-SEQ) technology was developed (Qiao et al., 2017).
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scRNA-seq is a powerful method for analyzing gene
expression patterns and quickly determining the correct gene
expression patterns of thousands of single cells (Potter, 2018). By
analyzing scRNA-seq data, we can identify rare cell populations,
find subgroup types with different functions, and reveal the
regulatory relationship between genes. scRNA-seq can not
only show the complexity of single-cell horizontal structure
but also improve biomedical research and solve various
problems in biology (Yang et al., 2019).

Although the research prospect of scRNA-seq is comprehensive,
it also brings new problems and challenges (Kiselev et al., 2019). The
scRNA-seq data are high-dimensional and noisy (Xu et al., 2020).
Therefore, many clustering methods have been proposed to deal
with high-dimensional data structures and noise distribution (Jiang
et al., 2018; Zhang et al., 2021; Zhuang et al., 2021). Most of the
existing scRNA-seq clustering methods can be divided into
unsupervised or semi-supervised clustering (Chen et al., 2016).
Zhang et al., (2018) et al. proposed an improved K-means
algorithm based on density canopy to find the appropriate center
point by calculating the density of the sample data set; Li et al.
proposed a new improved algorithm based on T-SNE and density
canopy algorithm, called density-canopy-K-means (Li et al., 2019).
Compared with similar methods, this clustering algorithm shows
stable and efficient clustering performance on single-cell data, thus
overcoming the shortcomings of traditional methods; Dong and
Zhu, (2020) et al. calculated the dissimilarity parameter between
each model by calculating the dissimilarity function between
samples and selected the maximum dissimilarity parameter value
as the initial clustering center point; Zhu (Zhuang et al., 2021) et al.
proposed a new sparse subspace clustering method, which can
describe the relationship between cells in a subspace; Ruiqing
(Zheng et al., 2019) et al. proposed a method for detecting
scRNA-seq cell types based on similarity learning. Wang et al.,
(2022) propose the scHFC, which is a hybrid fuzzy clustering
method optimized by natural computation based on Fuzzy C
Mean (FCM) and Gath-Geva (GG) algorithms. The FCM
algorithm is optimized by simulated annealing algorithm, and the
genetic algorithm is applied to cluster the data to output a
membership matrix. Gan et al., (2022). propose a new deep
structural clustering method for sc RNA-seq data, named scDSC,
which integrates the structural information into deep clustering of
single cells. The study byGan et al., (2022) not only explained the cell
typing method behaviors under different experimental settings but
also provided a general guideline for the choice of the method
according to the scientific goal and dataset properties. Li et al., (2019)
Surrogate-Assisted Evolutionary Deep Imputation Model (SEDIM)
is proposed to automatically design the architectures of deep neural
networks for imputing gene expression levels in scRNA-seq data
without any manual tuning. Yu et al., (2022)propose a single-cell
model-based deep graph embedding clustering (scTAG) method,
which simultaneously learns cell–cell topology representations and
identifies cell clusters based on a deep graph convolutional network.
Li et al., (2021) propose a multiobjective evolutionary clustering
based on adaptive non-negative matrix factorization (MCANMF)
for multiobjective single-cell RNA-seq data clustering. Peng et al.,
(2020) compared 12 single-cell clustering methods and found that
most of them improved based on the K-means algorithm.

The K-means algorithm (Macqueen, 1966; Lloyd, 1982) was
first proposed by Steinhaus in 1955, Lloyd in 1957, Ball and Hall
in 1965, and McQueen in 1967 in different scientific fields. Once
the algorithm is put forward, it is widely used in various areas
because of its simple principle and easy implementation. At the
same time, it is also commonly used in scRNA-seq clustering.
However, the K-means algorithm still has some problems.
Including that the value of K is difficult to determine, the
clustering result depends on the selection of the initial center
point, and it is easy to fall into the optimal local solution. In
addition, the K-means algorithm is sensitive to noise points and
outliers, and it is not practical for nonconvex data sets or data
with too significant differences in category size. These problems
will have a particular impact on the clustering results. To solve
this problem, many workers have carried out a lot of research.

Due to the high-dimensional characteristics of single cells, we
reduce the dimension of data sets and then cluster them, which can
not only improve the clustering effect but also visually analyze the
clustering results. This technology has been widely used in scRNA-
seq clustering. Common dimensionality reduction algorithms
include Principal Components Analysis (PCA), Locality
Preserving Projections (LPP), t-distributed Stochastic Neighbor
Embedding (t-SNE), Multidimensional Scaling (MDS), Isometric
feature mapping (Isomap), and Locally Linear Embedding (LLE).

Based on dimension reduction, we propose a scRNA-seq
clustering method: The dissimilarity-Density-Dynamic Radius-
K-means algorithm. The algorithm obtains a set of initial center
points by calculating the product of dissimilarity density ρ,
average dissimilarity of candidate clusters α, and disparity of
candidate clusters s. At the same time, the algorithm can optimize
the clustering results by adjusting the dynamic radius parameters.

FIGURE 1 | Dissimilarity density ρ.
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We apply this algorithm to single-cell data sets, and the obtained
indicators (NMI, FMeasure_node, Accuracy, and RandIndex) are
superior to those of other algorithms. They can be used as an
effective tool for scRNA-seq clustering.

The main significance of this study lies in the establishment of a
clustering model based on single-cell sequencing data, which can be
used to cluster cells with similar gene expression patterns into the
same cell type so as to infer cell functions and understand the
correlation between diseases and genomic characteristics. A more
precise and unbiased classification of cells would have a huge impact
in oncology, genetics, immunology, and other research fields.

2 MATERIALS AND METHODS

2.1 Theoretical Presentation
The K-means algorithm will randomly select K points as initial
center points when clustering, which will make the algorithm fall
into optimal local solution, and the obtained clustering
distribution is not optimal. It is possible to divide a smaller
group into one cluster and a large cluster into several small
groups. Therefore, the initial center point of the optimal group
should meet the following requirements: the difference between
the initial center point and other sample points in the group
should be as slight as possible; The difference to sample points
between the groups is as large as possible.

In thisarticle , the concept of dissimilarity is used when
selecting the center point. The so-called dissimilarity is the
dissimilarity between two objects, and its expression form is a
n × n matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
d(a1, a1) d(a1, a2)
d(a2, a1) d(a2, a2)

/ d(a1, a2)
/ d(a2, an)

..

. ..
.

d(an, a1) d(an, a2)
1 ..

.

/ d(an, an)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where d(ai, aj) represents the degree of dissimilarity between objects
ai and aj, which is usually a non-negative value. Themore similar the
two things are, the closer the case is to 0; Otherwise, the closer the

matter is to 1. We find that if the dissimilarity density ρ of a point is
greater, the fact is more likely to become the initial center point.

The dissimilarity density ρ of sample points xi is the number of
samples whose dissimilarity with sample objects xi less than the
dynamic radius r. Because there are often some noise points in single-
cell data sets, if the average dissimilarity is taken as the radius, this
fixed-radius algorithmwill make the dissimilarity density ρ inaccurate
and affect the selection of the initial center point. At the same time, the
fixed radius will also cause the number of clusters to be unsatisfactory.
Therefore, the traditional fixed-radiusmethod is no longer suitable for
single-cell clustering. If it is set to the dynamic radius r, it can
effectively solve this problem and is more conducive to single-cell
data clustering. The dynamic radius here is the ratio of the average
dissimilarity between samples to the dynamic parameters T. The
degree of dissimilarity is a model which fully considers the
comprehensive distance and dynamic radius, constructed the
dissimilarity matrix, and converts the single-cell data into a phase
dissimilarity matrix. It can be used to better judge the differences
between cells, not just by the distance between them.

2.2 Basic Definitions
X � {x1, x2,/, xn}is set as the sample data set to be clustered,
where x � {xi1, xi2,/, xip}, i ∈ {1, 2,/, n}, and ρ is the number
of attributes.

DEFINITION 1. Dissimilarity dij between sample points xi

and xj:

dij � ∑p
s�1
d(s)
ij , (1)

among them

d(s)
ij �

∣∣∣∣xis−xjs∣∣∣∣
max {xrs}−min{xrs} (2)

represents the dissimilarity of the s th attribute between the
sample point and, xrs is all the values of the s th attribute.

DEFINITION 2. Constructing dissimilarity matrix d:

FIGURE 2 | Dissimilarity of candidate clusters si .
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FIGURE 3 | Algorithm block diagram.
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

where dij represents the dissimilarity between the sample points
xi and xj.

DEFINITION 3. Dynamic radius r of data set X:

r � Mean r(d)
T

, (4)
among them

Mean_r(d) � 1
n2

∑n
i�1
∑n
j�1
dij, (5)

T is the dynamic radius parameter, and the value is as follows:

T � −0.423 + 0.328K − 1.211mead(d) + 0.662max(d)
+ 1.631min(d), (6)

where K represents the number of data categories; meanmeans the
average of dissimilarity; max represents the maximum phase
dissimilarity; andmin represents theminimum phase dissimilarity.

DEFINITION 4. Sample dissimilarity density ρ:

ρ � ∑n
j�1
δ(dij−r), (7)

where δ(z) � { 1, z≤ 0
0, others

, ρi represents the dissimilarity

density of the sample object xi, which is the number of points
satisfied d1i < r.

The sample point dissimilarity density is the number of points
that satisfy d1i < r. As shown in Figure 1, the conditions are
d11, d12, d13, d14. so the dissimilarity density of sample point 1 is 4.
Similarly, the dissimilarity density of red dots is 6; the
dissimilarity density of yellow dots is 8; the dissimilarity
density of blue dots is 7. It is to be noted that the points in
the intersection of two great circles can be calculated repeatedly.

DEFINITION 5. According to Definition 4, ρ is the number of
samples whose dissimilarity with the sample object xi is less than
the dynamic radius r. Samples meeting the conditions form a
candidate cluster, where the average dissimilarity between the
samples of the candidate cluster is

α(i) � 1
n2

∑n
i�1
∑n
j�1
dij, (8)

DEFINITION 6. The dissimilarity si of candidate clusters
represents the dissimilarity between sample xi objects xj,
which satisfies the following formula

si�
⎧⎨⎩ min(dij), ∃p(j)> p(i)

max(dij), ∃p(j)≤ p(i) , (9)

As shown on the left of Figure 2, the dissimilarity density of
sample point 1 is 5, and there is a dissimilarity density larger than
it, so the smallest dissimilarity is selected as the candidate cluster

FIGURE 4 | Clustering at a fixed radius. (A): The radius is too small; (B): The radius is too large; (C): The radius is appropriate.
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dissimilarity of sample point 1; as shown in the right of Figure 2,
the dissimilarity density of sample point 1 is 11, and there is no
dissimilarity density larger than it. Therefore, the biggest
dissimilarity is selected as the candidate cluster dissimilarity of
sample point 1.

By analyzing Definitions 5, 6, when the candidate cluster is
formed with xi as the center point, if the average dissimilarity
value α(i) between samples of the candidate cluster is smaller, the
dissimilarity of the cluster is very small, and the similarity is very
high; similarly, the greater the value of si, the greater the
dissimilarity between samples. Therefore, the dissimilarity
density ρ, the average dissimilarity α(i), and the dissimilarity
value si of candidate clusters can be taken as the standard to
measure the initial center point, which is specifically defined as
follows:

DEFINITION 7. The dissimilarity weight formula for selecting
the cluster center point is as follows:

ωi � ρip
1
αi
p si, (10)

among them, the point with the most significant weight of
dissimilarity is the initial center point.

2.3 Algorithm Flow and Block Diagram
2.3.1 Algorithm Flow
The Dissimilarity-Density-Dynamic Radius-K-means
algorithm calculates the dissimilarity density ρ of sample
points, the average dissimilarity α of candidate clusters, and
the dissimilarity value s of candidate clusters to obtain the
dissimilarity weight ω of sample points and determine a group

TABLE 1 | Summary of six scRNA-seq data sets used in this study.

Data set The number of cells The number of genes The number of clusters

Kolod 704 10685 3
Pollen 249 14805 11
Ting 114 11405 5
Ioh 429 18087 8
Goolam 124 16384 5
Usoskin 622 17772 4
Xin 1600 39851 8
Zeisel 3005 4412 48
Macosko 6418 12822 39

TABLE 2 | Clustering indexes after dimensionality reduction.

Kolod Pollen Usoskin Ting loh Goolam Xin Zeisel Macosko

Original Data NMI 0.5202 0.8533 0.3139 0.7262 0.5512 0.6218 0.5338 0.5262 0.4772
FM 0.8207 0.7837 0.5923 0.534 0.6013 0.7605 0.5468 0.3260 0.3726
Accuracy 0.6960 0.7807 0.5907 0.7746 0.5734 0.8097 0.8744 0.4985 0.4399
RandIndex 0.7080 0.9323 0.7011 0.8370 0.7924 0.8140 0.6971 0.9230 0.9092

t-SNE NMI 0.8344 0.9169 0.7197 0.8402 0.8296 0.7298 0.6087 0.5741 0.6954
FM 0.9025 0.8682 0.8032 0.9494 0.8540 0.9363 0.5456 0.3564 0.5339
Accuracy 0.9071 0.9149 0.6521 0.9033 0.8748 0.8952 0.9306 0.5784 0.6790
RandIndex 0.9005 0.5335 0.8804 0.9197 0.9459 0.8937 0.7088 0.9297 0.9488

PCA NMI 0.5557 0.8190 0.3435 0.8318 0.6398 0.6674 0.5821 0.4031 0.3433
FM 0.7710 0.8013 0.5486 0.9077 0.6616 0.7779 0.5873 0.2254 0.2456
Accuracy 0.7685 0.8233 0.5723 0.8947 0.6727 0.8653 0.9175 0.4254 0.3398
RandIndex 0.7905 0.9475 0.6837 0.9127 0.8648 0.8679 0.7119 0.9188 0.9185

MDS NMI 0.5519 0.8123 0.3438 0.8228 0.6444 0.7202 0.5960 0.4033 0.3441
FM 0.7679 0.5588 0.5588 0.8429 0.6674 0.7927 0.6046 0.2255 0.2420
Accuracy 0.7648 0.5723 0.5723 0.8596 0.6681 0.8871 0.9219 0.4252 0.3363
RandIndex 0.7883 0.6845 0.6845 0.9067 0.8647 0.9078 0.7288 0.9189 0.9163

Isomap NMI 0.4574 0.7350 0.3686 0.9173 0.7812 0.6535 0.6002 0.5338 0.5063
FM 0.7797 0.6632 0.6709 0.8064 0.8292 0.7295 0.5852 0.3307 0.4182
Accuracy 0.7741 0.6908 0.6672 0.8684 0.8436 0.8734 0.9207 0.5196 0.4634
RandIndex 0.7590 0.9070 0.7372 0.9104 0.9355 0.8173 0.7240 0.9251 0.9133

LLE NMI 0.5358 0.8941 0.4951 0.8172 0.7867 0.7205 0.5831 0.5719 0.6020
FM 0.8006 0.8931 0.7353 0.8458 0.7843 0.3620 0.6042 0.3620 0.5398
Accuracy 0.7955 0.9076 0.7267 0.8772 0.8462 0.5237 0.8882 0.5237 0.5734
RandIndex 0.7897 0.9695 0.7841 0.8763 0.9225 0.8978 0.7240 0.8978 0.9405

LPP NMI 0.7105 0.8875 0.6887 0.7869 0.7709 0.7056 0.5543 0.4819 0.4517
FM 0.7977 0.8460 0.8559 0.8351 0.7449 0.7991 0.5506 0.2664 0.3275
Accuracy 0.7979 0.8594 0.8376 0.8509 0.8089 0.8790 0.9006 0.4516 0.4020
RandIndex 0.7925 0.9620 0.8680 0.8572 0.8693 0.8996 0.7036 0.9197 0.9232
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of initial center points. Then, the obtained center point is used
as the initial center point of K-means for clustering. The flow of
the Dissimilarity-Density-Dynamic Radius-K-means
algorithm is as follows:

1) Giving a data set X � {x1, x2,/, xn};
2) Calculating the dissimilarity density of all points in x is in

accordance with the definition and form a set ρ;
3) Finding that point corresponding to the maximum value

from the dissimilarity set ρ; if the number of the value is 1, the
point is taken as the first initial clustering center point; if the
number of the maximum value is not 1, the calculated
sum(i) � ∑n

j�1dij, wherein dij ≤ r, j � 1, 2,/, n, and form
the set S, that satisfying sum(i) � min(S) point is taken as
the first initial center point;

4) Obtaining a first initial clustering center point at this time,
recording C1, and putting it in the set C at that time
C � {C1}. Then, points satisfying d1i < r are then removed
from the data set X;

5) Calculating the weight value ωi of the dissimilarity of the
remaining point according to the definition, wherein the
second initial center point is the point with the maxumun
weight value of the distinction and is recorded C2 and put in
setC at that timeC � {C1, C2}. Then, deleting the points that
meet the criteria;

6) Repeating step 5 until that data set is
empty, C � {C1, C2,/, Ck};

7) At this time, a group of initial center points C and the
number K of clustering have been obtained, and the
parameters are brought into the k-means algorithm for
clustering;

8) Calculating the distance between each point in the sample
and the initial center point, classifying the space into the
cluster where the center point with the smallest distance
between each other is located, and calculating the new center
points of each group;

9) Repeating the step 8 until the division condition of all sample
points remain unchanged or the central point does not
change;

10) Output that clustering result.

2.3.2 Algorithm Block Diagram
The algorithm block diagram is shown in Figure 3.

2.4 The Necessity of Setting the Dynamic
Radius Parameter T
When introducing the D3K algorithm, we put forward the
definition of dynamic radius R; the so-called dynamic radius is
the ratio of average dissimilarity and dynamic radius parameter T.
The distribution of the data set is not uniform. If the distribution of
the data set is too scattered or too close, the average dissimilarity
will be too large or too small. If the average dissimilarity is taken as
the radius, the clustering result will be inaccurate, which will affect

FIGURE 5 | Clustering index values of different dimension clustering.
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the selection of the initial center point and result in an inaccurate
clustering result. If the dynamic radius parameter is added, the
radius can be adjusted flexibly according to the data characteristics
so as to optimize the clustering result. As shown in Figure 4 below:

As shown in Figure 4C, for clustering results under ideal
conditions, appropriate radii are set and clusters are divided
reasonably. However, if the average dissimilarity is taken as
the radius, the average dissimilarity will be too small for some
overly tight data sets, which will make the radius smaller, and
the original cluster will be divided into two or more clusters,
as shown in Figure 4A. For some data sets that are too
scattered or have noise points, the average dissimilarity will
be very large. In this case, taking the average dissimilarity as
the radius will make the radius very large so that originally
different clusters can be divided into one cluster, as shown in
Figure 4B. Therefore, adding the dynamic radius parameter T
into the model can reasonably adjust the radius size according
to the data characteristics and optimize the result of cluster
division.

The dynamic radius parameter T is considered from multiple
perspectives, including the maximum, minimum, average, and
the number of clusters K. Considering many aspects, we get the
optimal solution through the greedy algorithm and then fit the
equation of the dynamic radius parameter T through a large
amount of data. Among them, the dissimilarity between each
point and itself is 0, so the dissimilarity between each point and

itself should be removed when selecting the minimum value of
phase dissimilarity, that is, the value with the smallest foreign
phase dissimilarity except 0. By observing the equation of
dynamic radius parameter T, it is found that the coefficient of
K value of the number of clusters is only 0.328, indicating that
although the dynamic radius parameter T is related to the number
of clusters, it does not account for the main factor, and the
optimal solution of T is in an interval, so the equation can be
satisfied without a particularly accurate K value.

3 RESULT

To verify the algorithm, we selected nine groups of single-cell data
sets for experiments, namely, Kolod, Pollen, Ting, Ioh, Goolam,
Usoskin, Xin, Zeisel, and Macosko data sets. Table 1 shows the
details of the data set.

Clustering the data in Table 1 after dimension reduction can
improve the clustering effect and visually analyze the clustering
results. We compare the effects of six dimensionality reduction
methods on single-cell data and visually examine the clustering
results and find out an algorithm suitable for dimensionality
reduction of single-cell data. At the same time, to verify the
quality of the algorithm, we compare it with other single-cell
clustering algorithms and finally confirm the selection of
parameter T in this study.

FIGURE 6 | Index of the D3K algorithm in single-cell data aggregation class.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9127118

Liu et al. Clustering Algorithm for scRNA-Seq Data

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


3.1 Dimension Reduction
To find a dimension reduction algorithm suitable for single-
cell data sets, we preprocess single-cell data with different
dimension reduction algorithms and then cluster the reduced
data to obtain clustering results. Here, we compare six
dimensionality reduction algorithms: T-SNE, PCA, MDS,
LPP, and LLE Isomap. By reducing dimensions in
clustering, we obtain the data in Table 2:

By analyzing the data in Table 2, it can be found that after
dimensionality reduction is used, the values of each index of
clustering have been significantly improved, indicating that
dimensionality reduction is very important for clustering,
which can not only greatly increase the accuracy of clustering
but also reduce the calculation time. At the same time, it can be
found that in most of the data, the t-SNE algorithm has the best
improvement effect. Therefore, the T-SNE algorithm can be used
as an effective tool for single-cell clustering.

In the previous experiments, we have concluded that the
t-SNE algorithm is more suitable for single-cell data
dimension reduction, but how many dimensions to reduce the
dimension is more suitable for clustering is still a problem to be
discussed. To this end, we set up the following experiments: The
t-SNE algorithm with the best dimensional reduction effect for
single-cell data was selected, and six groups of single-cell data
were reduced to 3, 10, 20, 50, and 100 dimensions for K-means
clustering, and the clustering index results in different
dimensions were analyzed. In order to compare the differences

between different dimensions more clearly, the results are
presented in a broken line graph. As shown in Figure 5:

Through the analysis of Figure 5, it is found that each data set
has an inflection point in three dimensions, that is to say, the data
will be reduced to three-dimension clusterings, and the clustering
result will be significantly improved. Although some data still
improve after three-dimension clustering, the increase is very
small and can be almost ignored. Therefore, we can conclude that
the t-SNE algorithm has the best clustering effect when the data
are reduced to three dimensional ones. Therefore, in the following
experiments, we uniformly used the t-SNE algorithm to reduce
single-cell data to three dimensional ones for clustering.

3.2 Comparison With Other Clustering
Algorithms
To verify the effectiveness of the D3K algorithm, we selected
seven single-cell clustering algorithms to compare with it,
namely, DCK (Zhang et al., 2018), S3C2 (Zhuang et al., 2021),
sinNLRR (Zheng et al., 2019), Corr (Dong et al., 2018), Max-Min
(Sen et al., 2018), K-means, and DBSCAN algorithm.

The nine groups of single-cell data in Table 1 were clustered
by the single-cell clustering algorithm described above, and each
index (NMI, FMeasure_node, Accuracy, RandIndex) of the
clustering result was obtained to obtain Figure 6 as follows:

Compared with other clustering algorithms, the D3K
algorithm is obviously higher than different algorithms in

FIGURE 7 | D3K algorithm visualization analysis.
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various indexes, and the results of multiple indexes are basically
above 0.8, among which the effects of multiple indexes of the
Pollen data set can reach above 0.95, especially Ting data set, and
the results all are 1. It can be seen that the D3K algorithm can
achieve ideal clustering results for both small and large data sets
and can be used as a clustering model for single-cell data.

Visual analysis of clustering results can not only clearly display
complex data in the form of images but also intuitively observe
the differences between clusters and the size of differences within
clusters. For single-cell data, this study first constructs its
dissimilarity degree matrix and then obtains the cluster label
of single-cell data through clustering. According to the cluster
label, visual analysis of the dissimilarity matrix can not only show
the clustering results of single cells after clustering but also make
the distance within the same cluster smaller and the distance
between different clusters larger. The following Figure 7 is a
visual analysis of the clustering results of six groups of single-cell
data, and the clustering results of the D3K algorithm are
displayed in the form of images.

As shown in Figure 7, the visualization results of the D3K
algorithm after clustering 10 groups of single-cell data are shown.
It can be seen that the D3K algorithm can perfectly divide these
data into different cell types according to the labels after
clustering and make the differences within clusters after
clustering very small, but the differences between clusters are
very large.

3.3 Validation of Parameter T
When introducing the D3K algorithm, we propose the definition of
dynamic radius r, and the so-called dynamic radius is the ratio of
the average degree of difference to the dynamic radius parameter.
The distribution of the dataset is not uniform, and if the dataset

FIGURE 8 | Clustering results when T and not T are set.

FIGURE 9 | Deng data set gene marker results.
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distribution is too scattered or too tight, it will cause the average
difference to be too large or too small. If the radius is based on the
average degree of difference, it will affect the selection of the initial
center point, resulting in inaccurate clustering results. By adding
the dynamic radius parameter, you can find the right radius for
each set of data to optimize clustering results.

In order to explain the necessity of the dynamic radius
parameter T more rigorously, we set up the following
experiment and ninesets of single-cell data were taken and
clustered using D3K. The dynamic radius parameter T is not
added to the first cluster, and the dynamic radius parameter T is
added to the second cluster to compare the difference between the
results. The result is shown in Figure 8:

As shown in Figure 8, the comparison of clustering results of
the D3K algorithm when T is set and not set is shown. The
abscissa of each of these plots represents the dataset, and the
ordinate coordinate represents the values of each metric. The
black polyline represents the clustering result when T is set, and
the green polyline represents the clustering result when T is not
set. The analysis found that the clustering results when setting T
were better than the clustering results when T was not set. It is to
be noted that setting the T value can optimize the clustering
results and make the clustering results more accurate.

3.4 Genetic Markers
The task of single-cell scrNA-SEQ sequencing is not only to
cluster single-cell sequencing data but also to cluster cells with
similar gene expression patterns into the same cell type.
Extraction of gene markers from the single-cell level of single-
cell RNA-SEQ and cell identification is also an important part
because it can assist in subsequent analysis of gene interactions.
As shown in Figure 9, after annotation of the Deng data cluster
class, its marker genes can be determined. The Deng marker
genes include Early-2cell, mid-2cell, late-2cell, 4cell, 8cell, 16cell,
and Zygoto. By clustering single-cell data, gene markers can be
realized more effectively, which is convenient for further research
on a single cell.

4 DISCUSSION

scRNA-seq can quickly determine the precise gene expression
patterns of thousands of single cells and reveal the complexity of
the horizontal structure of single cells, thus improving biomedical
research and solving various problems in biology. However, due
to the high dimension and multi-noise characteristics of single-
cell sequencing data sets, it brings significant challenges to the
traditional clustering algorithm. In this study, we propose a
Dissimilarity-Density-Dynamic Radius-K-means clustering

algorithm. By selecting the dynamic radius, the algorithm
effectively calculates the dissimilarity density ρ of the data set,
the average dissimilarity α of candidate clusters, and the
dissimilarity s of candidate clusters, finds a group of high-
quality initial center points, and achieves the purpose of
improving the K-means algorithm.

We use the Dissimilarity-Density-Dynamic Radius-K-means
clustering algorithm to cluster some single-cell data sets and
evaluate the clustering results. Experiments show that the
Dissimilarity-Density-Dynamic Radius-K-means clustering
algorithm has good performance for single-cell data clusters.
At the same time, we also compared with other single-cell
clustering algorithms. Experiments show that the
Dissimilarity-Density-Dynamic Radius-K-means clustering
algorithm is superior to other single-cell clustering algorithms.
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