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Abstract

Chicken is widely favored by consumers because of some unique features. The leg muscles

occupy an important position in the market. However, the specific mechanism for regulating

muscle growth speed is not clear. In this experiment, we used Jinghai yellow chickens with

different body weights at 300 days as research subjects. The chickens were divided into

fast- and slow-growing groups, and we collected leg muscles after slaughtering for use in

RNA-seq. After comparing the two groups, 87 differentially expressed genes (DEGs) were

identified (fold change� 2 and FDR < 0.05). The fast-growing group had 42 up-regulated

genes and 45 down-regulated genes among these DEGs compared to the slow-growing

group. Six items were significantly enriched in the biological process: embryo development

ending in birth or egg hatching, chordate embryonic development, embryonic skeletal sys-

tem development, and embryo development as well as responses to ketones and the sulfur

compound biosynthetic process. Two significantly enriched pathways were found in the

KEGG pathway analysis (P-value < 0.05): the insulin signaling pathway and the adipocyto-

kine signaling pathway. This study provides a theoretical basis for the molecular mechanism

of chicken growth and for improving the production of Jinghai yellow chicken.

Introduction

Chicken is widely favored by consumers because of its delicate meat quality, delicious taste

and rich nutrition as well as the ease of cooking. The demand for chicken is increasing in

recent years. However, the mechanism for regulating the growth of chicken is not clear.

Chicken growth traits are controlled by multiple genes and some genes were also shown to be

related to growth, including MSTN [1], MYOD [2], MYOG [3]. Heritability estimates sug-

gested that the genetics of chickens could be improved [4, 5], and the growth rate of broilers

has been also greatly increased in recent decades [6].

Transcriptomics are the basis for gene structure and function research [7]. The complete

set of transcripts is known as a general transcriptome, including protein-coding messenger
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RNA (mRNA) and non-coding RNA [ncRNA: ribosomal RNA (rRNA), transfer RNA (tRNA),

and other ncRNAs [8, 9]. The narrow sense of the transcriptome mainly refers to all mRNA.

Transcriptional sequencing (RNA-seq) has developed rapidly in recent years, which is a tech-

nique for analyzing the transcriptome by deep sequencing technology [10]. The whole tran-

scriptome was detected at the single nucleotide level with the technology. RNA-seq can

analyze the structure and expression level of the transcript, and it becomes an important

means of gene expression and transcriptional analysis [11, 12]. In recent years, RNA-seq has

been widely used in research on livestock and poultry transcriptomes. Woncheoul Park et al.

[13] performed RNA sequencing (RNA-seq) using the kidneys of broiler chickens fed diets

containing three different concentrations of Ca (0.8%, 1.0%, and 1.2%) and they found 128,

141, and 103 DEGs between different concentrations (0.8 and 1.0, 0.8 and 1.2, and 1.0 and

1.2% Ca). Pathak SK et al. [14] collected blood from crossbred and indigenous (desi) piglets

for RNA-seq both on the day of and 4 weeks after vaccination against classical swine fever

(CSF). To investigate goose immune-related genes, Wang et al. [15] performed deep transcrip-

tome and gene expression analyses of spleen samples using paired-end sequencing technology

(Illumina).

The production performance of livestock and poultry reflects the status of animal growth

and development. Generally, the production performance includes two parts: growth perfor-

mance and slaughter performance. The weight of the leg muscle is an important index for

determining the slaughter performance of broilers. In the experiment, we took Jinghai yellow

chickens with different body weights at 300 days as the research subjects. The chickens were

divided into fast- and slow-growing groups (high body weight and low body weight). We

selected leg muscles after slaughtering and used then for RNA-seq. Finally, we screened differ-

entially expressed genes and the corresponding enriched pathways related to growth through a

bioinformatics analysis. The results provide a theoretical foundation for revealing the molecu-

lar mechanism of the growth for chickens and improving the production performance of the

Jinghai yellow chicken.

Materials and methods

Ethics statement

The experiments were fully consistent with the codes made by the Chinese Ministry of Agri-

culture. The animal experiments performed in the study were all evaluated and approved by

the Animal Ethics Committee of Yangzhou University.

Animals and tissues

The chickens used in this study were Jinghai yellow chickens. They were obtained from

Jiangsu Jinghai Poultry Industry Group Co., Ltd. (Nantong City, Jiangsu Province, China).

Chickens were raised on the ground at 0–16 weeks of age and were transferred into cages after

16 weeks. Artificial illumination was used during the whole process. The birds had access to

feed and water ad libitum. Three fast-growing and three slow-growing female chickens with

similar weights at the age of 300 days were selected from the Jinghai yellow chicken popula-

tion. We firstly used the Xylazine Hydrochloride(SIGMA, X-1251) to anesthetize the chickens

according to the amount of 8 mg/kg. When the feathers on both wings and tails fall down and

finally failed to respond to stimuli, it shows that the chickens have been completely anaesthe-

tized. And then they were all sacrificed with bleeding of carotid artery. We recorded the live

weight and leg muscle weight of each chicken for the analysis of significant difference. The leg

muscles were then collected immediately, snap-frozen in liquid nitrogen, and stored at −80˚C

until RNA extraction.
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Total RNA extraction and RNA library preparation

The method of extracting RNA leg muscles was from Xue et al. [16]. RNA degradation and

contamination were monitored on 1% agarose gels. The purity, concentration and integrity of

the RNA were checked using the NanoPhotometer spectrophotometer (IMPLEN, CA, USA),

Qubit RNA Assay kit in Qubit 2.0 Flurometer (Life Technologies, CA, USA) and the RNA

Nano 6000 Assay kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA),

respectively. Sequencing libraries were generated using the NEBNext UltraTM RNA Library

Prep Kit for Illumina (NEB, USA) according to the manufacturer’s recommendations, and

index codes were added to attribute the sequences to each sample. The PCR products were

purified (AMPure XP system, Beckman Coulter, Beverly, USA), and the library quality was

assessed using the Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA).

Clustering and sequencing

Our sequencing project was conducted by the Biomarker Technologies company (http://www.

biomarker.com.cn/). The clustering of the index-coded samples was performed on a cBot

Cluster Generation System using a TruSeq PE Cluster kit v4-cBot-HS (Illumia) according to

the manufacturer’s instructions. After cluster generation, the library preparations were

sequenced on an Illumina Hiseq 2500 platform, and paired-end reads were generated. The

read length is 100bp. Finally, the raw data was uploaded to the NCBI Sequence Read Archive

and the accessions of SRA for the submission is SRP144529.

Statistical analysis

The software SPSS 13.0 was used to analyze the difference in the live weight and leg weight

between the slow- and fast-growing groups. The independent sample’s t test was used to com-

pare means.

Quality control and comparative analysis

The raw data (raw reads) in fastq format were first processed using in-house Perl scripts.

Using this step, clean data (clean reads) were obtained by removing reads containing adapters,

reads containing poly-N and reads of low-quality. At the same time, the Q20, Q30, GC-content

and sequence duplication level of the clean data were calculated. All the downstream analyses

were based on high-quality clean data.

The adaptor sequences and low-quality sequence reads were removed from the data sets.

The raw sequences were transformed into clean reads after data processing. These clean reads

were mapped to the reference genome sequence (Galgal4). Only reads with a perfect match or

one mismatch were analyzed and annotated based on the reference genome. Tophat2 [17, 18]

was used to map the reads to the reference genome.

Differential expression analysis

The quantification of gene expression levels was performed as follows. The gene expression

levels were estimated according to fragments per kilobase of transcript per million fragments

mapped (FPKM) [19]. Differential expression analysis between the two groups was performed

using the DESeq R package [20]. DESeq provides statistical routines for determining differen-

tial expression in digital gene expression data using a model based on the negative binomial

distribution. The genes with an adjusted P-value� 0.05 and a fold change� 2 found by

DESeq were considered differentially expressed. Fold change represents the ratio of the
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expression between the two groups. The resulting P-values were adjusted using Benjamini and

Hochberg’s approach for controlling the false discovery rate.

GO and KEGG pathway enrichment analysis

The Gene Ontology database [21, 22] (GO: http://www.geneontology.org/) is a structured,

standard biological annotation system built in 2000 by an organization (Gene Ontology Con-

sortium), and it aims at establishing a standard vocabulary systematic knowledge of genes and

their products. KEGG [23, 24] (http://www.genome.jp/kegg/) is a database resource for under-

standing high-level functions and utilities of the biological system, including the cell, the

organism and the ecosystem, from molecular-level information, especially large-scale molecu-

lar datasets generated by genome sequencing and other high-throughput experimental tech-

nologies. All the target genes of the differentially expressed mRNA were subjected to Gene

Ontology (GO) and KEGG pathway enrichment analysis by using the DAVID 6.7 Functional

Annotation Tool [25] (http://david.abcc.ncifcrf.gov/).

Verification of RNA-seq results using qRT-PCR

The other 6 Jinghai yellow chickens at the age of 300 days were choosen and divided into two

groups according to their body weight. Collect the leg muscles and extract RNA for verification

of RNA-seq results using qRT-PCR. The total RNA was isolated from the leg muscle tissue of

Jinghai yellow chickens, and mRNA was reverse transcribed into cDNA using the PrimeScript

RT Master Mix (Perfect Real Time) kit (TaKaRa Biotechnology Co Ltd, Dalian, China). The

primers used for quantification in the study were designed using Primer-BLAST on the NCBI

website (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). To avoid the effects of genomic

DNA, primers must be separated by at least one intron in the corresponding gene. In the

study, β-actin was used as the housekeeping gene [16, 26]. The number of replications for each

sample is three. The qPCR was conducted on an Applied Biosystems 7500 real-time PCR sys-

tem (Applied Biosystems) in a total volume of 20 μL with 10 μL of SYBR1 Premix Ex Taq

(2×), 0.4 μL of ROX Reference Dye II (TaKaRa Biotechnology Co Ltd, Dalian, China), 0.4 μL

of each primer (10 μM), 6.8 μL of RNase-free water and 2 μL of cDNA. The cycling parameters

were 95˚C for 30 s, followed by 40 cycles of 95˚C for 5 s and 60˚C for 34 s. Melting curve analy-

ses were performed following the amplifications. The quantification of gene expression was

performed using the comparative threshold cycle (2−ΔΔCT) method [27].

Results

Comparison of the live weight and leg muscle weight between the two

groups

The least squares mean between the slow- and fast-growing groups selected for RNA sequenc-

ing are presented in Table 1. Chickens in the fast-growing group had a higher live weight than

Table 1. Analysis of differences between the two groups.

Traits Low weight High weight

Live weight(g) 1353.33±14.53A 2553.33±97.31B

Leg muscle weight(g) 94.27±2.27a 182.73±10.74b

Note: Means in the same row with different lowercase letters indicate significant differences (P < 0.05), with

different capital letters also indicating significant differences (P < 0.01).

https://doi.org/10.1371/journal.pone.0206131.t001
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those in the slow-growing group (P = 0.000< 0.001). A significant difference

(P = 0.012< 0.05) in leg muscle weight between the two groups was also found.

Sequencing data and quality control

After the transcriptional analysis of the 6 samples, 30.78Gb clean data was obtained by the

quality control. The clean data from each sample reached 4.52Gb, the GC content reached

between 52.17% to 53.68%, and the percentage of Q30 base in each sample was greater than

80.09% (Table 2). The above results indicate that the data could be used for further analysis.

Comparative analysis

The comparison efficiency of the total reads compared to the reference genome of the 6 sam-

ples was between 72.50% and 74.42%, and the percentage of reads compared to the only loca-

tion of the reference genome was 69.59% to 72.16% (Table 3) in the clean reads. This indicated

that the results were reliable. In the successfully compared reads, 68.68% to 70.15% were in

exon, 10.01% to 10.59% were in introns, and 19.65% to 20.99% were intergenic. In theory, the

reads from the mature mRNA should map to the exons, but this was not the reality. We

thought that reads mapping to the intron may be due to the mRNA precursors and the intron

reservations with variable shear. This result could also map to the intergenic region because

the genome annotation is not perfect.

Table 2. Sequencing data.

Samples Clean reads Clean bases GC Content %�Q30

T1 25,684,671 5,187,451,860 52.17% 80.15%

T2 27,925,040 5,639,352,036 53.68% 80.30%

T3 23,379,518 4,721,718,610 52.55% 80.09%

T4 22,362,504 4,516,161,206 53.60% 81.13%

T5 27,526,111 5,559,154,066 52.38% 80.24%

T6 25,524,976 5,154,259,598 53.02% 81.29%

Note: Clean reads: total number of pair-end reads in the clean data; Clean bases: total number of bases in the clean data; GC content: percentage of G and C bases in the

clean data; %� Q30: the percentage of Q30 base.

https://doi.org/10.1371/journal.pone.0206131.t002

Table 3. Comparison results.

Sample Total Reads Mapped Reads Uniq Mapped Reads Multiple Mapped Reads Reads Mapped to ‘+’ Reads Mapped to ‘-‘

T1 51,369,342 37,735,076 (73.46%) 36,331,091 (70.73%) 1,403,985 (2.73%) 18,795,619 (36.59%) 18,654,167 (36.31%)

T2 55,850,080 40,489,093 (72.50%) 38,865,457 (69.59%) 1,623,636 (2.91%) 20,142,523 (36.07%) 20,014,964 (35.84%)

T3 46,759,036 34,530,849 (73.85%) 33,188,302 (70.98%) 1,342,547 (2.87%) 17,206,777 (36.80%) 17,085,774 (36.54%)

T4 44,725,008 32,646,136 (72.99%) 31,635,623 (70.73%) 1,010,513 (2.26%) 16,263,304 (36.36%) 16,153,912 (36.12%)

T5 55,052,222 40,970,657 (74.42%) 39,726,232 (72.16%) 1,244,425 (2.26%) 20,439,448 (37.13%) 20,286,215 (36.85%)

T6 51,049,952 37,953,225 (74.35%) 36,622,732 (71.74%) 1,330,493 (2.61%) 18,885,017 (36.99%) 18,787,799 (36.80%)

Note: Total Reads: the number of single-end reads in the clean data; Mapped Reads: the number of reads on the reference genome and the percentage of mapped reads

in the clean reads; Uniq Mapped Reads: the number of reads compared to the only location of the reference genome and the percentage of clean reads; Multiple Map

Reads: the number of reads compared to the multiple locations of the reference genome and the percentage of multiple map reads in the clean reads; Reads Map to ‘+’:

the number of reads compared to the positive-strand and the percentage of clean reads. Reads Map to Reads Map to ‘-‘: the number of reads compared to the negative-

strand and the percentage of clean reads.

https://doi.org/10.1371/journal.pone.0206131.t003
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Differentially expressed genes

A total of 87 differentially expressed genes (DEGs) were identified by comparing the gene

expression between the two groups (fold change, FC� 2 and False Discovery Rate, FDR <

0.05). Compared to the slow-growing group (T1, T2, T3), the fast-growing group (T4, T5, T6)

had 42 up-regulated genes and 45 down-regulated genes among these DEGs. Using a volcanic

map (volcano plot), we can see the difference in gene expression level between the two groups

and the statistical significance of the difference (Fig 1). Using the MA diagram (Fig 2), the

expression level of the two groups and the overall distribution of the difference multiplier can

be visually examined. A hierarchical cluster analysis was applied to the DEGs. We calculated

the distance between the samples using the expression of different genes in each sample and

determined the correlation between the samples. It was found that the same group of differen-

tially expressed genes were clustered in the same cluster (Fig 3), which illustrated the accuracy

and reliability of samples.

GO enrichment and KEGG pathway analysis for DEGs

The DEGs were categorized into three main GO categories: biological process, cellular compo-

nent, and molecular function. Among the 87 DEGs, 76 genes were annotated. In the biological

process, the DEGs were significantly enriched in 6 items, and the number of enriched genes in the

items was 7, 6, 4, 3, 7 and 3. The enriched genes and the name of each item are shown in Table 4.

The KEGG pathways of the differentially expressed genes are shown in Fig 4. The figure

shows the first 20 pathways with the smallest P-values. Only two signaling pathways were sig-

nificantly enriched (P-value < 0.05): the insulin signaling pathway and the adipocytokine sig-

naling pathway (Table 5). Four genes were enriched in the insulin signaling pathway, and the

adipocytokine signaling pathway was enriched in three genes.

Fig 1. Volcano plot.

https://doi.org/10.1371/journal.pone.0206131.g001
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Validation of DEGs by qRT-PCR

In our study, the expression of DEGs between the two groups was verified using quantitative

real-time PCR (qRT-PCR). Nine DEGs obtained from RNA-seq were randomly selected for

validation: AGPAT9, TP53TG5, WNT9A, PPRC1, MSTN, VGLL2, IRS2, PRKAA2 and ASB5.

The results (Fig 5) showed that the expression trend of the DEGs between the fast- and slow-

growing groups is consistent in qRT-PCR results, and this attests to the reliability of the

sequencing data.

Discussion

Chicken is widely purchased by consumers in the market because of its unique flavor and rela-

tively reasonable price. The share of chicken in the market has also increased largely in recent

years [28, 29]. Although some genes related to growth have been discovered, the specific mech-

anisms for growth and development are still unclear. In our study, RNA-seq in chickens with

different growth rates was carried out. A total of 87 differentially expressed genes (DEGs) were

identified by comparing the gene expression between the fast- and slow-growing groups.

Many of the DEGs selected in the study are known for their impact on growth, development

and meat quality, including MSTN, VGLL2, MYH1D, MYH1E, PRKAG3, and IRS2.

As a regulator of skeletal muscle growth, MSTN plays a key role in negatively regulating the

growth and development of skeletal muscle and influencing the strength and quality of mus-

cles [30–32]. In prior studies, researchers showed that Ross birds were significantly larger than

the Illinois birds at all time-points from post-hatch day 7 to post-hatch day 35, and the differ-

ence was even more pronounced when the breast muscle mass was compared [33]. In the next

study, MSTN expression was strongly detected in Illinois birds compared to the Ross birds at

21 days post-hatch in the breast muscle [34]. In this study, higher expression of the MSTN

Fig 2. MA plot.

https://doi.org/10.1371/journal.pone.0206131.g002
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gene was detected in the slow-growing chicken group, and this was consistent with previous

research studies of the gene function. In Drosophila, the nuclear protein Vestigial plays a cru-

cial role in the development and patterning of the wing [35, 36]. Previous reports showed that

one of the members of the Vestigial-like factors, VGLL2, can activate the TEAD family of tran-

scription factors by physical interaction in in vitro assays [37]. Honda M et al. [38] further con-

firmed that VGLL2 formed a complex with TEAD1/4, which regulates the expression of

muscle-specific genes in neonatal mouse muscle. A study showed that VGLL2 might act down-

stream of MyoD activation and is associated with skeletal muscle differentiation in chick

Fig 3. Cluster analysis of DEGs.

https://doi.org/10.1371/journal.pone.0206131.g003
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myogenesis [39]. In this study, the transcriptome data showed that the expression level of the

VGLL2 gene in the fast-growing chicken group was significantly higher than in the slow-grow-

ing group. This result indicated that the gene might have a positive effect on growth in

chickens.

In recent years, with the progress of breeding, the growth rate of poultry has been signifi-

cantly improved, but the meat quality has declined. The reason for the result may be that the

selection of breeding will change the properties of muscle fiber, which is closely related to

meat quality [40, 41]. Myosin heavy chain (MYH) isoforms are mainly expressed in the skeletal

muscle of mammals and could define types of muscle fiber [42, 43]. Zuo et al. [44] found that

the overexpression of miR-143 ultimately acts on the MYHC7 gene and controls the formation

of slow fibers in swine. MYH1, an MYH family isoform, is found to be involved in the metabo-

lism and development of skeletal muscle [45]. MYH1D and MYH1E, which are similar to the

MYH1, were found to be significantly differentially expressed in the two groups. It could be

inferred that the two genes influence the growth and development of the chicken by regulating

the formation of different muscle fiber types. Previous studies showed that PRKAG3 was also

related to meat quality [46, 47]. Shu et al. [48] found that PRKAG3 expression levels were sig-

nificantly higher in glycolytic skeletal muscle than in oxidative skeletal muscle by transcrip-

tome sequencing, but a higher content of oxidative (red) fibers in muscles can result in higher

meat quality [49]. This suggested that high expression of the PRKAG3 gene may decrease meat

quality. In this study, higher expression of the PRKAG3 gene was detected in the slow-growing

chicken group; therefore, we deduced that the flavor of fast-growing chicken may be better

than that of slow-growing chicken. According to traditional views, the growth-rate may be

negatively correlated with meat quality. However the quality of meat is also related to species

and environmental factors. Therefore, the actual quality of meat needs further study.

Many reports revealed that insulin resistance was associated with obesity both in animals

and humans [50, 51]. The expression of the insulin receptor substrate 2 (IRS2) gene could alle-

viate insulin resistance [52]. Compared to the slow-growing group, higher expression of the

IRS2 gene was detected in the fast-growing group in this study. To stay healthy and prevent

insulin resistance, fast-growing chickens with more fat might increase the expression of the

IRS2 gene using its own regulatory system.

The results of broiler breeding could increase growth rate and appetite and were also

accompanied by excessive deposition of fat [53, 54]. Studies on FAM134B are mainly associ-

ated with disease, especially cancer [55–57]. There are also some studies on fat deposition

from FAM134B in pigs [58, 59]. Yuan et al. [60] found that FAM134B mRNA levels in the sub-

cutaneous fat were significantly higher in Jinhua pigs (a slow-growing breed) than those in

Landrace pigs (a fast-growing breed) at 90 d. However, the result in this study was contrary to

the previous study in pigs, which might be due to using different tissues and species. The

AGPAT9 gene was also involved in the metabolism of fat [61, 62]. The expression of AGPA9

had the highest abundance in adipocytes compared to other tissues in female chickens [63]. In

Table 4. Significantly enriched biological process terms.

Term ID Term Count P-Value Genes

GO:0009792 embryo development ending in birth or egg hatching 7 0.001055 NLE1, WNT9A, KIAA1217, SLC35D1, SHROOM3, EYA1, MSTN

GO:0043009 chordate embryonic development 6 0.005054 NLE1, WNT9A,KIAA1217, SLC35D1, SHROOM3, EYA1

GO:0048706 embryonic skeletal system development 4 0.008883 WNT9A, KIAA1217, SLC35D1, EYA1

GO:1901654 response to ketone 3 0.027751 ABHD2, PPKAA2, MSTN

GO:0009790 embryo development 7 0.038256 NLE1, WNT9A, KIAA1217, SLC35D1, SHROOM3, EYA1, MSTN

GO:0044272 sulfur compound biosynthetic process 3 0.039303 GCLM, SLC35D1, HS3ST5

https://doi.org/10.1371/journal.pone.0206131.t004

RNA-seq of chicken leg muscles

PLOS ONE | https://doi.org/10.1371/journal.pone.0206131 November 7, 2018 9 / 17

https://doi.org/10.1371/journal.pone.0206131.t004
https://doi.org/10.1371/journal.pone.0206131


Fig 4. Top 20 genes of pathway enrichment.

https://doi.org/10.1371/journal.pone.0206131.g004

Table 5. Significantly enriched pathway.

Term Count P-Value Genes

gga04910:Insulin signaling

pathway

4 0.021645 SH2B adaptor protein 2(SH2B2); protein kinase, AMP-activated, alpha 2 catalytic subunit(PRKAA2); protein kinase,

AMP-activated, gamma 3 non-catalytic subunit(PRKAG3); insulin receptor substrate 2(IRS2).

gga04920:

Adipocytokine signaling

pathway

3 0.04416 protein kinase, AMP-activated, alpha 2 catalytic subunit(PRKAA2); protein kinase, AMP-activated, gamma 3 non-

catalytic subunit(PRKAG3); insulin receptor substrate 2(IRS2)

https://doi.org/10.1371/journal.pone.0206131.t005
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another study, chicks were fed (continuous ad libitum access to food), fasted (3 h food with-

drawal), or refed (fasted for 3 h and refed for 1 h) before measuring the expression of the

AGPAT9 gene. The results showed that the mRNA level of AGPAT9 was higher in the subcu-

taneous adipose tissue of fed chickens compared to fasted or refed chicks (P< 0.05). It was

also greater in fed than refed chicks (P < 0.05) in abdominal adipose tissue [64]. In this experi-

ment, the expression of AGPAT9 was significantly lower in the slow-growing group, which

suggests that the fast-growing chickens might have a high fat content. As is known to all that

high growth rate of animals generally results from a high appetite which could lead to fat depo-

sition [65].

Fig 5. Expression level of nine DEGs detected by RNA-seq and qRT-PCR.

https://doi.org/10.1371/journal.pone.0206131.g005
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The growth of chickens is controlled by multiple genes through biological processes and

different regulatory pathways. GO analysis showed that the DEGs were significantly enriched

in embryo development ending in birth or egg hatching, chordate embryonic development,

embryonic skeletal system development, tissue development, embryo development, tissue

development and response to ketone in terms of biological processes. The KEGG pathway

enrichment results showed that the first several pathways that were the most reliable were

all related to growth and development. These were the insulin signaling pathway, adipo-

cytokine signaling pathway, insulin resistance, FoxO signaling pathway, tight junction and

metabolic pathways. However, only the first two pathways were significantly enriched

(P< 0.05).

The insulin-signaling pathway was demonstrated to be involved in translation initiation,

and the efficiency of the translation process directly affects the rate of protein synthesis [16].

Insulin, as an important member of the insulin signaling pathway, is the major regulator of the

fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy stor-

age, and activating protein synthesis. In addition to its glucose and other metabolic properties,

insulin can also stimulate cell [66, 67] and neuronal growth [68, 69]. The insulin signaling

pathway was the most significantly enriched in the study, which suggested that substrate

metabolism, activating protein synthesis and cell growth differed between the slow- and fast-

growing groups. Another significantly enriched pathway was the adipocytokine signaling

pathway. Adipocytokines are a type of cytokines synthesized and secreted by adipocytes, and

they have a regulatory effect on inflammation, insulin sensitivity, and endothelial function [70,

71]. Three pathways, including the adipocytokine signaling pathway, were found to be signifi-

cantly enriched (P < 0.05) for the targets of novel-mir-14 in the research of breast muscle in

the Pekin duck [72].

Although the insulin resistance, FoxO signaling pathway, tight junction and metabolic

pathways were not significantly enriched, we still thought that they played a decisive role in

the different phenotypes of fast- and slow-growing chickens. Type 2 diabetes mellitus (T2DM)

is characterized by impaired glucose intolerance and insulin resistance [72]. It is also well-

known that lipid metabolism disorder is associated with development of insulin resistance and

T2DM [73]. Obesity is characterized by insulin resistance and chronic low-grade inflamma-

tion [50]. FOXO3, which was found to participate in regulating the insulin and the IGF1 sig-

naling pathway, played an important role in growth [74]. The FOXO family of proteins

regulates atrophy, and insulin prevents cardiac muscle atrophy by inhibiting FOXO through a

PKB/Akt-dependent pathway [51]. Six DEGs are involved in the FoxO signaling pathway in

the RNA-seq of broiler chicken kidneys [13]. The insulin signaling pathway, adipocytokine

signaling pathway, FoxO signaling pathway and tight junctions were also shown to be signifi-

cantly enriched by Gao et al. [75] in chicken myocardial cells. In the KEGG analysis, Xue et al.

[16] also identified pathways related to growth, namely, tight junction and insulin signaling

pathways, of which the insulin signaling pathway was the most significantly enriched.

Conclusions

This study systematically reveals the differentially expressed genes, significantly enriched items

and KEGG pathways between fast- and slow-growing chickens, which could play an important

role in the regulation of development in the chicken. The results further expand our under-

standing of the genes and their pathways associated with growth in the chicken. The experi-

mental data provide a theoretical basis for improving the production performance of the

Jinghai yellow chicken. It also provides reference data for revealing the molecular mechanisms

of chicken growth.
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