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Abstract. Previous physiological and pharmacological
experiments have demonstrated that the Chlamydomonas
flagellar axoneme contains a cAMP-dependent protein
kinase (PKA) that regulates axonemal motility and dy-
nein activity. However, the mechanism for anchoring
PKA in the axoneme is unknown. Here we test the hy-
pothesis that the axoneme contains an A-kinase anchor-
ing protein (AKAP). By performing RII blot overlays
on motility mutants defective for specific axonemal
structures, two axonemal AKAPs have been identified:
a 240-kD AKAP associated with the central pair appa-
ratus, and a 97-kD AKAP located in the radial spoke
stalk. Based on a detailed analysis, we have shown that
AKAPY7 is radial spoke protein 3 (RSP3). By express-

ing truncated forms of RSP3, we have localized the RII-
binding domain to a region between amino acids 144-180.
Amino acids 161-180 are homologous with the RII-
binding domains of other AKAPs and are predicted to
form an amphipathic helix. Amino acid substitution of
the central residues of this region (L to P or VL to
AA) results in the complete loss of RII binding.
RSP3 is located near the inner arm dyneins, where an
anchored PKA would be in direct position to modify
dynein activity and regulate flagellar motility.
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Introduction

The goal of this study is to determine the mechanism
for localization of the cAMP-dependent protein kinase
(PKA)! in ciliary and flagellar axonemes. In several exper-
imental systems, cCAMP or specific inhibitors of PKA alter
motility of ATP-induced reactivated movement of ciliary
and flagellar axonemes. For example, cAMP is required
for activation of sperm tail axonemes from many species
(for reviews see Brokaw, 1987; Tash, 1989; San Agustin
and Witman, 1994). Addition of cAMP increases beat fre-
quency of reactivated ciliary axonemes from Paramecium
(for example, Hamasaki et al., 1989), and inhibits reacti-
vated motility of flagellar axonemes from Chlamydomonas
(Hasagawa et al., 1987). Biochemical analysis in diverse
cellular systems has demonstrated that several axonemal
proteins, including dynein subunits, are phosphorylated in
vitro in a cAMP-dependent manner (for example, Ha-
masaki et al., 1991; Inaba et al., 1999; Nomura et al., 2000).
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Moreover, selective inhibitors of PKA regulate dynein-
driven microtubule sliding in axonemes isolated from
Chlamydomonas flagella (Howard et al., 1994). Together
the data demonstrate that PKA is a structural compo-
nent of the 9 + 2 axoneme. However, the mechanism for
localization and anchoring of PKA is not known.

We proposed that PKA is localized to the axoneme
through association with A-kinase anchoring proteins
(AKAPs). AKAPs are a family of proteins that target
PKA to specific intracellular sites through interaction with
type I (RI) or type II (RII) PKA regulatory subunits (for a
review see Edwards and Scott, 2000; and others). In most
cases, the regulatory subunits bind to AKAPs through
interaction with an amphipathic helix contained within
the AKAP. AKAPs can often be identified by RII blot
overlays in which radiolabeled RII is incubated with blots
of protein (Westphal et al., 2000). By this approach, sev-
eral AKAPs have been identified in flagella of sperm
(Johnson et al., 1997; Moss et al., 1999; Vijayaraghavan et
al., 1999; Reinton et al., 2000). However, to date none of
the AKAPs have been localized to the axoneme.

To test the hypothesis that axonemal PKA is anchored by
AKAPs, we used isolated axonemes from Chlamydomonas.
Chlamydomonas offers several experimental advantages



including the ease of axoneme isolation and the availabil-
ity of mutants that are immotile and defective in specific
axonemal structures. Based on pharmacological analysis,
Chlamydomonas axonemal PKA regulates reactivated mo-
tility as well as dynein-driven microtubule sliding activity
(Hasagawa et al., 1987; Howard et al., 1994). We performed
RII overlays in the presence or absence of specific AKAP-
RII binding inhibitors to identify two AKAPs in the
Chlamydomonas axoneme. Through detailed analysis we
have determined that one of the AKAPs is radial spoke
protein 3 (RSP3). By testing truncated and point mutant
forms of RSP3, we have mapped the RII-binding domain of
RSP3. RSP3 is the first AKAP to be identified in axonemes
and is the first AKAP to be identified from a unicellular or-
ganism. This finding provides a foundation for understand-
ing the mechanism of kinase anchoring in the axoneme, and
demonstrates that AKAPs may be evolutionarily conserved
components of signal transduction in the cell.

Materials and Methods

Chlamydomonas Strains and Growth Conditions

Chlamydomonas reinhardtii strains used include 137c¢ and cc124 (wild-
type), pfl4 (lacks radial spoke, paralyzed flagella), pfI7 (lacks radial
spoke head, paralyzed flagella), pf27 (radial spoke phosphorylation de-
fect, paralyzed flagella), pfI5 (lacks central pair apparatus, paralyzed fla-
gella), pf16 (lacks C1 microtubule of central pair apparatus, paralyzed fla-
gella), pfI8 (lacks central pair apparatus, paralyzed flagella), pf19 (lacks
central pair apparatus, paralyzed flagella), pf20 (unstable central pair ap-
paratus, paralyzed flagella), pf6 (lacks projection on C1 microtubule of
central pair apparatus, paralyzed flagella), pf28pf30 (lacks outer dynein
arms and I1 inner dynein arms, paralyzed flagella), and pf2 (defective in
the dynein regulatory complex, paralyzed flagella). All strains were ob-
tained from the Chlamydomonas Genetics Center (Duke University,
Durham, NC) with the exception of pf28pf30 which was generated by
crossing pf28 with pf30 (strains obtained from the Chlamydomonas Ge-
netics Center). The double mutant was then isolated from a nonparental
ditype tetrad. Cells were grown in liquid modified medium I, with aeration
and a 14-h/10-h light/dark cycle (Witman, 1986).

Isolation of Axonemes

Axonemes were isolated as described previously (Howard et al., 1994).
Where indicated, axonemes (at 5 pg/pl) were treated with 0.6 M NaCl (20
min on ice) in a buffer containing 10 mM Hepes, 5 mM MgSO,, 1 mM
DTT, 0.5 mM EDTA, 0.1 M PMSF, and 0.6 TIU aprotinin, pH 7.4. Before
fixation for SDS-PAGE, axonemes treated with 0.6 M NaCl were dialyzed
to 30 mM NacCl in the same buffer. Axonemal protein samples were fixed
for SDS-PAGE at a concentration of 5 wg/pl (50 pg total for each lane).
Protein concentration was determined using the Bradford assay. Unless
otherwise stated, all reagents were obtained from Sigma-Aldrich, and
deionized H,O was used throughout.

RII Overlays

RII overlays were performed according to the method of Hausken et al.
(1998) with some modifications as described below. In brief, proteins were
separated by SDS-PAGE and transferred to nitrocellulose. The nitrocellu-
lose membrane was then incubated in TBS containing 5% nonfat milk (Car-
nation) and 0.1% BSA. Casein kinase II (New England Biolabs, Inc.) and
[y-?P]ATP (BLUS02A; NEN Life Science Products) were used to radiola-
bel either biochemically purified RII (Promega) or recombinant RIl« (plas-
mid provided by Dr. J. Scott, Vollum Institute, Oregon Health Sciences
University, Portland, OR). Radiolabeled RII was overlayed on the nitrocel-
lulose blots. Blots were exposed on a phosphorimager screen, and data was
recorded and analyzed using the Phosphorimager SI (Molecular Dynamics)
and ImageQuant software (Molecular Dynamics). Ht31 (DLIEEAASRIV-
DAVIEQVKAAGAY) and Ht31-P (DLIEEAASRPVDAVIEQVKAA-
GAY) peptides were synthesized by the Emory University Microchemical
Facility (peptide sequences from Vijayaraghavan et al., 1997).
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Western Blot Analysis

Proteins were separated by SDS-PAGE and transferred onto nitrocellu-
lose membranes. Membranes were treated with 3% nonfat milk in TBS to
prevent nonspecific protein binding. Blots were incubated with primary
antibodies: anti-RSP3 at 1:200 (Williams et al., 1989), and anti-glu-
tathione-S-transferase (GST) at 1:500 (Amersham Pharmacia Biotech),
for 1 h at 25°C. After washing in TBS, blots were incubated with HRP-
conjugated secondary antibodies at 1:20,000 (goat anti-rabbit; Bio-Rad
Laboratories; and rabbit anti-goat; ICN Biomedicals, respectively) for 1 h
at 25°C. After a final wash, blots were developed using enhanced chemilu-
minescence (Amersham Pharmacia Biotech).

Identification of the RII-binding Site

RSP3 fragments were generated by PCR using the RSP3 cDNA (Diener
et al., 1993) and primers that each contained one of three 5’ restriction
sites: BamHI, EcoRI, or Sphl. The PCR products were band purified, di-
gested with the corresponding restriction endonucleases, and ligated into
the pGEX-2T expression vector (Amersham Pharmacia Biotech) that had
been digested with the same restriction endonucleases. In one instance
(1-220), the RSP3 fragment was generated according to the method of
Diener et al. (1993). After confirming the fidelity of the constructs by DNA
sequence analysis, the constructs were transformed into either Escherichia
coli DH5a (GIBCO BRL) or E. coli BL21(DE3) Gold cells (Stratagene)
and expressed as GST fusion proteins. Expression was induced at mid-log
phase by the addition of 0.1 mM IPTG for 1-2 h. After expression, the
bacterial cells were pelleted, resuspended in SDS-PAGE sample buffer,
and boiled in preparation for SDS-PAGE. Expression was monitored by
Western blot analysis with an antibody to GST, and RII binding was
tested by RII blot overlays.

Mutagenesis

Mutagenesis was performed using the RSP3 construct containing amino
acids 104-180, generated as described above. Amino acid substitutions
were made according to the protocol of the GeneEditor™ in vitro Site-
Directed Mutagenesis System (Promega) with the modification of using
50 pl of GeneEditor™ antibiotic selection reagent. After mutagenesis,
constructs were expressed and tested for RII binding as described above.

Results and Discussion

The Axoneme Contains Two AKAPs

To test the hypothesis that the Chlamydomonas axoneme
contains an AKAP, we performed RII blot overlays. As il-
lustrated in Fig. 1, the overlay resulted in the identification
of several axonemal proteins that bind to RII (purified RII
and recombinant RIla yielded identical results). To deter-
mine which of these proteins bind to RII in a manner spe-
cific to AKAPs, the RII overlay was performed in the
presence of the inhibitor peptide Ht31 or the control pep-
tide Ht31-P. Ht31 is a synthetic peptide derived from the
RII-binding domain of a known AKAP and contains an
amphipathic helix (Carr et al., 1992). The peptide acts as a
competitive inhibitor of AKAP-RII binding; thus, proteins
that bind to RII in an AKAP-specific manner do not bind
to RII in the presence of Ht31. Ht31-P, a control peptide,
contains an isoleucine to proline amino acid substitution
that disrupts the amphipathic helix and renders the pep-
tide unable to bind to RII in an AKAP-specific manner
(Scott and Faux, 1998). Here we define AKAPs as proteins
that bind to RII in the presence or absence of Ht31-P, but
do not bind to RII in the presence of Ht31.

Ht31 inhibited RII binding to two particularly prom-
inent axonemal proteins with masses of 240 kD
(AKAP240) and 97 kD (AKAP97) (Fig. 1, compare pan-
els). AKAP240 is partially extractable with 0.6 M NaCl,
whereas AKAP97 is not extractable with 0.6 M NaCl, indi-
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Figure 1. Identification of AKAPs in the Chlamydomonas ax-

oneme. Axonemal RII-binding proteins were revealed by an RII
overlay assay. RII overlays were performed in either the pres-
ence of Ht31 (right) or Ht31-P (left) to determine the specificity
of RII binding. Axonemes were also treated with 0.6 M NaCl,
and both the insoluble (pellet) and soluble (sup) fractions were
tested to determine AKAP solubility. Two prominent axonemal
AKAPs were identified of ~240 and 97 kD, designated as
AKAP240 and AKAP97, respectively. wt, wild-type.

cating that AKAP97 is very tightly associated with the ax-
oneme (Fig. 1). In addition to AKAP240 and AKAP97,
other proteins were identified in the RII overlay (Fig. 1).
However, these proteins were either not consistently de-
tected, or RII binding to the proteins was not inhibited by
the Ht31 peptide. Although it is possible that these other
RII-binding proteins may include additional AKAPs, they
were not considered further in this study.

To localize AKAP240 and AKAP97 within the ax-
oneme, we performed RII overlays on axonemal protein
from four different classes of Chlamydomonas motility
mutants that are defective for specific axonemal structures
(Fig. 2 A). By doing so, we localized the AKAPs within
the axoneme based on whether or not the AKAPs are
present in the structural mutants. The analysis revealed
that AKAP240 is absent in axonemes from a mutant de-
fective for the central pair apparatus (pfI8), and that
AKAP97 is absent in axonemes from a mutant lacking the
radial spokes (pf14) (Fig. 2 B). Both AKAPs are present
in axonemes from a mutant lacking the outer dynein arms
and the I1 inner dynein arm (pf28pf30) as well as in ax-
onemes from a mutant defective for the dynein regulatory
complex (pf2) (Fig. 2 B). Coomassie blue staining of a
corresponding SDS-PAGE gel was performed to verify
equivalent protein load. RII binding to the AKAPs was in-
hibited by addition of the Ht31 peptide (data not shown).
The results of the mutant analysis suggest a model in
which AKAP240 is associated with the central pair appa-
ratus and AKAP97 is a component of the radial spoke.

AKAP240 Is Localized to a Substructure of the Central
Pair Apparatus

To further define the location of AKAP240, RII overlays
were performed on axonemes from mutants defective in
various components of the central pair apparatus (for a re-
view see Smith and Lefebvre, 1997a). RII overlays re-
vealed that, in addition to pfI8, AKAP240 is also absent in
axonemes from other mutants that are defective for the
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Figure 2. Deficiency of AKAPs in selected motility mutants.
(A) Diagram of axoneme cross section indicating the major
structural components and the corresponding mutants (adapted
from Porter and Sale, 2000). (B) RII overlay of various motility
mutants. wt, wild-type. (C) RII overlay of mutants defective in
various structures of the central pair apparatus.

entire central pair apparatus, including pf15 and pf19 (Fig.
2 C). AKAP240 is reduced in axonemes from the mutant
pf20, in which both microtubules of the central pair are un-
stable (Smith and Lefebvre, 1997b). However, AKAP240
is present in axonemes from a mutant defective in only the
C1 microtubule (pf16), as well as in axonemes from a mu-
tant that is lacking a projection of the C1 microtubule (pfo;
Dutcher et al., 1984). Based on this mutant analysis, we
propose a model in which AKAP240 is associated with the
C2 microtubule of the central pair apparatus. The localiza-
tion of PKA on only the C2 microtubule of the central pair
apparatus is consistent with the hypothesis that regulatory
components are asymmetrically localized on the central
pair apparatus, a feature which may be significant in the
control of flagellar waveform (Smith and Lefebvre, 1997a;
Porter and Sale, 2000).

AKAP97 Is RSP3

To further localize AKAP97 within the radial spoke, we
analyzed axonemes from several different radial spoke
mutants by performing RII overlays. The results indicated
that although AKAPY7 is absent in pfI4 (lacking the en-
tire radial spoke), AKAP97 is present in pfI7, which is de-
fective for the radial spoke head only (Fig. 3, A and B).
This suggests that AKAP97 is associated with the radial
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spoke stalk. We also examined pf27, a radial spoke mutant
in which five radial spoke components that are normally
phosphorylated are underphosphorylated in the mutant
(Piperno et al., 1981). Three of the five proteins, RSPs 2, 3,
and 13, are present in greatly reduced amounts (Huang et
al., 1981). The overlay revealed that AKAP97 is greatly re-
duced in pf27, and also appears to be shifted slightly more
positive on an SDS-PAGE gel, consistent with an under-
phosphorylated state.

Because RSP3 has been previously characterized to mi-
grate at ~97 kD on an SDS-PAGE gel, we hypothesized
that AKAP97 may be identical to RSP3. To test this hy-
pothesis, we performed an RII overlay of radial spoke mu-

tant axonemes, and then probed the same blot with an an-
tibody to RSP3. An identical staining pattern of AKAP97
was observed for both the RII overlay and analysis with
anti-RSP3 (Fig. 3 C), indicating that AKAP97 corresponds
to RSP3. Interestingly, although the predicted size of
RSP3 is only 57 kD, RSP3 migrates on an SDS-PAGE gel
to a position nearly two times its predicted molecular
weight. This anomalous migration is a common feature
among members of the AKAP family (Lester et al., 1996).

RSP3 Contains a Single RII-binding Site

To confirm that AKAP97 is RSP3, we expressed recombi-
nant RSP3 as a GST fusion protein in E. coli and tested for
RII binding using an RII blot overlay. The overlay demon-
strated that recombinant RSP3 binds to RII (Fig. 4 A). RII
binding was specifically inhibited by addition of the Ht31
peptide (data not shown). These results provided verifica-
tion that RSP3 is an AKAP.

To map the location of the RII-binding domain within
the amino acid sequence of RSP3, we expressed truncated
forms of RSP3 as GST fusion proteins in E. coli. Expres-
sion of the protein fragments was monitored by Coo-
massie staining and Western blot analysis with an antibody
to GST. Using RII blot overlays, we then tested the vari-
ous RSP3 truncations for RII binding (results shown in
Fig. 4 A). A COOH-terminal deletion of amino acids 221-
516 had no effect on RII binding. However, an NH,-termi-
nal deletion of amino acids 1-193 completely abolished
RII binding, indicating that the RII-binding site is con-
tained in the NH,-terminal portion of RSP3. By testing
smaller protein fragments, we determined that RSP3 con-
tains a single RII-binding domain located between amino
acids 144-180. Curiously, RII binding to the 144-180 frag-
ment is weaker than to larger fragments. One possible ex-
planation for this observation is that the close proximity of
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Figure 5. Conservation of the RSP3 RII-binding domain in
orthologs of RSP3. Bold type indicates identical or conservatively
substituted residues. Asterisks indicate proposed conserved posi-
tions of the RII-binding motif. aa, amino acid.

the GST protein to the RII-binding site in the 144-180
fragment results in steric hindrance by GST. However, it
cannot be ruled out that residues NH,-terminal of amino
acid 144 enhance the binding of RII to RSP3.

RSP3 Contains an RII-binding Motif Similar to
Other AKAPs

Recently the AKAP domain for RII binding has been re-
fined, and conserved residues within the amphipathic helix
have been proposed (Vijayaraghavan et al., 1999). Most of
the conserved residues are hydrophobic, and in many
cases only conservative substitutions appear to be allowed.
We analyzed RSP3 amino acids 144-180 to determine
whether they contain this proposed RII-binding motif.
Comparative alignment of these amino acids with the RII-
binding domains of other AKAPs revealed that amino ac-
ids 161-178 have sequence homology with other RII-bind-
ing domains. (Fig. 4 B). RSP3 161-178 contains 7 of 8
conserved amino acids when allowing for moderately con-
servative substitutions at amino acids 166 and 177 (valine
for alanine/serine). Moreover, like the RII-binding do-
mains of other AKAPs, amino acids 161-178 are predicted
to form an amphipathic helix (Fig. 4 C).

To provide definitive evidence that amino acids 161-178
comprise the RII-binding domain of RSP3, we performed
a point mutation at amino acid 170. Using the construct
containing amino acids 104-180, the central, conserved
residue, leucine 170, was replaced by a proline residue. We
predicted that this substitution would disrupt the amphi-
pathic helix and abolish RII binding. We expressed the
construct as a GST fusion protein in bacteria, and tested
its ability to bind to RII using an RII blot overlay. The
analysis revealed that the leucine to proline substitution
completely abolished RII binding to RSP3 (Fig. 4 D). To
ensure that the loss of RII binding in the leucine to proline
substitution did not occur as a result of nonspecific sec-
ondary structural alterations, we performed a more struc-
turally conservative amino acid substitution in which va-
line 169 and leucine 170 were replaced by alanines. The
substitutions again resulted in the complete loss of RII
binding, indicating that these residues are essential for RII
to bind to RSP3 (Fig. 4 D). Furthermore, the substitutions
correspond to mutations in other AKAPs that disrupt RII
binding (Glantz et al., 1993; Westphal et al., 2000), provid-
ing strong evidence that RSP3 is an AKAP with an RII-
binding domain localized to amino acids 161-178.

The RII-binding Site in RSP3 Is Well Conserved in
RSP3 Orthologs

Orthologs to RSP3 have been identified in human, mouse,
and Drosophila databases. Alignment of the RII-binding
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site of RSP3 with the corresponding residues in these
orthologs reveals that the RII-binding site is well con-
served (Fig. 5). The locations of the orthologs in their re-
spective organisms is not known, but since the axoneme is
a highly conserved structure, they most likely will be found
in the radial spokes of flagellar and perhaps ciliary ax-
onemes. It is important to test whether any of the
orthologs is also an AKAP. If so, it suggests that the
AKAP is an important component of the axoneme, and
therefore may also be important in the regulation of motil-
ity. There is some evidence that AKAPs indeed play an
important role in the control of flagellar motility. For ex-
ample, cell-permeable analogues of Ht31 have been shown
to inhibit sperm motility (Vijayaraghavan et al., 1997).

The Role of RSP3 in Chlamydomonas
Flagellar Axonemes

Genetic and biochemical experiments in Chlamydomonas
have demonstrated that the radial spokes, and in particu-
lar RSP3, are important in the regulation of flagellar mo-
tility (for reviews see Brokaw et al., 1982; Curry and
Rosenbaum, 1993). A mutant defective in the gene encod-
ing RSP3, pfl4, lacks radial spokes and has paralyzed fla-
gella. Based on our data, we hypothesize that in addition
to being required for assembly of the radial spokes (Wit-
man et al., 1978; Huang et al., 1981; Diener et al., 1993),
RSP3 has an additional function of localizing PKA in a po-
sition to control dynein-driven flagellar motility. Consis-
tent with this hypothesis, several experiments have shown
that the radial spokes control dynein activity by regulating
axonemal PKA (Smith and Sale, 1992; Howard et al., 1994;
Habermacher and Sale, 1997). In addition, genetic studies
of suppressor mutations have identified a dynein control
system, which, in the absence of the radial spokes, inhibits
dynein activity (Huang et al., 1982).

Genetic and molecular analyses have demonstrated that
RSP3 is located at the base of the radial spoke stalk, adja-
cent to the outer doublet microtubules and near the inner
dynein arms (Fig. 3 A). A basic region of RSP3, consisting
of amino acids 42-80, is necessary and sufficient for RSP3
to be targeted to the outer doublet microtubules (Diener
et al., 1993). This domain is analogous to the AKAP tar-
geting domain. In addition to the RII-binding domain,
each AKAP contains a unique targeting domain that local-
izes the AKAP and associated PKA to a specific intracel-
lular site (Edwards and Scott, 2000). Thus, amino acids 42—
80, formerly designated as the axoneme-binding domain,
can now also be considered the AKAP targeting domain.
However, the axonemal protein(s) that binds to the target-
ing domain and facilitates the localization of RSP3 to the
outer doublet microtubules remains unknown.

One disadvantage for our study of RSP3 is that, along
with other proteins of the radial spoke, RSP3 is not easily
solubilized and forms a strong association with the ax-
oneme (Piperno et al., 1981). Previously thought to be in-
soluble, a novel extraction method has recently shown that
RSPs can be solubilized by 0.5 M KI (Yang, P., D.R. Die-
ner, J.L. Rosenbaum, and W.S. Sale, submitted for publi-
cation). The relative insolubility of RSP3 has precluded
our efforts to show an association with either the endoge-
nous regulatory or catalytic PKA subunits through tradi-
tional approaches such as cAMP-affinity purification or
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immunoprecipitation. The chaotropic conditions required
for the solubilization of RSP3 likely also cause a dissocia-
tion of any associated enzymes. Equally as challenging, lit-
tle information is known about Chlamydomonas PKA,
and no identifying reagents are currently available. Fur-
ther studies of the role of PKA and AKAPs in the ax-
oneme will require a dedicated effort in the development
of these reagents.

In summary, we have identified an AKAP that is associ-
ated with the central pair apparatus, and an AKAP that is
a component of the radial spoke. Recent studies have
shown that in addition to an AKAP, the radial spoke also
contains a kinase, as well as calmodulin (Yang, P., D.R.
Diener, J.L. Rosenbaum, and W.S. Sale, submitted for
publication). We propose that RSP3 localizes PKA to a
position that, in conjunction with other components of the
radial spoke, regulates dynein activity and controls flagel-
lar motility. Future experiments will test this prediction
and examine the physiological role of the AKAP in the
flagellar axoneme.
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