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Abstract

The present research aims to evaluate the impact of industrial processes and anthropogenic

activities on the beetle Pimelia latreillei inhabiting the polluted site at Zawya Abd El- Qader,

Alexandria, Egypt. Beetles were collected from the vicinity of five factories. The genotoxic

effects of environmental exposures to industrial heavy metals were monitored using a broad

range of assays, including energy-dispersive X ray microanalysis and X-ray diffraction

(SEM and EDX)), qRT-PCR gene expression assay, micronuclei formation, and transmis-

sion electron microscope (TEM). Energy dispersive X-ray microanalysis for the soil and tes-

ticular tissues of beetles collected from the polluted site revealed a higher percentage of

heavy metals than the beetles collected from the reference site (Sidi Kirier, Alexandria,

Egypt). To analyze/monitor genotoxicity in P. latreillei sampled from the polluted site, the

transcription levels of levels of heat shock proteins (Hsps) and accessory gland seminal

fluid protein (AcPC01) in testicular tissues were recorded. The incidence of micronuclei

(MN) formation in the testicular cells was also observed. Quantitative RT-PCR (RT-qPCR)

analysis was carried out to detect the changes in the gene expression of the aforementioned

proteins. Genes encoding heat shock proteins (Hsp60, Hsp70, and Hsp90) were signifi-

cantly overexpressed (> 2-fold) in specimens sampled from the polluted site; however,

AcPC01 gene expression was under-expressed (<1.5-folds). The incidence of MN was sig-

nificantly increased in specimens sampled from the polluted site. Ultrastructure anomalies

(nuclear and cytoplasmic disruption) were also observed in the testicular cells of the beetles

sampled from the polluted site compared to those sampled from the unpolluted site. Our

results, therefore, advocate a need for adequate measures to reduce increasing environ-

mental pollution in the urban-industrial areas.
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1. Introduction

Heavy metals released from industrial processes and anthropogenic activities have an adverse

effect on humans and the ecosystem [1, 2]. The World Health Organization (WHO) estimated

that a million people died every year from diseases caused by pollution, most of them in develop-

ing countries [3, 4]. Inorganic pollutants released from industrial and agricultural sources contain

heavy metals that result in soil pollution [5, 6]. The excess release of heavy metals into the soil

makes them a major health concern worldwide [7, 8]. Most heavy metals have carcinogenic and/

or mutagenic effects in addition to their cytotoxicity to healthy cells at low concentrations [9, 10].

As metal ions traverse cell barriers, the balance of extracellular and intercellular ions is

interrupted, which affects membrane permeability [11]. Therefore, insects, including ground

beetles have been used as bioindicators to monitor environmental pollution and in particular,

soil pollution by heavy metals [12–15]. Ground beetles inhabit most of the biogeographical

regions and are simply sampled from their habitats, and their bionomics and systematics are

well studied [16]. Disturbance in the physiological mechanisms of the organisms is a reflection

of environmental stress (Migula et al. 2004). Biochemical analysis is progressively used in

ecotoxicological studies to monitor the ubiquity of xenobiotics [17]. Biochemical alterations

have been attributed to the negative effects resulting from vulnerability to a contaminant [18].

A molecular biomarker is a significant tool for the evaluation of ecotoxicity in living organ-

isms. Toxic compounds have a high affinity for electron pairs found in the amino acids [19].

Hence, elevation or inhibition in the activity of the enzymes is an indication of the damage

caused by pollutants [20].

Genotoxic agents can induce several health disorders, such as structural abnormalities and

growth retardation [21]. Consequently, there is a need for sensitive tests to monitor the geno-

toxicity of hazardous compounds found in the environment [22].

The physiological response of an organism exposed to a stressor triggers the synthesis of spe-

cific proteins to repair possible damage caused by such exposure. These proteins are named

molecular chaperones or heat shock proteins (Hsps) [23, 24]. They have a role in protecting the

stressed cells [25]. Hsp60, Hsp70, and Hsp90 are the highly conservative proteins and the most

susceptible to stress factors in the organism’s cells (Cui et al. 2010; Sun et al. 2014). In insects,

the exposure to stressors leads to a decrease in the rate of synthesis of most proteins, but Hsp

expression increases [26, 27]. Several studies have implicated heat shock proteins (Hsps) in eval-

uating the toxic potential of different stressors in insects, particularly of heavy metals [26, 28].

In insects, seminal fluid proteins (SFPs) are produced by the accessory glands (AGs), vesi-

cula seminalis, ejaculatory duct, ejaculatory bulb, and testes. The SFPs include protease inhibi-

tors, lectins, prohormones, peptides, and protective proteins, such as anti-oxidants present in

the ejaculate of all eukaryotes [29]. During mating, they are conveyed to the females, thereby

inducing female post-mating responses. Changes in the levels of these proteins affect the

reproductive success of both sexes [29, 30].

Micronuclei (MNs) are biomarkers used to monitor genotoxicity [31]. They are tiny cyto-

plasmic extrusion of chromatin that results from the breakage of the chromosomes during cell

division or chromosomal delay in anaphase [32]. Very few studies have been conducted to

evaluate genotoxic damage by different stressors using MN assay [33].

The ultrastructure of the internal organs of insects is a competent tool in determining the

effect of toxins. The bioaccumulation of heavy metals into insects can be used as a monitor for

environmental pollution. Insects possess special structures, spherites for accumulating trace

metals [34]. Accumulation of heavy metals in insect organs influences cell viability and induces

cellular damage, as well as cell apoptosis [14, 35–37]. Heavy metals may affect the regulation

and control mechanisms of the reproductive process, leading to spermatogenetic alterations,
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which, in turn, can result in the production of damaged spermatozoa [38–40]. Ultrastructure

anomalies in insects’ testes induced by heavy metal pollution have been reported in a few stud-

ies [14, 35, 37].

Using a biomonitoring beetle, Pimelia latreillei, this study clarified the genotoxic effect of

heavy metals originating from anthropogenic sources and industrial effluents. We also

observed the ultrastructure damages to the testicular cells, which may be caused by heavy-

metal pollution.

2. Materials and methods

2.1. Ethics statement

The ethical rules for animal regulations were followed and approved by Faculty of Science,

Alexandria University committee in March 2018 (Alex-01-2018). All animal procedures were

conducted in accordance with the local Guiding Principles for the Care and Use of Laboratory

Animals as adopted and promulgated by Alexandria University.

2.2. Study sites

Two sites were chosen for sampling the coleopteran insects. The sample locations were in pub-

lic areas. Site A at Sidi Kirier, north coast of Alexandria, Egypt (latitude 31.016250˚N and lon-

gitude 29.635663˚E), was considered the reference site. Some ornamental plants, grasses, and

shrubs were cultivated at this site. Site B at Zawya Abd El-Qader, southwest Alexandria, Egypt

(latitudes 30˚ 33’ - 31˚ 30’ N and longitudes 29˚ 50’ - 30˚ 45’ E), was considered as the polluted

site. This area covered a vast cultivated land representing most Abis and El-Nahada farms.

These lands were subjected to aerosol deposition from various industrial activities located in

the western part of Alexandria city [Site B1, Egyptian Petrochemicals Company or EPC (lati-

tude 31.009206˚N and 29.848589˚E; Site B2, Alexandria Carbon Black (latitude 30.995080˚N

and longitude 29.848739˚E); Site B3, Pirelli Tires Company (latitude 30.997497˚N and longi-

tude 29.846674˚E); Site B4, Sidi Krier Petrochemical Company or Sidpec (latitude

31.004389˚N and longitude 29.839531˚E); and Site 5, Egyptian Ethylene Company or Ethydco

(latitude 31.011130˚N and longitude 29.832288˚E)]. From meteorological data, the wind direc-

tion was found to be northwest (average speed between 2.75 m/s and 7.14 m/s), which might

accelerate the delivery of contaminants over a long distance.

2.3. Sampling procedure

Live specimens of P. latreillei were collected randomly from ten sampling areas (1 m2 each) at

each site in June 2018. Simultaneously with the beetle collection, soil samples were collected at

a depth of 25 cm below the surface from the mentioned sites. The ten areas at Zawya Abd El

Qader (the polluted site) were selected near the aforementioned companies (two areas around

each company). The mean air temperature in June ranged from 28˚C to 36˚C and the mean

relative humidity was 65%, with nearly no differences between the two sites. About 200 insects

were collected from each site. The specimens were sexed, and about 90 males were preserved

alive in local soil and plants in glass containers until processing. Beetles were anaesthetized

with absolute ethanol (95%), then dissected under a dissecting microscope in a drop of Ring-

er’s physiological solution. The abdominal cavity was opened and the testes were extracted.

2.4. Studied insect

The specimens were identified at the Faculty of Agriculture, Alexandria University (Depart-

ment of Entomology) as Pimelia latreillei. The studied insect belonged to Tenebrionid beetles.
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2.5. Determination of heavy metals in the soil and testicular tissues of P.

latreillei
Energy-dispersive X-ray microanalysis (EDX) was used to determine the percentages of differ-

ent metals in the sieved soil and testicular tissues. This analysis was applied using a JEOL

(JSM-5300) scanning microscope at the Electron Microscope Unit (E.M.), Faculty of Science,

Alexandria University, Egypt. The accuracy of the analytical results was determined using

eight samples of soil from each site and testicular tissues obtained from eight male beetles.

The identity of each peak was assigned automatically by the SEM EDX software. Line inten-

sity was measured for each element in the sample and for the same elements in calibration

standards of known composition. At X500, a stationary spot was analyzed at random for

110 s.

2.6. mRNA expression of heat shock proteins (Hsps) and seminal fluid

(AcPC01) encoding genes

2.6.1. Isolation of total RNA. Total RNA was isolated from eight samples of testicular tis-

sues and accessory glands of male P. latreillei with TRIzol1 Reagent (Invitrogen, Germany).

To ensure DNA digestion, 1 U of RQ1 RNAse-free DNAse (Invitrogen, Germany) was added

to the RNA, and the mixture was re-suspended in DEPC-treated water. Total RNA purity was

assessed by the 260/280 nm ratio (between 1.8 and 2.1). To ensure integrity, ethidium bromide

stain analysis of 28S and 18S bands by formaldehyde-containing agarose gel electrophoresis

was performed. Aliquots were used for reverse transcription (RT).

2.6.2. Reverse transcription (RT) reaction. Poly (A) + RNA isolated from testicular tis-

sues and accessory glands of P. latreillei was reverse transcribed into cDNA in a total volume

of 20 μl using Revert AidTM First Strand cDNA Synthesis Kit (MBI Fermentas, Germany).

From the total RNA, 5 μg was used with a master mix (MM) consisting of 50 mM MgCl2, 5x

reverse transcription (RT) buffer (50 mM KCl; 10 mM Tris-HCl; pH 8.3), 10 mM of dNTP,

50 μM oligo-dT primer, 20 U ribonuclease inhibitor (50 kDa recombinant enzyme to inhibit

RNase activity), and 50 UM- MuLV reverse transcriptase. Each sample mixture was centri-

fuged for 30 s at 1000 g. The mixture was then transferred to the thermo-cycler (Biometra

GmbH, Göttingen, Germany). The RT reaction started at 25˚C for 10 min, continued at 42˚C

for 1 h, and was stopped after heating at 99˚C for 5 min, followed by cooling in an ice

chamber.

2.6.3. Real Time-Polymerase chain reaction (RT-qPCR). Step One™ Real-Time PCR

System from Biosystems (Thermo Fisher Scientific, Waltham, MA, USA) was used to deter-

mine the beetles’ cDNA copy number. PCR reactions were set up in 25 ml reaction mixtures

containing 12.5 ml 1× SYBR1 Premix Ex TaqTM (TaKaRa, Biotech. Co. Ltd.), 0.5 ml 0.2 mM

sense primer, 0.5 ml 0.2 mM antisense primer, 6.5 ml distilled water, and 5 ml of cDNA

template.

The reaction program was divided into 3 steps. Step (1) was at 95.0˚C for 3 min. Step (2)

consisted of 40 cycles in which each cycle was subdivided into 3 steps: (a) at 95.0˚C for 15 s;

(b) at 55.0˚C for 30 s; and (c) at 72.0˚C for 30 s. Step (3) consisted of 71 cycles which started at

60.0˚C and then increased about 0.5˚C every 10 s up to 95.0˚C. Primer quality was measured

using melting curve analysis that was executed at the end of each RT-qPCR (Fig 1). Each

experiment included a distilled water negative control. The sequences of the specific primer of

the genes used in accordance with Liu et al. (2014) [41], Rodrı́guez-Garcı́a et al. (2015) [42],

and Cai et al. (2017) [43], are listed in Table 1. The relative quantification of the target to the

reference was determined using the 2−ΔΔCT methods.
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2.7. Micronucleus (MN) test

Samples of beetle testes were prepared for MN analysis. The testes were immersed in saline solu-

tion (128.3 mM NaCl, 16.7 mM Na2HPO4, 19.9 mM KH2PO4), incubated in tap water as a hypo-

tonic treatment for 50 min to let the cells swell, allowing the mononuclear and binuclear to

separate. 3 μg/ml of cytochalasin B was used to block cytokinesis. Testis was spread on coded

slides, fixed in Water: Ethanol: Acetic Acid by vol (4:3:3) for 20 min, Ethanol: Acetic Acid,1:1(v/v)

for 30 min, and Acetic Acid (100%) for 24 h, air dried, stained with Giemsa dye 1M diluted in

30 M buffer (0.06M sodium citrate buffer, pH: 6.8) for 10 min. About 1000 testicular cells were

scored for each slide under a light microscope at a magnification of 1000× to determine the

Fig 1. Melting curves of Hsps and AcpC01 genes. a: Melting curve of Hsp60 gene, b: Melting curve of Hsp70, c:

Melting curve of HspP90 gene, d: Melting curve of AcpC01 gene.

https://doi.org/10.1371/journal.pone.0253238.g001

Table 1. Primers sequence used for RT-qPCR.

Gene

name

Primer sequense (50-30) GenBank accession No., Full-length cDNA library, & Amplicon

size

References

Hsp60 F: GCT GTA TGT CCG CCG TGT A Genbank acc. n.: KU323593

Amplicon size: 427 bp

Cai et al. (2017) [43]

R: GGG AGT CTT CGT GAA TGC C

Hsp70 F: TGG CGG CAA ACC GAA GAT Genbank acc. n.: KU159184

Amplicon size: 576 bpR: CGC TGG CAC CGT AAT GAC

Hsp90 F: GAG GAA GGT ATT GTA GCA GG Genbank acc. n.: KU159185

Amplicon size: 313 bpR: AGC GGT CGT CAA GAG GGA TG

AcPC01 F: GTA TTC CAT TGT GTC CAC CAC CTC
CGG

Genbank acc. n.: KP164546.1

Amplicon size:128bp

Liu et al. (2014) [41]

R: TGG TGG ACA AGG TGG ACA ACA TGG
AAC

β-actin F: CTC TGC TAT GTA GCC CTT GAC TT Genbank acc. n.: KU884974.1

Amplicon size: 156 bp

Rodrı́guez-Garcı́a et al. (2015)

[42]R: GCA GTT GTA GGT GGT TTC GTG

Hsp60: heat shock protein 60 encoding gene, Hsp70: heat shock protein 70 encoding gene, Hsp90: heat shock protein 90 encoding gene, AcPC01: accessory gland

seminal fluid protein encoding gene, β-actin: Beta actin encoding gene.

https://doi.org/10.1371/journal.pone.0253238.t001
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frequency of MN [33, 44]. Other nuclear abnormalities were also noticed in the cells, including

nuclear buds, karyorrhexis, karyolysis, binucleated cells, and heterochromatin [45, 46].

2.7.1. Micronuclei identification

Micronuclei (MN) are illustrated in Fig 2 according to the following criteria: (1) the structure

and staining of MN must be similar to the main nuclei; (2) MN are not connected to the main

nuclei, but they may touch the main nuclei; (3) MN should have spherical structures; (4) MN

diameter should not be greater than 1/3 core diameter.

2.8. Preparation of testes for ultrastructure analysis

Testes were fixed immediately in 4% formaldehyde and 1% glutaraldehyde (4F1G) in 0.1 M

phosphate buffer solution (pH 7.2) at 4˚C for 3 h, followed by post-fixation with 2% osmium

tetroxide (OsO4) in the same buffer for 2 h. A buffer was used to wash the samples, which were

dehydrated at 4˚C through a graded series of ethanol, then embedded in Epon-Araldite mix-

ture in labeled beam capsules. Ultrathin sections (0.06–0.07 μm thick) were cut from the testes

for examination under a transmission electron microscope (TEM). The ultra-thin sections

were placed on 200 mesh copper grids, which were double-stained with uranyl acetate for 30

min and lead citrate for 20–30 min (Reynolds 1963). Electron micrographs were taken at sev-

eral magnifications. Scoping and photographing the grids were achieved by JEOL 100 CX

TEM, at Electron Microscope Unit, Faculty of Science, Alexandria University, Egypt.

2.9. Data analysis

Data analysis was performed using the IBM SPSS software package version 20.0 (Armonk, NY:

IBM Corp) [47]. The Shapiro–Wilk test was used to verify the normality of the distribution of

Fig 2. Photomicrographs of nuclear abnormalities in the testicular cells of P. latreillei collected from the polluted

site, stained with Giemsa. a: nuclear bud (NB) and karyorrhexis (double head arrow), b: micronucleus (MN),

karyolysis (double arrow), and heterochromatin (HC), c: binucleated cell (BN), micronucleus (MN), and karyolysis

(double arrow), d: micronucleus (MN).

https://doi.org/10.1371/journal.pone.0253238.g002
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variables. Data were analyzed by a Student’s t-test (Sokal and Rohlf 1981) to determine the dif-

ference between the two studied sites for normally distributed quantitative variables. The sig-

nificance of the obtained results was judged at p� 0.05.

3. Results

3.1. X-ray analysis of soil samples and testicular tissues of P. latreillei
collected from the inspected sites

Trace metal percentages were obtained from the X-ray analysis of sieved soil and the testicular

tissues of P. latreillei sampled from the inspected sites (Tables 2 and 3).

Twelve elements, Mg, Ca, K, Na, Zn, Cu, Fe, Al, Pb, Cd, Ti, and Si, were detected in the soil

from site B and ten elements from site A (Pb and Cd were absent). A significant elevation in

the percentages of metals was reported at the site B compared with those at site A, except for

Table 2. Trace metal percentages (%) in sieved soil samples from reference and polluted sites (site A & B), n = 8.

Metal Site Site A Site B P

Mg 0.2 ± 0.07 1� ± 0.1 <0.001

Ca 5.4 ± 0.2 3.5� ± 0.3 0.006

K 1.7 ± 0.3 2.6 ± 0.3 0.09

Na 1.5 ± 0.6 16.9� ± 1.5 <0.001

Zn 0.3 ± 0.08 1.1� ± 0.07 <0.001

Cu 0.5 ± 0.1 2.4�± 0.4 <0.001

Fe 3 ± 0.4 8.2� ± 0.5 <0.001

Al 0.6 ± 0.2 4.1�± 1.3 0.022

Pb ND 1.4�± 0.06 <0.001

Cd ND 14�± 0.1 <0.001

Ti 0.3± 0.1 1.9�± 0.2 <0.001

Si 21.7± 0.9 79�±3.1 <0.001

For each metal, the percentage expressed by using minimum–maximum values and mean (n = 8) using Student t-test

�: Statistically significant at (p � 0.05), ND: Not detected.

https://doi.org/10.1371/journal.pone.0253238.t002

Table 3. Trace metal percentages (%) in testicular tissues of P. latreillei collected from the reference and polluted

sites (site A & B), n = 8.

Metal Site Site A Site B p

Ca 3.5 ± 0.06 5.7� ± 0.4 0.01

K 7.3 ± 0.2 ND 0.000

Na 8.4 ± 0.2 13.7� ± 1.7 0.05

Zn 4.2 ± 0.04 6.4� ± 0.5 0.02

Cu 3.6 ± 0.2 18� ± 4.7 0.05

Fe ND 1.6� ± 0.1 0.002

Al 5.4 ± 0.1 21� ± 4 0.03

Pb ND 3.4� ± 0.1 0.000

Cd ND 1.1� ±0.1 0.006

For each metal, the percentage expressed by using minimum–maximum values and mean (n = 8) using Student t-test

�: Statistically significant at (p � 0.05), ND: Not detected.

https://doi.org/10.1371/journal.pone.0253238.t003
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K, with detection of Pb and Cd (Table 2). However, only six elements were present in the tes-

ticular tissues of P. latreillei sampled from site A (Ca, K, Na, Zn, Cu, and Al) and eight ele-

ments in the samples from site B (Ca, Na, Zn, Cu, Fe, Al, Pb, and Cd). A significant elevation

in the percentages of Ca, Na, Zn, Cu, and Al was observed in the testicular tissue of beetles col-

lected from the site B compared with those at site A, except for K (not detected), with detection

of Fe, Pb, and Cd (Table 3).

3.2. Gene expression of Heat shock proteins (Hsp60, Hsp70, Hsp90) and

seminal fluid protein (AcPC01) in testicular tissues and accessory glands of

P. latreillei collected from the inspected sites

cDNA obtained from testicular tissues was used as the template for RT-qPCR, which was con-

ducted to investigate the gene expression patterns of Hsp60, Hsp70, and Hsp90 in the testicular

tissues of P. latreillei. The Hsp60 (GenBank Accession: KU323593, full-length cDNA library:

2143 bp, amplicon size: 427bp), Hsp70 (GenBank Accession: KU159184, full-length cDNA

library: 1947 bp, amplicon size: 576bp), and Hsp90 (GenBank Accession: KU159185, full-

length cDNA library: 2385 bp, amplicon size:313bp) transcripts were detected to be highly sig-

nificant, being more than 2-fold in the testicular tissues of beetles collected from the polluted

site in comparison with the expression observed in the testicular tissues of beetles collected

from the reference site. In particular, relatively high mRNA expression levels of Hsp70 were

observed in samples from the polluted site (Fig 3). However, a significant inhibition in

AcPC01 (GenBank Accession: KP164546.1, full-length cDNA library: 20 bp, amplicon size:

5128 bp) transcript level, being less than 1.5-fold, was observed in the accessory glands of male

P. latreillei collected from the polluted site, compared with that of the reference site (Fig 4A).

3.3. Micronucleus assay

The incidence of micronuclei in the testicular cells of P. latreillei due to the effect of heavy met-

als is presented in Fig 4B. Data are expressed as Mean ± SE of five replicates. Micronuclei

Fig 3. Expression levels of heat shock protein-encoding genes (Hsp60, Hsp70, and Hsp90) in testicular tissues of

male beetles collected from the reference and polluted sites. Data are represented as mean ± SE, p<0.05.

https://doi.org/10.1371/journal.pone.0253238.g003
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frequency were expressed in 1000 analyzed testicular cells. The number of micro-nucleated

cells among the polluted group was highly significant, being 30.6±1.72 compared with the

micro-nucleated cell number in the control group (12.4±1.08).

3.4. Macroscopic observations

The male reproductive organs of P. latreillei consist of two testes, which are bulblike structures

encased in a peritoneal sheath and composed of follicles, the calyx, the vas deferens, and the

vesicula seminalis at each side combined into the ejaculatory duct and leading to the aedeagus.

The ejaculate received two accessory glands. There were no external anatomical abnormalities

recognized in the testes of beetles collected from the polluted site, compared to the reference

group (Fig 4C).

3.5. Ultrastructure observations of the testis of P. latreillei collected from

the inspected sites

The present results are the first describing the testicular structure of the studied beetle, P.

latreillei. There are no previous studies that describe such a structure. Electron micrographs of

the testis of P. latreillei sampled from the reference site (site A) showed euchromatic spermato-

gonia with a large spherical nucleus, one or two dense nucleoli, and a regular nuclear envelope.

Their cytoplasm contained mitochondria distributed around the nucleus. Rough endoplasmic

reticulum, Golgi complex, and free ribosomes were also observed (Fig 5A). The spermatocytes

appeared with a larger nucleus and homogenous chromatin. The mitochondria redistributed

on one side of the nucleus, preparing for nebenkern formation in the initial spermatids (Fig

5B). The initial spermatids were diagnosed by their small round nuclei with condensed chro-

matin and round nebenkern formed by the fusion of the mitochondria (Fig 5C). The intercon-

nected bridges between the initial spermatids were noticed, as they arose from a single

spermatocyte (Fig 5C).

Late spermatids had an oval nucleus, a centriole, and an axoneme. The nebenkern was

divided into two mitochondrial derivatives, which extended posteriorly around the axoneme

(Fig 5D), while spermatozoa had a more dimensional nucleus, a conical acrosome, and

Fig 4. Expression levels of the seminal fluid encoding gene (AcPC01) in the accessory glands of male beetles collected from the reference and polluted sites. Data are

represented as mean ± SE, p<0.05. a&b: Frequency of micronuclus formation (MN) in the testicular cells of P. latreillei collected from reference and polluted sites. Data

are represented as mean ± SE, p<0.05. c: Photograph of the male reproductive system of P. latreillei. Testis (Tes), germinal cyst (GC), accessory gland (AG), ejaculatory

duct (EjD), aedeagus (Aed).

https://doi.org/10.1371/journal.pone.0253238.g004
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flagellum (Fig 5E). Cross-sections through the flagellum showed nine accessory tubules and

nine doublet tubules surrounding two central tubules. Hence, the axoneme was seen as having

a 9+9+2 tubular pattern (Fig 5F). Two accessory bodies were also noticed (Fig 5F).

The electron micrographs marked out parietal cells that form the germinal cyst borders.

They are characterized by their large polymorphous nucleus with a few patches of chromatin

near the nuclear envelope. Their cytoplasm contained mitochondria, free ribosomes, and

rough endoplasmic reticulum (Fig 5G).

The electron micrographs of the testicular cells of the polluted group showed some anatom-

ical anomalies. In spermatogonia, there were some nuclear deformations, such as indentation

of the nuclear envelope and formation of globular inclusion bodies. Dense vesicles were noted

in the cytoplasm (Fig 6A). The degenerative changes in the spermatocyte appeared more pro-

nounced in the cytoplasm. These changes included lysis of mitochondrial matrices, the appear-

ance of dense vesicles, and vacuolated cytoplasm. In the nucleus, some discrete patches of

heterochromatin were observed (Fig 6B).

Early spermatids appeared with abnormal chromatin clumping (Fig 6C). Cytoplasmic

deformities included vacuolations, nebenkern disintegration, dense vesicles, and convolution

of the plasma membranes (Fig 6C). Many anomalies were noticeable in late spermatids, such

as abnormal head morphology with aberrant chromatin and irregular nuclear envelope (Fig

6D–6F). Transverse sections through their flagella showed disintegrated mitochondrial deriva-

tives, degenerated axonemes, vacuolated and residual cytoplasm, and convolution of plasma

membranes (Fig 6E, 6G and 6H). Agglutinated spermatids (tail to tail), and spermatids with a

double tail were also noticed (Fig 6G).

Variable deformities were also detected in the spermatozoa. Sperms failed to discard their

residual cytoplasm (Fig 6H). Convolution of the plasma membrane and agglutinated sperms

(head to tail and tail to tail) were frequently observed (Fig 6I).

The parietal cells were seen to be hypertrophied, with distended cytoplasm and vigorous

phagocytic activity in malformed spermatozoa (Fig 6J). A dilated smooth endoplasmic reticu-

lum was observed in the cytoplasm (Fig 6J).

4. Discussion

Employing insects in biomonitoring program is a functional ecological indication [12, 14, 15,

35, 37, 48, 49]. In the present study, the urban site is prone to industrial heavy metal pollution

that might be released from the local factories. Therefore, agricultural soils are highly polluted

with various heavy metals resulting from anthropogenic activities and industrial processes.

In this study, we used x-ray microprobe analysis to detect heavy-metal concentrations in

the soil and insect testicular tissues. There was a significant elevation in heavy-metal percent-

ages at the polluted site, particularly Cu, Zn, Al, Cd, and Pb compared with the control site. X-

ray analysis is an effective tool for detecting trace metal in biological specimens [15, 50]. Our

Fig 5. Electron micrographs of spermatogenic cell in the testis of P. latreillei collected from the site A. a:

Spermatogonia with nucleus (N), regular nuclear envelope (Ne), mitochondria (M), rough endoplasmic reticulum

(RER), Golgi complex (G), free ribosomes (r). b: Spermatocyte with euchromatic nucleus (N), regular nuclear envelope

(Ne), mitochondria (M), rough endoplasmic reticulum (RER), Golgi Complex (G), and free ribosomes(r). c: Early

spermatids with heterochromatic (HC) nucleus (N), nuclear envelope (Ne), nebenkern (NK), connecting bridge (�). d:

Late spermatid with nucleus (N), nuclear envelope (Ne), centriole (C), axoneme (ax), plasma membrane (arrow). e:

sperm with acrosome (A), nucleus (N), nuclear envelope (Ne), plasma membrane (arrow). f: Middle pieces of early

spermatids with axoneme (ax), MD: mitochondrial derivatives (MD), microtubules (Mt), accessory body (ab), plasma

membrane (arrow). g: Parietal cell (P) with heterochromatic (HC) nucleus (N), regular nuclear envelope (Ne),

mitochondria (M), rough endoplasmic reticulum (RER), free ribosomes.

https://doi.org/10.1371/journal.pone.0253238.g005
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results align with previous studies that reported the toxic effect of heavy metals on aquatic and

terrestrial insects collected from industrial areas [14, 37, 49–52]. Azam et al. (2015) [51] stated

that the elevation in heavy metals percentages in animal bodies correlates site pollution.

RT-qPCR primers were used to amplify homologous sequences in the available coleopteran

species [42, 43]. The three tested heat shock proteins (Hsps) showed highly significant tran-

script levels in response to heavy-metal pollution at site B compared with the reference site

(site A). It was stated earlier by Qin et al. (2003) [53] that between 1.5 to 4-fold increase in the

transcriptional activities of these molecular chaperones was found to be a significant induc-

tion. Dou et al. (2017) [54] and Cheng et al. (2018) [55] reported that Hsp60, Hsp70, and

Hsp90 transcripts were expressed throughout insect development, suggesting a development

regulatory role. Elevation in Hsp mRNA levels in insects due to heavy metal pollution was

reported by Shu et al. (2011) [56] and Zhao et al. (2010) [57]. Induction of Hsp60, Hsp70, and

Hsp90 protects against environmental stresses [41, 58, 59], although in our study Hsp mRNA

levels were upregulated in the tested insect sampled from the polluted site, particularly Hsp70

gene. Hsp70 protein is the most dominant protein found in the early instars of insects and

helps them to overcome adverse conditions [60]. Hsp70 protein may guard cells against metal-

induced chromosome aberrations through different mechanisms that facilitate cell cycle regu-

lation and reduce genomic instability [61]. It also stops the aggregation of the broken down

proteins, leading to many serious injuries in the stressed cells [60]. Our results are in agree-

ment with Doğanlar et al. (2014) [62], who exposed adult Drosophila melanogaster to different

concentrations of metal mixture (Fe, Cu, Cd, and Pb). They reported that the expression of

Hsp genes was altered by increasing the exposure time and that Hsp70 was the more expressed

gene. Moreover, Braeckman et al. (1997a), Braeckman et al. (1997b), and Kafel et al. (2012)

[63–65] observed an increase in the expression level of Hsp70 in Aedes albopictus and Spodop-
tera exigua exposed to cadmium. Joshi and Tiwari (2000) [66] noticed that environmental

chemical pollutants, such as arsenate and mercury cause the induction of a common set of

gene loci encoding heat shock proteins in the Australian sheep blowfly, Lucilia cuprina.

SFP analysis gives the perception of evolutionary patterns of reproductive traits [30].

Understanding reproductive molecules and their mechanisms provide opportunities to isolate

species [67, 68].

SFPs have been described in several insect orders, such as honeybees (Hymenoptera), field

crickets (Orthoptera), flies and mosquitoes (Diptera), moths and butterflies (Lepidoptera), and

genus Tribolium (Coleoptera) [69–71]. To date, no other species of beetles have been analyzed

Fig 6. Electron micrographs of spermatogenic cell in the testis of P. latreillei collected from the site B. a:

Spermatogonia (Sg) with nucleus (N), nuclear envelope (Ne), globular inclusion body (arrow), heterochromatin (HC),

dense mitochondria (M), dense vesicle (double head arrow), free ribosomes (r). b: Spermatocyte with nucleus (N),

nuclear envelope (Ne), mitochondria (M), dilated rough (RER), and smooth (SER) endoplasmic reticulum, free

ribosomes (r), vacuoles (V), dense vesicle (double head arrow). c: Early spermatid with abnormal chromatin

condensation, disintegrated nebenkern (NK), convoluted plasma membrane (arrow), vacuolated cytoplasm (V), dense

vesicle (double head arrow), nucleus (N), nuclear envelope (Ne). d: Abnormal head morphology of late spermatids

with convoluted plasma membrane (arrow) and malformed middle pieces (curved arrow), centriole (C),

mitochondrial derivatives (MD), d: dense vesicle (double head arrow). e: Spermatid with irregular nuclear envelope

(Ne), convoluted plasma membrane (arrow), abnormal middle pieces with residual cytoplasm (head arrow),

disintegrated mitochondrial derivatives (MD), middle pieces lacking mitochondrial derivatives (curved arrow),

vacuoles(V). f: Spermatids with irregular nuclear envelope (Ne), convoluted plasma membrane (arrow), centriole (C),

nucleus (N), acrosome (A), dense vesicle (double head arrow). g: Middle pieces with degenerated axoneme (ax),

degenerated mitochondrial derivatives (MD), convoluted plasma membrane (double head arrow). Note: spermatid

with a double tail (curved arrow). h: Spermatids with residual cytoplasm (head arrow). i: Spermatozoa with the

convoluted plasma membrane (arrow). Note: agglutinated sperms, head to tail, and tail to tail (�). N: nucleus, v:

vacuoles. j: Hypertrophied parietal cell (P) with high phagocytic activity. N: nucleus, Ne: nuclear envelope, M:

mitochondria, RER: rough endoplasmic reticulum, SER: dilated smooth endoplasmic reticulum, r: free ribosomes.

https://doi.org/10.1371/journal.pone.0253238.g006
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for these proteins as markers for environmental pollution. Thus, P. latreillei is considered a

model organism to evaluate the environmental impacts on the tested SFPs. In this study, a

primer set was designed from the sequence of the tiger beetle’s AcPC01 protein available from

Genbank [42].

Accessory glands of adult male insects are considered the main organs for producing the

non-cellular portion of the sperm [72]. Secretory cells in the accessory gland produce accessory

gland proteins (AcPs) that are transmitted to the female with sperms during mating [73]. In

our study, a significant downregulation of AcPC01 was observed in males collected from the

polluted site. Similarly [74], observed significant inhibition of AcP36DE expression in the

accessory glands of male D. melanogaster treated with organophosphate compounds, dichlor-

vos and chlorpyrifos. They reported that the chemicals might either inhibit the regulation of

AcPs or cause damage to the cells producing them.

The results obtained from MN in the testicular cells of insects collected from the polluted

site indicated the intensity of DNA damage. The polluted site possessed significantly higher

frequencies of MN than the reference site. The MN illustrate major damage to DNA that can-

not be effectively repaired [75, 76]. Klobucar et al. (2003) [77] detected elevated MN frequen-

cies in the hemocytes of caged mussels, Dreissena polymorpha, collected from four monitoring

sites in river Drava, with different pollution intensities. They reported that MN formation

stayed persistent in the cell until the end of its lifespan. Increased numbers of micronuclei indi-

cate a mutagenic and carcinogenic effect in organisms [78, 79]. Offer et al. (2005) [80] stated

that the incidence of micronuclei is attributable to the loss of chromosome segments assignable

to chromosome breaks or chromosome exchanges. Hence, their formation is a sign of chromo-

some damage [81, 82]. The incidence of MN could also designate the level of organisms’ sensi-

tivity to toxins [33, 83]. The MN test supported our findings of the nuclear deformities in the

ultrastructure observations.

No pathological features were observed in the male reproductive system of P. latreillei,
which represents the same structure as most of the ground beetles among the coleopteran

insects. The testes appeared packed with germinal cysts [13, 14, 35].

Our electron micrographs illustrated sperm differentiation, starting from spermatogonia,

which exhibited a round nucleus and nucleolus, and a cytoplasm packed with cytoplasmic

organelles. Spermatocytes were seen to have a larger nucleus and aggregated mitochondria,

preparing for nebenkern formation. There was chromatin condensation in spermatids and

dimensioning in the head size through sperm maturation. Similar features were described pre-

viously by several researchers [13, 14, 35, 37, 84]. The sperms in P. latreillei are homologous to

tenebrionid sperms. They consist of a conoid acrosome, slender nucleus, centriole, and flagel-

lum with a 9+9+2 pattern. There are two similar mitochondrial derivatives and accessory bod-

ies on each side of the axoneme [13, 35, 85].

At the polluted site, morphological changes in the nucleus and cytoplasm of testicular cells

were noticed in most spermatogenic stages. These pathological signs are a consequence of

DNA, protein damage, and dysfunction of membranes due to the action of heavy metals [15,

86, 87]. Heavy metals dramatically change the morphology of membranous organelles, such as

the mitochondria, endoplasmic reticulum, and plasma and nuclear membranes [87]. Heavy

metals sequester in the intracellular compartments of the nuclei and mitochondria, bind mem-

brane and DNA associated proteins, thus altering membrane function as well as DNA repair

mechanisms [86]. Metal-induced changes led to cell cycle arrest, cell death, mutation, and

alteration in genomic dynamics.

We noticed some degeneration of the flagellar components of spermatids through

spermiogenesis, such as axonemal and mitochondrial degeneration. Axonemal degeneration

affects sperm motility, which is based on the movement of axonemal microtubules [88].
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Mitochondrial degeneration leads to disruption of ATP supply, thus affecting sperm motility

[87, 89, 90]. The presence of double tail spermatids was also observed in this study, which may

be attributed to the persistence of cytoplasmic bridges that connect the cells throughout sper-

matogenesis [91]. Agglutinated spermatids and spermatozoa were obvious phenomena recog-

nized in our preparations. This phenomenon results from the coating of antibodies to the

sperms, driving them to clump together, and consequently reducing their motility [92].

The presence of dense vesicles and vacuoles in the cytoplasm was another pathological fea-

ture in our electron micrographs. High levels of heavy metals can be sequestered as dense vesi-

cles of the lysosomal system [93]. Also, the continuous release of lysosomal hydrolase may

result in vacuolated areas in the cytoplasm [94].

The function of the parietal cells in insects is similar to the function of Sertoli cells in mam-

mals, which are being responsible for the nourishment of sperm and phagocytosis of the resid-

ual cytoplasm [35, 95]. Hence, the ultrastructure anomalies which were observed in these cells

in the polluted group will affect sperm nourishment and lead to the presence of residual cyto-

plasm. Due the paucity of existing data, our studies have advanced our understanding of the

effect of heavy metals on insect spermatogenesis [14, 35].

Finally, heavy metals sequester in particular compartments, such as the nucleus, mitochon-

dria, and ER, which leads to cellular damage associated with changes in gene expression and

DNA damage. Thus, P. latreillei is a good biomonitoring insect for evaluating heavy metal

toxicity.

5. Conclusion

Humans benefit from ground beetles because they are active decomposers, recycling and

removing feces. They also play a critical role as nutrient recyclers, returning organic matter to

the soil via multitrophic interactions. Because they are long-lived and maintain a stable popu-

lation, they are used in biomonitoring programs to monitor adverse environmental condi-

tions. Genotoxic compounds are found in urban areas featuring industrial activities. Heavy

metals are one of the possible genotoxic agents that may induce DNA and protein damage as

well as ultrastructure anomalies in testicular cells. These aberrations can affect testicular func-

tions. This study advocates a need for proper measures to be taken to lessen increasing envi-

ronmental pollution in the urban industrial areas.
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