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Abstract: The clinical use of platelet lysate (PL) in the treatment of wounds is limited by its rapid
degradation by proteases at the tissue site. This research aims to develop a chitosan (CS) and kenaf
nanocrystalline cellulose (NCC) hydrogel composite, which intend to stabilize PL and control its
release onto the wound site for prolonged action. NCC was synthesized from raw kenaf bast fibers
and incorporated into the CS hydrogel. The physicochemical properties, in vitro cytocompatibility,
cell proliferation, wound scratch assay, PL release, and CS stabilizing effect of the hydrogel composites
were analyzed. The study of swelling ratio (>1000%) and moisture loss (60–90%) showed the excellent
water retention capacity of the CS-NCC-PL hydrogels as compared with the commercial product.
In vitro release PL study (flux = 0.165 mg/cm2/h) indicated that NCC act as a nanofiller and provided
the sustained release of PL compared with the CS hydrogel alone. The CS also showed the protective
effect of growth factor (GF) present in PL, thereby promoting fast wound healing via the formulation.
The CS-NCC hydrogels also augmented fibroblast proliferation in vitro and enhanced wound closures
over 72 h. This study provides a new insight on CS with renewable source kenaf NCC as a nanofiller
as a potential autologous PL wound therapy.

Keywords: chitosan; kenaf; nanocrystalline cellulose; platelet lysate; wound healing

1. Introduction

In the last decade, biopolymers have attracted substantial attention mainly because
of their renewability, biocompatibility, biodegradability, and abundance. Nanocellulose,
a biopolymer derived from plants, is a promising biomaterial in skin grafts, implants,
tissue engineering, and wound healing. Nanocellulose are classified into nanocrystalline
cellulose (NCC) and cellulose nanofibrils (CNF). NCC consists of amorphous and highly
ordered crystalline cellulose structures. NCC exhibits overwhelming performance as a
nanomaterial because of its dimensions 5–100 nm in diameter with lengths up to hundreds
of nanometers (100–600 nm). NCC can be obtained from inexpensive biomass renewable
resources, such as wood, shrubs, and herbs. Plant-derived NCC is highly beneficial for
wound dressing applications because of its high capability to absorb liquids and form
translucent films [1]. These properties are crucial for non-healing and chronic wounds,
where exudates need to be managed adequately. In addition, the translucency of NCC
allows the wound development to be evaluated without needing to remove the dressing.
Agricultural waste is a valuable source of advanced biomaterials. Nanocellulose may
be obtained from agro-waste and further used as reinforcement in biopolymers. Kenaf
(Hibiscus cannabinus L.) is an important industrial crop with high economic and ecological
importance in many tropical countries, including Malaysia. Kenaf plant components that
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are of industrial importance include bast and core fibers. Bast fibers are isolated from
the outer layer of plant fibers (30% of dry weight), whereas the core refers to the inner
fiber layer (70% of dry weight). Bast fibers have been extensively investigated for their
excellent mechanical properties because of their high length-to-diameter ratio and superior
crystallinity, allowing these fibers to be applied as a reinforcing agent with other natural or
synthetic polymers for biomedical applications [2]. NCC isolated from kenaf waste has been
extended to various scientific research for their special characteristics, such as sustainability,
affordability, and well-established mechanical, thermal, and electrical properties, which
attracted scientists to develop new promising materials with unique values [3]. Currently,
the use of kenaf-derived nanocelluloses is limited to the packaging and paper industries.
The use of kenaf-based NCC as wound dressing has yet to be researched and explored.

Platelet lysate (PL) derived from platelet-rich plasma (PRP) is an autologous source
of therapeutic proteins that is extensively researched in hard-to-heal wounds and tissue
regeneration [4–6]. PL is a rich source of growth factors (GFs), including epidermal growth
factor (EGF), insulin-like growth factor (IGF), transforming growth factor beta (TGF-β),
platelet-derived growth factor (PDGF), which are crucial in regulating cell proliferation, mi-
gration, and differentiation by binding to specific transmembrane receptors on target cells.
EGF secreted during the hemostasis of inflammation by platelets exhibits chemotactic effect
on keratinocytes by promoting re-epithelialization [7,8]. TGF-β has three isoforms (i.e.,
TGF-β; 1–3). TGF-β1 is highly produced during wound healing by platelets, neutrophils,
macrophages, and fibroblasts and is responsible for the synthesis of extracellular matrix
components. IGF is discharged by platelets at the beginning of hemostasis. It entices leuko-
cytes and participates in cell inflammation and proliferation. Thus, IGF serves a regulatory
function in fibroblast proliferation in tissues. The PL serves as the cellular induction of
normal wound healing responses and PL therapy has clinical significance regardless of
the wound etiology. Hence, PL applications have gained considerable popularity in tissue
regeneration and wound healing. GFs are released quickly from PL; thus, their activity
and clinical efficacy are easily lost [9]. As a result, hydrogels or carriers suitable for PL are
highly sought after by researchers.

Chitosan (CS) is a polysaccharide which chemically exist as (1→4)-2 amino-2-deoxy-β-
D-glucan; originated from chitin, a key constituent of crustacean outer skeletons commonly
used as an antimicrobial agent for preventing and treating infections owing to its natural
antimicrobial property [10]. CS shows unique hemostatic properties and promotes the
infiltration and migration of neutrophils and macrophages in early stages of wound healing,
making it a suitable biopolymer for wound dressing [11]. CS exists in the form of 3D
hydrogel polymer networks that can absorb and retain a large quantity of moisture on
account of the abundance of hydrophilic groups [12]. CS dressings provoke minimal
adverse reactions with little or almost absent fibrous encapsulation and provide protection
against bacterial infections [13]. Recently, CS and modified CS have been deemed suitable
for the delivery of PRP or PL to wounds [6–15]. Rossi et al. demonstrated via PDGF
evaluation that CS dressings maintain the platelet GF in unaltered active form [14]. CS fibers
also tightly bind with major plasma proteins and at specific platelet surface proteins. The
combination of CS with PL shows the sustained release of GFs and increases glycoprotein
IIIa expression in platelets [16].

Despite the significant therapeutic potential of PL in wound repair, PL generally
suffers clinical limitations, such as short half-life, instability, degradation by protease at
the tissue site, and toxicity at high systemic dose [17]. An efficient delivery system has
been sought to stabilize PL for its sustained release in wound healing. The applicability of
NCC as a potential cell culture scaffold has been previously reported because it provides
the desired 3D environments for the growth and differentiation of skin cells [18,19]. A
successful PL delivery system from hydrogels could be developed by mimicking tissue
regeneration in terms of endogenous release profiles of PL. This research aimed to develop
a CS hydrogel reinforced with NCC and loaded with PL as a controlled-release vehicle
for wound healing. CS with a 2% w/v was employed as a PL stabilizing agent and cell
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growth-promoting polymer and added with NCC 0.4% w/v to provide a nanocellulose
network that can facilitate the loading and delivery of PL in wound healing.

2. Materials and Methods
2.1. Materials

Kenaf raw bast fiber was provided by the National Kenaf and Tobacco Board (Lembaga
Kenaf dan Tembakau Negara, LKTN), Malaysia. Low-molecular-weight (LMW, analytical
grade) CS (molecular weight of 50–190 kDa, 75–85% degree of deacetylation) was purchased
from Sigma Aldrich (Dublin, Ireland), glacial acetic acid (GAA; 100%) was purchased from
R.M Chemicals Pvt. Ltd. (Chandigarh, India), PL, cell culture media, and primary skin cells
were received from Centre For Tissue Engineering and Regenerative Medicine (CTERM),
UKM. Enzyme-linked immunosorbent assay (ELISA) kit was obtained from Insphiro
Technology (Selangor, Malaysia). Alamar Blue was obtained from Invitrogen (Waltham,
MA, USA). Dulbecco’s phosphate-buffered saline (DPBS) and fetal bovine serum (FBS)
were purchased from Biowest (Riverside, MO, USA). Collagenase type I was obtained from
Worthington (Columbus, OH, USA), Dulbecco’s modified Eagle’s medium (F12: DMEM;
1:1), antibacterial–antimycotic, Glutamax, and 4-(2-hydroxyethyl)-1-piperazine ethane
sulfonic acid (HEPES) were procured from Gibco (Grand Island, NY, USA). All chemicals,
such as sodium hydroxide (NaOH), sodium chlorite (NaClO2), and sulfuric acid (H2SO4),
were analytical grade (Dublin, Ireland).

2.2. Preparation of Nanocrystalline Cellulose from Kenaf Bast Fibers

NCC was extracted from raw kenaf bast fibers adapted from previous method with
slight modifications [20]. Briefly, the retting of raw bast fibers was carried out by soaking
it in distilled water overnight and filtered several times with subsequent drying at 60 ◦C
in the oven. The dried fibers were ground and sieved to obtain finer fibers. Thereafter,
pulverization was carried out by treating the fibers with 5% (w/v) NaOH at 80 ◦C for
2 h, and this step was carried out thrice to accomplish delignification. The fibers were
then thoroughly washed and filtered using distilled water to remove residual chemicals.
Subsequently, the alkali-treated fibers were bleached using a combination of acetic acid
and sodium chlorite to remove residual lignin and hemicellulose. The bleached pulp was
filtered and washed numerous times after a series of bleaching procedures until the pH
reached 7. The bleaching treatment was repeated five times at 80 ◦C for 3 h to obtain
white fibers and thereafter stored in water swollen state. Finally, acid hydrolysis was
commenced by immersing 4% (w/w) bleached kenaf bast fibers into 65% (v/v) sulfuric acid
at a temperature of 45 ◦C for 30 min. The fiber suspension was constantly homogenized
using a magnetic stirrer. Then, the fiber suspension was diluted by adding distilled water
and allowed to cool. Afterwards, the acid was removed by centrifuging the fiber suspension
at 12,000× g rpm for 30 min, and this process was repeated five times for complete removal
of residual acid. Then, the fiber pellet was dispersed in distilled water and poured into
a dialysis bag (MWCO 11 KDa; cellulose acetate) under slow stirring until complete
neutralization. Subsequently, the suspension of tiny fibers was ultrasonicated for 5 min at
a frequency of 20 kHz with an amplitude of 80%. This process was carried out under an ice
box to prevent overheating. The resulting thick suspension containing the NCC was stored
at 4 ◦C and freeze-dried for further characterization and hydrogel preparation.

2.3. PL Processing and Quantification of GFs

The PL was processed aseptically by freeze-thawing for one cycle and subsequently
centrifuged at 5000× g rpm at 4 ◦C for 20 min. The resulting pellet containing cell debris
was discarded and the processed PL was kept at −80 ◦C with the addition of 40 IU of LMW
heparin as an anticoagulant until further use.

The concentrations of key GFs (EGF and TGF) were determined using ELISA based on
Sandwich-ELISA using 96-well plates in accordance with the manufacturer’s instructions.
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Optical density (OD) were measured under 450 nm wavelength using a microplate reader
Bio-Rad (Berkeley, CA, USA).

2.4. Preparation of CS Hydrogel and CS-NCC Composite Hydrogels

The porous CS hydrogels were prepared as previously described method with slight
modifications [21]. In brief, 2% (w/v) CS solution was prepared by dissolving fine CS
powder in 1% GAA, and pH was adjusted to 7.0 using 1 M NaOH. Subsequently, the
solution was stirred on a magnetic stirrer for 1 h at room temperature. Afterward, CS
solution was transferred into 24-well tissue-culture plates and frozen at −20 ◦C for 24 h,
followed by freeze drying (Labconco, Topeka, KS, USA, Model no.117; weight-24 kg) at
−80 ◦C for 4 days to ensure complete drying.

CS hydrogels containing PL (CS-PL) were made by mixing 1 mL of PL/gram of
CS hydrogel (2% w/v) on a magnetic stirrer for 30 min at 20 ◦C. Then, the mixture was
transferred to a 24-well tissue-culture plate for lyophilization at −80 ◦C for 4 days.

As for the CS-NCC composite hydrogel, NCC was dispersed in deionized water (DI)
to produce a 0.4% (w/v) concentration [22]. Then, the slurry of NCC was added to the
2% (w/v) solution of CS. The resulting dispersion was ultra-sonicated at an amplitude of
40% for 5 min to homogenize NCC in CS solution and then allowed to mix for 1 h on a
magnetic stirrer in a closed reactor. Then, acetic acid (1%) was added to solubilize the CS
and the mixture was mechanically stirred for the next 5 h to obtain a complete dissolution
of CS. Consequently, hydrogels were formed through the neutralization of the viscous
suspension of CS by pouring it on a petri plate containing 1 M NaOH for 1 h. The prepared
hydrogels were washed with distilled water until a neutral pH was obtained. Finally, the
composite hydrogel of CS-NCC without using any specific cross-linkers were prepared and
subsequently freeze-dried for further characterization. The CS-NCC-PL gel was prepared
by thorough mixing of the CS-NCC gel with PL (1 mL/g). The CS-NCC gel was stored in
the refrigerator at 4 ◦C. Upon use, PL (stored at −80 ◦C) was thawed to room temperature
prior and added into the CS-NCC gel via simple mixing. The unused CS-NCC-PL hydrogel
was stored at −20 ◦C but thawed to room temperature before tests.

2.5. Characterization of NCC and Hydrogels
2.5.1. Chemical Composition, Fiber Yield, and Zeta Potential

Chemical composition of NCC was determined in accordance with TAPPI standard
methods T 222 (acid-insoluble lignin in wood and pulp) [23]. The fiber yield of NCC
was calculated in terms of percentage (%) of the initial weight of bleached fibers after
hydrolysis. The suspension of the fiber obtained after dialysis treatment was freeze-dried
and compared with the initial weight of fiber. The final weight of NCC (Mf ) and the initial
weight of fiber (Mi) were measured to calculate the yield using Equation (1) [24]. Fiber
yield was calculated using the following equation.

Yield (%) = (Mf /Mi) × 100 (1)

The zeta-potential of NCC was determined using Zetasizer Nano-ZS (Malvern Instru-
ments Ltd., Malvern, UK) to identify the electrical charges of NCC. The NCC samples were
tested after acid hydrolysis of the fiber suspension.

2.5.2. X-ray Diffraction Characterization (XRD)

XRD patterns of bleached and NCC from kenaf bast fibers were performed on X-ray
diffractometer (Empyrean PANalytical, Marvin, UK) to examine the changes in crys-
tallinity before and after chemical treatment. The diffraction intensity of Cu Kα radiation
(λ = 0.1542 nm; 40 kV and 40 mA) was measured in a 2θ range between 5◦ and 70◦ with scan
rate of 0.5◦ per min. Peak analysis was performed using Diffrac.EvaV4.0 software. Mean-
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while, the crystallinity index of fibers was calculated as previously described method [25]
using the following Equation (2).

CrI (%) = [I002 − Iamorph/I002] × 100 (2)

where CrI is the crystallinity index is the maximum peak intensity at the (002) plane (around
22.5◦ for native cellulose) and Iamorph is the minimum intensity of the amorphous portion
taken at 2θ = 18◦

2.5.3. Scanning Electron Microscopy (SEM)

A SEM instrument (Carl Zeiss Merlin Compact-Germany, Oberkochen, Germany) was
used to observe the surface morphology of NCC. The acceleration voltage was set up in the
range of 5 to 20 kV, and dried samples were sputter-coated with gold to avoid the charging
effect during SEM observations. The fiber diameter was measured by using Smart TIFF
image viewer software.

2.5.4. Fourier Transform Infrared Spectroscopy-Attenuated Total Reflectance
(FTIR-ATR) Spectroscopy

FTIR-ATR spectroscopy (Spectrum 100; Perkin Elmer, Walthman, MA, USA) was
performed on raw fibers, bleached fibers, NCC, CS, PL, CS-NCC, CS-PL, and CS-NCC-
PL hydrogels.

Infrared spectra of CS hydrogel control, PL, NCC, CS hydrogel-reinforced PL, and
NCC were determined between 4000 and 650 cm−1 using FTIR-ATR spectrometer (Spec-
trum 100; Perkin Elmer, Walthman, MA, USA). The spectra were acquired using 32 scans
and a 4 cm−1 resolution.

2.5.5. Swelling Behavior of Hydrogels

The swelling behavior of freeze-dried samples of CS, CS-NCC, CS-NCC-PL, CS-PL
hydrogel, and Intrasite™ gel as positive control were tested in DI at 37 ◦C for 3, 6, and
24 h. The dried samples were weighed and placed in 20 mL of DI, and the hydrogels
were allowed to reach their swelling equilibrium. The weights of the hydrogels (W2) were
measured at 3, 6, and 24 h of duration. All formulations were run in triplicates, and average
values were presented. The swelling ratio was calculated using the following Equation (3).

Swelling ratio (%) = (W2 −W1)/(W1) × 100 (3)

where W1 is the weight before swelling and W2 is the weight after swelling

2.5.6. Moisture Loss Study

The moisture retention capacity of the hydrogels was evaluated using the desiccant
method of Standard Test Method for Water Vapour Transmission of Materials (ASTM
E96/E96M-16, 2015) [26]. Hydrogel samples (0.5 g, triplicates) were spread in thin layers
in a 2 cm-diameter crucible. The samples were then placed into airtight containers lined
with a bed of silica gel as a desiccant. After 24 h, the crucibles containing the samples
were re-weighed and percentage of moisture loss was calculated using the following
Equation (4).

Moisture Loss (%) = (W2/W1) × 100 (4)

where W1 is the weight of the crucible before drying and W2 is the weight of the crucible after
drying. Moisture loss was the water loss from the exposed surface of hydrogels over 24 h.
The test was conducted on the CS, CS-NCC, CS-PL, CS-NCC-PL hydrogels. Intrasite™ gel
served as the positive control.

2.5.7. In Vitro Protein Release Assessment

The in vitro release profile of PL was investigated on two hydrogel preparations:
CS-PL and CS-NCC-PL. Protein release was studied using Franz diffusion cell (Permegear
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Inc., Hellertown, PA, USA) in triplicates. All samples were prepared by mixing 5 mg/g of
PL in hydrogel, and the proteins were incorporated into the hydrogel overnight at −10 ◦C.
The release study was conducted using a cellulose acetate membrane with a mesh size of
0.45 µm. DI at pH 7.0 was used as the receptor medium. The receptor chamber was filled
with DI until the mark of the sampling port was reached. The cellulose acetate membrane
was then placed on top of the receptor chamber opening (0.7855 cm2). The receptor chamber
was maintained at 37 ± 1 ◦C in a circulating water bath. The hydrogel weighing 1 g was
placed on top of the cellulose acetate membrane, and all of the compartments were held
together with a clamp. Samples (1 mL) were withdrawn at predetermined time intervals at
3, 6, and 24 h. The receptor medium was replaced with an equal volume of DI to maintain
the sink conditions. The released proteins in the media were added with a few drops of
Bradford reagent and assayed using a UV-Vis spectrophotometer (Shimadzu, Kyoto, Japan)
at 280 nm. DI served as a blank. The absorbance of each sample was determined and
recorded. The concentration of unknown proteins was then calculated by plotting the
calibration curve. The cumulative amount of proteins that permeated out of the membrane
was calculated and plotted against time (h). This experiment was repeated in triplicates
for the in vitro release and characterization of therapeutic proteins present in PL that were
incorporated in the hydrogel. A validated UV spectrophotometric method was used to
quantify the PL loaded in the hydrogel systems at 280 nm to determine the concentration
of proteins released at 3, 6, and 24 h.

2.6. Cytocompatibility Studies
2.6.1. Isolation of Human Dermal Fibroblast (HDF)

This study was approved by the Universiti Kebangsaan Malaysia Research Ethics
Committee (UKM PPI/111/8/JEP-2021-052). Redundant abdominoplasty skin tissue
samples were received from the patient with written informed consent and processed
within 48 h with the ISO protocol followed at CTERM. The skin was completely rinsed in
DPBS, cut into small pieces (1–2 cm2), and immersed overnight in 10 mL of serum-free
Epilife medium containing 25.3 mg of Dispase at 2–8 ◦C to isolate the epidermis from the
dermis layers. On the next day, the epidermis layer was separated from the dermis layer.
Thereafter, the dermis was chopped into smaller pieces and digested with 0.6% collagenase
type I (Worthington, Columbus, OH, USA) for 4–8 h in an incubator shaker maintained
at 37 ◦C. The cell suspension was centrifuged at 5000× g rpm for 5 min at 37 ◦C, and
the cell pellet was rinsed with DPBS after trypsinization with TE-EDTA (0.05%). Finally,
the cell pellet was re-suspended in F12: DMEM (1:1) supplemented with 10% FBS, 1%
antibacterial–antimycotic, 1% Glutamax, and 2% HEPES. Cells were cultured at 37 ◦C in
5% CO2 with the medium changed every 2–3 days.

2.6.2. Cell Culture

HDFs were used to study the cytocompatibility of the hydrogels. Cells with the
passage of P1-3 were cultured in F12: DMEM supplemented with 10% FBS at 37 ◦C in an
incubator supplemented with 5% CO2. PL (10%) was used alone, as well as in all hydrogel
formulations. The culture medium was replenished every 2–3 days and subsequently
trypsinized once more than 90% confluence was achieved and transferred to T75 flasks for
further assay.

2.6.3. Cell Viability

The cytotoxic effect of the fabricated hydrogels (CS, CS-NCC, and CS-NCC-PL) on skin
cells was investigated. Cell viability assay was performed indirectly using primary HDFs
(CTERM, UKM Medical Centre, Kuala Lumpur, Malaysia) cultured in DMEM by utilizing
Alamar Blue. All cells were maintained at 37 ◦C in humidified 5% CO2 atmosphere. In
this study, all hydrogel samples were washed with sterile DPBS and then incubated in a
culture medium for 24 h to obtain the leachates (membrane sterilized 0.22 µm) from the
hydrogel. HDFs with passage number P2 were seeded onto a 96-well plate at a density
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of 104 cells/well and incubated in fresh media for 24 h at 37 ◦C to ensure cell attachment
and proliferation. Leachates from the hydrogels were sterilized by membrane filtration
(0.45 µm). Afterward, the culture medium was replaced with leachates of the hydrogels of
volume 200 µL in each well. The microplate was then incubated for 24, 48, and 72 h, and
10% of Alamar Blue was added at the end of each time points and incubated for 4 h in the
dark. Finally, OD was measured at 570 nm using a microplate reader (BioTek PowerWave
XS, Winooski, VT, USA). The results were calculated as percentage cell viability relative to
the control group (cells without hydrogel treatment) from Equation (5).

Cell viability (%) = [OD of treated/OD of control] × 100 (5)

2.6.4. Cell Proliferation

All hydrogel samples were placed in a micro well plate and washed with sterile DPBS
prior to analysis. Thereafter, culture media were added and then incubated for 24 h to
retrieve the extract from the hydrogels indirectly as previously mentioned in cell viability
assay. HDFs (1× 104) were seeded in a 96-well plate for 24 h and subsequently treated with
sterile hydrogel extracts. DMEM was used as control and incubated for 24, 48, and 72 h.
Alamar Blue cell proliferation assay was carried out as per the manufacturer’s protocol
in accordance with previous work [27]. Alamar Blue (10%) was added into each well
containing the control and treatment groups and incubated at 37 ◦C for 4 h in the dark.
Absorbance was recorded using a spectrophotometer (BioTek, PowerWave XS, USA) at
570 and 600 nm. The percent reduction in Alamar Blue was calculated from following
[Equation (6)].

Percent reduction (%) = [(εOX) λ2Aλ1 − (εOX) λ1Aλ2]/[(εRED) λ1A’λ2 − (εRED) λ2A’λ1] × 100 (6)

where (εOX) λ2 = 117,216, (εOX) λ1 = 80,586, (εRED) λ1 = 155,677, (εRED) λ2 = 14,652.
Aλ1 and Aλ2 = Observed absorbance reading for the test well at 570 nm and 600 nm,
respectively. A’λ1 and A’λ2 = Observed absorbance reading for control well at 570 and
600 nm, respectively.

2.6.5. Scratch Wound Assay

The in vitro wound scratch assay is an economic and fast method to predict the wound
healing ability of compounds by assessing their migration rate on the skin cells. In this
work, the migration rate of the HDFs was calculated via scratch assay to ensure that the
hydrogel formulations do not interfere in wound healing. The HDFs were seeded in a 12-
well plate (Greiner Bio-One, Kremstest, Austria) and then incubated at 37 ◦C in humidified
5% CO2 atmosphere until 100% confluence. The spent culture was discarded, and a scratch
was made at the middle of each well on a cell monolayer using a sterile 10 µL pipette
tip. Afterward, the cells were rinsed with DPBS by slight swirling the microplate, and
different hydrogel extracts were subsequently added to the scratched cells. Cells without
treatment served as the control group. Wound closure was observed through live imaging
by acquiring images every 60 min for 72 h at three spots per well using a Nikon A1R-A1
CLSM. Cell migration rate was calculated for 24 h. The tissue-culture plate inclosing cells
was fixed inside the Chamlide Incubator System (Live Cell Instrument, Seoul, Korea) at
37 ◦C and 5% CO2. The images were analyzed by NIS Elements AR 3.1 (Nikon). The
migration rate of the cells was calculated from following [Equation (7)].

Cell migration rate = (measurement at 0 h −measurement at 24 h)/24 h (7)

2.6.6. LIVE/DEAD® Cell Viability Assay

This assay was conducted to evaluate the functional status of the cells by identifying
cytoplasmic esterase activity using the LIVE/DEAD™ Viability/Cytotoxicity kit for mam-
malian cells (Invitrogen). The kit comprises of calcein, which fluoresces green in living cells,
and ethidium bromide, which fluoresces red in dead cells. In brief, the HDFs were plated
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at the same seeding density as per cell viability and proliferation assay and maintained as
above prior to treatment with samples. The cells were treated with calcein and ethidium
bromide for 30 min as per the manufacturer’s instructions. Later, the cells were rinsed with
DBPS and observed using a Nikon A1R fluorescence microscope (Nikon, Tokyo, Japan).

2.6.7. CS Stabilizing Effect on PL

A cell proliferation assay was carried out using protease degradation and heat treat-
ment approaches to establish the protective effect of CS on PL.

Protease Degradation Test

Cell proliferation assay was conducted to determine the protective effect of CS against
proteases on GF. In brief, all PL-loaded CS hydrogels and PL alone (10%) were subjected to
0.05% trypsin treatment at 37 ◦C for 1 h. Then, the HDFs (P2, 2 × 104) were incubated with
trypsin-treated PL and CS hydrogel for 24 h followed by Alamar Blue addition to the cells
and incubated for the next 4 h. Then, absorbance was recorded at 570 and 600 nm. Cell
proliferation was calculated by percentage reduction in Resazurin. Cells without treatment
served as control.

Heat Treatment Test

PL (10%) and CS hydrogels containing PL were exposed to 0, 25 ◦C, 37 ◦C, and 45 ◦C
for 24 h to examine the stabilizing effect of CS on PL. Then, extracts of both heat-treated
groups were added to the HDFs (P3, 2 × 104) as per above method, and cell proliferation
was determined.

2.7. Statistical Analysis

Experiments were performed in triplicates and mean ± SD was reported. Data were
analyzed using one-way analysis of variance and Tukey’s multiple comparisons test, by
using GraphPad Prism version 5.00 (GraphPad Software, La Jolla, CA, USA). The level of
significance was set at p < 0.05.

3. Results
3.1. Quantification of GFs in PL

The concentrations of TGF-β and EGF from PL were measured using ELISA. ELISA
was performed for standard and sample as per manual instructions, and concentrations
were determined as 477.26 pg/mL and 150 ng/mL for EGF and TGF-β, respectively, from
the calibration curves. The level of TGF-βwas threefold higher than that of EGF, which is
consistent with reported literature [28].

3.2. Chemical Composition, Fiber Yield, Zeta Potential, and Crystallinity of NCC

After various stages of chemical treatment on raw, alkali-treated, and bleached fibers,
chemical composition of the fibers was determined as previously described by Tuerxun
Duolikun (2018). The results are presented in Table 1. After a series of chemical treat-
ment on the kenaf biomass fibers, cellulose content significantly increased from raw to
bleached to 30% to 84%, whereas hemicellulose and lignin contents declined to 5% and 3%,
respectively [29].

Table 1. Chemical composition of kenaf fibers after chemical treatments.

Material Chemical Composition (%)

Cellulose Hemicellulose Lignin

Raw 30 31 30
Alkali-Treated 70 20 15

Bleached 84 5 3
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The fiber yield of the NCC after acid hydrolysis was 40% (of initial weight), which
is consistent with the fiber yield of NCC from other plant sources, such as sisal (30%)
and mengkuang leaves (28%) [30]. In general, fiber yield is dependent on pre-treatment
methods and hydrolysis environment. The low fiber yield of NCC might be caused by
sulfuric acid treatment during production, which caused the degradation and removal of
amorphous and other non-cellulosic regions of the fibers that result in weight loss.

The zeta potential of the NCC suspension was recorded as (−10.9 ± 5.47 mV). The
NCC becomes crystalline and possesses a negative charge on the surface of the cellulose
chain. They become more stable through electrostatic repulsion among the negatively
charged groups on the polymer chains [31]. The anionic NCC is found suitable to form
composite hydrogels with cationic CS polymer. The abundance of hydroxyl groups in NCC
cellulose is responsible for the negative charges that bonded with CS via the electrostatic
interaction of protonation of NH2 on CS and hydroxyl groups. Platelets also carry negative
charges onto their surfaces due to the presence of sialic acid (N-acetyl-neuraminic acid)
and amino acids such as glutamate and aspartate [32]. PL was loaded into NCC-reinforced
CS hydrogel and associated by non-covalent bonding and subsequently stabilized by
CS through protein bindings that promote fibrin gel formation and thus retained GF
functionality for a long time [9].

Cellulose naturally comprises of crystalline and amorphous portions. The amorphous
region (contains impurities of lignin, hemicellulose etc.) needs to be eliminated to make
cellulose highly pure and crystalline with desirable properties. Therefore, chemical treat-
ment including sulfuric acid hydrolysis was carried out to obtain an extremely crystalline
and purified form of cellulose by hydrolyzing the amorphous region.

To investigate the crystallinity of the bleached fibers and effect of acid treatment on the
resulting NCC, X-ray, diffractometry (XRD) was carried out. Figure 1 presents the obtained
XRD patterns for kenaf bast fibers for bleached and acid treated fibers. The crystallinity
index of both fibers were calculated using Diffrac.EvaV4.0 software. Diffraction peaks at 2θ
value of 14.5◦, 16.5◦, and 22.5◦ at plane of 101, 10-1, and 002, respectively, were observed.
From the diffraction pattern it could be noticed that cellulose was present in the form of
cellulose [33,34]. Crystallinity index was calculated for the bleached fibers and NCC. For the
kenaf biomass, the crystallinity index values of the bleached fibers and NCC were reported
as 56% and 71.6%, respectively, in consistence with similar findings [35]. The higher
crystallinity of NCC than the bleached fibers could be due to the removal of amorphous
cellulosic region by acid hydrolysis. The XRD result suggested that the amorphous region
of the bleached fibers degraded during extraction, whereas the crystalline region remained
unaffected. The high crystallinity of NCC was related to the high tensile strength of the
fibers. Therefore, the mechanical properties of the nanocomposite can be improved by
using NCC as a reinforcing agent.

3.3. Scanning Electron Microscopy

Surface morphological analysis was performed on the bleached fibers and kenaf NCC.
The SEM images are depicted in the Figure 2 at different magnifications. As shown in
Figure 2a,c the bleached fiber bark structures were apparent. Meanwhile, NCC micropho-
tographs in Figure 2b,d revealed that the surface of the NCC became smooth and the fibers
appeared as a web-like network with diameters approximately 40–90 nm in consistent with
similar SEM surface morphologies [24]. After a series of chemical treatments, impurities
such as pectin, hemicellulose, and lignin were removed from the structure of the bleached
fibers, as can be implied from the FTIR findings. The small diameter of NCC was because
of acid hydrolysis, which significantly removed the amorphous portion from the crystalline
part, which is in accordance with previous similar finding [34].
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3.4. FTIR-ATR Spectroscopic Analysis of NCC

FTIR was carried out on raw fibers, bleached fibers, and NCC to determine their
chemical composition after chemical and mechanical treatment. The results are shown
in Figure 3a and Table 2. All spectra detected a broad and intense peak at 3300 cm−1

region which is attributed to the characteristic of polysaccharides hydroxyl bonds [36].
C–H symmetrical stretching and CH2 symmetrical stretching at 2900–2800 cm−1 revealed
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polysaccharide, wax, and oil content of the fibers [36]. Another peak was observed in the
spectra of the raw fibers at 1242 cm−1, which was associated with C-O stretching of the aryl
group present in lignin. The disappearance of this peak in bleached and NCC suggested
the separation of lignin by chemical treatment [36].The vibration peak in the fibers at 1326–
1340 cm−1 was linked to bending of the C-H and C-O bonds in polysaccharide aromatic
rings [36]. Absorption peak was shown in all samples at 1023–1030 cm−1, which were
associated with C-O and C-N vibrations [36]. The absorption peak at 1634 cm−1 in NCC
was due to adsorbed water, which was suggestive of NCC [36].
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Table 2. FTIR characteristic peaks of Kenaf raw fibers, bleached fibers, and NCC.

Raw Fibers Peak (cm−1) Bleached Fibers Peak (cm−1) NCC Peak (cm−1) Peak Assignment

3345.74 3342.62 3322.16 O–H stretching

2909.88 2911.71 2909.90

C–H symmetrical
stretching and CH2

symmetrical
stretching

1326.28 - - C–O aromatic ring

1242.47 - - C–O stretching

1601.19 - - C=C groups

- - 1634 Adsorbed water

1028.96 1023.74 1030.10 C-O and O-H groups stretching

FTIR was conducted to investigate the possible interaction of functional group between
PL and CS hydrogel, as presented in Figure 3b. CS showed a broad band at 3500–3200 cm−1,
which can be attributed to the O–H and N–H stretching vibrations of functional groups
in hydrogen bonds. Characteristic absorption bands at 1634 cm−1 corresponded to C=O
stretching in the amide I vibration. The absorption band at 1540 cm−1 appeared due to
N–H bending in amide II vibration. The spectra at 1069 and 1024 cm−1 corresponded to
C–O stretching vibrations, which were characteristics of CS structure. Association of PL in
CS hydrogel was confirmed by displacement of characteristic bands at 3219–3270 cm−1

due to O-H stretching and 1634–1641 cm−1 due to NH vibrations [37]. These modifications
suggested a possible interaction between PL and CS.

FTIR spectra of NCC, CS, PL, and CS-NCC-PL are represented in Figure 3c. A char-
acteristic peak of CS was observed at 3310 cm−1 owing to the O-H group. CS-NCC was
observed by shifting of the peak from 3337 cm−1 to 3759 cm−1, which indicated possible
overlapping of hydrogen bonds. PL with a characteristic peak at 3885 cm−1 was due to
O-H stretching that shifted slightly toward 3901 cm−1. Thus, CS incorporated with NCC
and PL possessed two extra peaks, which corresponded to NCC and PL as compared
with control CS hydrogel. These results indicate that NCC was prepared and successfully
incorporated in CS hydrogel along with PL.

3.5. Swelling Study

Freeze drying allows the nucleation of ice crystals from solution and further growth
along the lines of thermal gradients. Exclusion of the CS acetate salt from the ice crystal
phase and subsequent ice removal by lyophilization generate a porous material [38]. Freeze
drying is usually employed to produce porous CS hydrogels to assess their water swelling
behavior effectively.

An ideal dressing must be capable of absorbing the wound exudates that could
potentially cause bacterial infection at the wound bed. Swelling properties determines
the moisture absorption capacity of a dressing, which is a crucial action for absorbing pus
and exudates from weeping wounds. The swelling ratios over time of the freeze-dried
hydrogels are shown in Figure 4. All hydrogels swelled at different rates, and equilibriums
were achieved up to 1000 times of their initial weight within 24 h of water imbibition.
During the initial swelling, water was absorbed via capillaries located in the internal
structure of the hydrogels. As 3D networks, porous structures provide channels for the
molecules to enter and escape. The hydrophilic groups (-OH/-COOH/-COO-) present
in CS were bound with water molecules by hydrogen bonds that created a hydration
layer. This phenomenon may explain why all hydrogels showed the fastest swelling at the
beginning (<3 h). The addition of PL in the CS hydrogels reduced the swelling ratio (~500%
reduction). The addition of PL may decrease availability of CS hydrophilic groups to bind
with water. The swelling ratio also decreased further (~300% reduction) when NCC was
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added into CS. This behavior could be ascribed to the fact that NCC lodges the free space
volume in the CS polymeric matrix, thereby restricting the volume available for swelling
and causing the formation of a rigid hydrogel structure that cannot be easily penetrated by
water molecules. Hence, the water absorption decreased, which consequently decreased
the swelling ratio [39]. However, the addition of PL to the CS-NCC hydrogel increased the
swelling ratio owing to its large hydrophilic groups in molecular chains, which promoted
the establishment of hydration layers [40]. The higher water holding capacities (>1000%)
of the hydrogels indicate that the formulated hydrogels are suitable for medium to heavy
suppurating wounds. This is a crucial property for a dressing in minimizing infection. At
the same time, the hydrogels maintain a moist local microenvironment for tissue repair
process to take place.
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3.6. Moisture Loss Study

Moisture retention capacity is an important characteristic for a wound dressing. Hy-
drogels should provide a moist environment to the wound to accelerate healing [40].
Moisture loss from the different hydrogels was evaluated by employing the desiccation
method. Moisture loss was expressed in percentage and calculated after 24 h of hydrogel
drying. As shown in Figure 5, Intrasite™ hydrogel lost almost 80% of moisture after
24 h, followed by PL, which lost 90% of moisture. Meanwhile, the CS-PL hydrogel lost
approximately 42% of moisture as compared with the CS hydrogel. The PL entrapped
within the network of polymer and prevented moisture loss. Therefore, the hydrogels
under investigation held moisture for a longer period as compared with the commercial
hydrogel. The CS-NCC-PL hydrogel can maintain a moist environment on chronic wounds
for an extended time.
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3.7. In Vitro Protein Release Assay

The cumulative release profiles of PL from the CS-PL and CS-NCC-PL hydrogels are
represented in Figure 6. The PL released from the CS-PL hydrogel showed faster release at
the first 3 h compared with that from CS-NCC. Thereafter, the PL release increased gradu-
ally (PL flux = 0.165 mg/cm2/h) and reached the maximum release of 5.22 ± 1.47 mg/cm2

at 24 h. During this time, proteins permeated from the inside matrix of the hydrogel
via swelling and diffusion mechanism. In the CS-NCC-PL hydrogel, the rate of PL re-
lease was significantly decreased and much controlled throughout the test duration (PL
flux = 0.075 mg/cm2/h). This phenomenon suggested that NCC might act as a nanofiller
and provide sustained release because of its capacity to retain the proteins within the
hydrogel matrix for a long period of time (maximum PL release of 3.00 ± 1.11 mg/cm2 at
24 h). For chronic wound healing, hydrogel comprises of platelet proteins, and a cocktail
of various GFs is desired for tissue proliferation. The CS-NCC hydrogel composite is
successful in controlling the PL release and is a promising vehicle for PL in wound healing.

3.7.1. Cell Viability

The cytotoxic effect of hydrogel formulations on HDFs was tested by Alamar Blue
assay. The results of cell viability are presented in Figure 7. This experiment revealed that
the cell viability of the CS-PL and CS-NCC-PL hydrogels was higher than that of PL alone
for 24, 48, and 72 h. This hike in cell viability of the PL-loaded hydrogels is probably due to
the protective effect of CS-NCC on PL. As mentioned previously, CS can stabilize PL and
protect it from degradation. Overall, the cytotoxic effect of hydrogels in this study with or
without PL was negligible (p < 0.05, one-way ANOVA, Tukey’s multiple comparison test).
Therefore, the hydrogel formulations are non-toxic and safe to be applied onto wounds.
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3.7.2. Cell Proliferation

Cell proliferation was analyzed through Alamar Blue assay to ascertain any change
in cell proportion. In this study, CS-NCC-PL hydrogels were tested by treating HDFs
(1 × 104) with sterile hydrogel leachates in the microplates for 24, 48, and 72 h. The results
of cell proliferation are provided in Figure 8. PL alone showed low proliferation with
an increasing trend over 3 days. The hydrogels enhanced the HDF proliferation from
24 h to 48 h, demonstrating the growth and proliferation of the HDFs. The PL-loaded
hydrogels significantly augmented fibroblast proliferation (>100% viability) compared
with the blank hydrogels or PL alone, indicating fast wound closure without causing any
cell toxicity. Higher cell proliferation induced by combination of chitosan with PL is also
in agreement with similar study where it showed that platelet-rich plasma with chitosan-
induced growth factor enrichment can stimulate the growth of fibroblasts [41]. This dictates
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the feasibility and safety of autologous PL in wound healing and complications in patients
with intractable diseases such as diabetic ulcers and decubitus [41].
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3.8. Wound Scratch Assay

Cell migration across the provisional gap was carried out to assess the healing potential
of the hydrogels. The results in Figure 9 show the effect of hydrogels on the migration
rate of the HDFs for 24 h. All hydrogel groups showed significant migration of cells
as compared with the control group (p < 0.05, one-way ANOVA followed by Tukey’s
multiple comparison test). The migration rates of the HDFs after being treated with the
CS-PL hydrogels was significantly higher than CS alone (p < 0.05). This indicates the PL
stimulates the cell migration rate. The addition of NCC does not affect the migration rate
as CS-NCC-PL and CS-PL group (p > 0.05). The wound area-time plot and micrographs
(Figures 10 and 11) indicated that all wounds were nearly closed in less than 48 h despite
of the differences in the migration rates of the control and treatment groups. The HDFs
were managed to occupy the free space within a span of 48 h, indicating that the hydrogels
efficiently healed the HDFs.
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3.9. LIVE/DEAD® Cell Viability Assay

Cytotoxic effect of hydrogel formulations was further investigated using LIVE/DEAD™
Cell Viability Assay. This assay gives qualitative aspect of cell viability. The control and cells
treated with the hydrogels lacked dead cells (stained red), as shown in Figure 12. Control
and chitosan hydrogels with different combinations exhibited favorable cell viability after
24 h of incubation (captured in green color cells). In addition, after 48 h, cells continue to
grow and become elongated for further maturation and differentiation. Additionally, these
results comply with the results of Alamar Blue™ assay, suggesting the non-toxicity of the
hydrogel after 24 and 72 h of treatment. Cell number and cell viability increased over the
period of 72 h.
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3.10. CS Stabilizing Effect on PL

Cell proliferation assay was carried out to assess the protective effect of CS on GF
present in PL. CS along with NCC hydrogel with and without PL and PL alone groups were
subjected to heat treatment and protease digestion. Afterward, the HDFs were subjected to
these treatments for 24, 48, and 72 h. Results of these findings are provided in Figure 13a,b.
All data show the significant protective effect of CS on PL for proteases and heat treatment.
The PL loaded with CS or CS-NCC over 72 h had significantly higher proliferation than
those unprotected PL. This protective effect of chitosan is supported with similar work
carried out by Fisher et al., that proposed the mechanism where chitosan fibers tightly bind
with major plasma proteins and a specific sub-set of platelet surface proteins which results
in the acceleration of fibrin gel formation when platelet integrins contact with plasma
proteins. This result indicates that CS can protect the GF present in PL, thereby promoting
fast wound healing.
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4. Conclusions

In general, GFs in PL suffer clinical limitations because of rapid degradation by
proteases at the tissue site. To address the challenges related to PL instability, we developed
a CS hydrogel combined with kenaf-derived NCC. It can stabilize PL and control the
release of PL onto the wound site for prolonged action. Kenaf biomass-derived NCC at
0.4% concentration acted as the nanofiller for CS hydrogel and controlled PL release at
a slower rate (maximum PL release of 3.00 ± 1.11 mg/cm2 at 24 h) compared with the
CS hydrogel alone. FTIR study confirmed the presence of NCCs and PL in the CS matrix.
Swelling data revealed that NCC incorporation in the PL-loaded CS hydrogel possesses
high swelling ratio and water retention capacity (>1000 times at less than 3 h), thereby
benefiting the healing of high exudate wounds. In vitro study revealed that the hydrogels
are non-toxic to host tissues (>100% HDF cell viability) and are able to close wounds at
a faster rate compared with the controls. The protective effect of CS upon GFs in PL was
also demonstrated via protease and heat treatment of the hydrogels. Thus, NCC-reinforced
CS hydrogel emerged as a promising PL vehicle especially for autologous wound therapy
for chronic wounds. This new hydrogel PL carrier may be extended to other autologous
PRP therapies, such as rheumatoid arthritis, bone regeneration, low-grade musculoskeletal
injuries, and dental applications.
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