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Abstract

Induced pluripotent stem cells (iPSCs) are a powerful modeling sys-
tem for medical discovery and translational research. To date,
most studies have focused on the potential for iPSCs for regenera-
tive medicine, drug discovery, and disease modeling. However,
iPSCs are also a powerful modeling system to investigate the
effects of environmental exposure on the cardiovascular system.
With the emergence of e-cigarettes, air pollution, marijuana use,
opioids, and microplastics as novel cardiovascular risk factors,
iPSCs have the potential for elucidating the effects of these toxins
on the body using conventional two-dimensional (2D) arrays and
more advanced tissue engineering approaches with organoid and
other three-dimensional (3D) models. The effects of these environ-
mental factors may be enhanced by genetic polymorphisms that
make some individuals more susceptible to the effects of toxins.
iPSC disease modeling may reveal important gene–environment
interactions that exacerbate cardiovascular disease and predispose
some individuals to adverse outcomes. Thus, iPSCs and gene-
editing techniques could play a pivotal role in elucidating the
mechanisms of gene–environment interactions and understanding
individual variability in susceptibility to environmental effects.
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Introduction

The discovery of induced pluripotent stem cells (iPSCs) has trans-

formed the field of stem cell biology and regenerative medicine (Yu

et al, 2007). Induced pluripotent stem cells (iPSCs) and embryonic

stem cells (ESCs) are both pluripotent stem cells (PSCs) capable of

self-renewal and differentiation into any tissue lineage. Tissues

derived from ESCs and iPSCs are largely similar from molecular and

functional perspectives (Zhao et al, 2017). However, the use of

iPSCs avoids the ethical problems associated with using ESCs, and

iPSCs can be obtained readily from a blood sample to isolate periph-

eral blood mononuclear cells (PBMCs) or tissue samples with

fibroblasts. Adult human somatic cells are reprogramed into stem

cells via transferring somatic nuclear material into oocytes, followed

by cell fusion, and genetic integration of somatic cell chromatin.

The development of viral transduction and overexpression of the

Yamanaka factors (octamer-binding protein 3/4 (OCT 3/4; also

known as POU5F1), SRY (sex-determining region Y)-box 2 (SOX2),

Kr€uppel-like factor 4 (KLF4), and Myc proto-oncogene protein (c-

MYC)) was a revolutionary innovation (Takahashi & Yama-

naka, 2006; Takahashi et al, 2007; Yu et al, 2007). iPSCs can be dif-

ferentiated into any tissue cell type using a cocktail of recombinant

protein factors and small-molecule inhibitors, allowing the use of

cardiovascular tissue for regenerative medicine, disease modeling,

and drug discovery (Obal & Wu, 2020; Paik et al, 2020). While the

financial cost and time required for reprogramming, generating,

biobanking, and differentiation are high, iPSCs are a more accurate

model of human disease than traditional mammalian cell culture

and animal models. Leveraging individual genetic information and

recent advances in gene editing (Nishiga et al, 2022), iPSCs are

proving critical to understanding the molecular mechanisms of

human disease and advancing the goals of precision medicine. In

addition, with the diverse genetic backgrounds of individuals, a

large cohort of iPSC lines has the potential to capture the hetero-

geneity of disease and drug treatments, which can help us discover

the toxic effects of drugs and environmental exposures (Fig 1).
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Regenerative medicine

Despite great advances in percutaneous coronary intervention and

medical management, cardiovascular disease remains the world’s

leading cause of death, with associated long-term complications that

include malignant arrhythmias and pump failure. iPSCs are a limit-

less source of tissue that are autologous, and their use helps avoid

the need for immunosuppression (Lu et al, 2013). Despite their ini-

tial promise and great enthusiasm, preclinical studies have shown

varying and sometimes disparate results for improving cardiac func-

tion, vasculogenesis, and reducing apoptosis (Nelson et al, 2009;

Kawamura et al, 2012; Templin et al, 2012). Although clinical

results from adult stem cells have been mixed, there are now several

trials focusing on using human ESC- or iPSC-based cardiovascular

therapies (Neofytou et al, 2015).

Drug and toxicity screening

Because they contain an individual’s unique genetic makeup,

iPSCs are proving to be a powerful platform to discern the bene-

ficial and adverse effects of drugs. Historically, animal models

and cell culture systems have provided preclinical safety data for

new drugs, and treatments and clinical trials are used to deter-

mine safety and efficacy in large heterogeneous populations.

While sufficient for most individuals, this approach does not

capture the precise cost-to-benefit ratio for each person. Cur-

rently, iPSCs are expensive and require months to generate.

However, once created, iPSCs can be differentiated into any tis-

sue type and provide a limitless supply of tissue for drug and

toxicity testing. For example, iPSC-cardiomyocytes (iPSC-CMs)

can be used to investigate the effects of new antiarrhythmic

drugs or caffeine (Luo et al, 2021). iPSC-derived tissue can

advance personalized medicine because they are derived from a

single individual, making it feasible to predict which treatments

are safe and effective for the individual with an enormous

potential for achieving the goals of personalized medicine (Lau

et al, 2019).

Disease modeling

Traditional methods of studying human diseases using animal mod-

els or patient-derived tissue samples have been valuable, but many

findings nevertheless do not translate to the clinic. Animal models

do not always faithfully recapitulate the physiology of human dis-

ease, and because of interspecies variation, discoveries based on

animal findings may not reflect the human pathophysiology (Matsa

& Denning, 2012). Patient-derived tissue is difficult to acquire and

limited in quantity, and lacks longevity in cell culture (Beqqali

et al, 2009). Immortalized cell culture models are complicated by

genes that facilitate long-term culture, and may also disrupt the

transcriptome and cell function without reflecting patient-specific

genetic information. Derived from terminally differentiated cells,

iPSCs provide an exciting new model that has the potential to trans-

form basic science and precision medicine.

iPSCs can be differentiated into any tissue type, including car-

diomyocytes, smooth muscle cells, endothelial cells, and fibroblasts.

They can be used to identify genes responsible for a disease or be

modified by environmental factors in a dish. Gene-editing tools,

such as TALENS, CRISPR-Cas9, CRISPR-I, and CRISPR-A, can facili-

tate the discovery of molecular mechanisms of a disease (Hsu et al,

2014; Karakikes et al, 2017; Ma et al, 2018; Nishiga et al, 2022). By

uncovering novel disease mechanisms, iPSC-derived tissue is

expected to identify novel disease-specific biomarkers and druggable

targets for therapies which may eventually translate into new clini-

cal tools for diagnosis and treatment. Novel disease-specific

biomarkers have the potential to expedite the diagnosis of diseases

and facilitate disease management by monitoring response to ther-

apy. iPSCs are also a powerful tool for mechanistic studies that can

identify novel drug targets, which are needed to change the scope

and dimension of cardiovascular care (Fig 1).

Glossary

AHA American Heart Association
BDNF Brain-derived neurotrophic factor
CB1 Cannabinoid receptor 1
CB2 Cannabinoid receptor 2
CRISPR/Cas9 Clustered Regulatory Interspaced Short Palindromic

Repeats/Cas9 system
CRISPRi Clustered Regulatory Interspaced Short Palindromic

Repeats Interference
CRISPRa Clustered Regulatory Interspaced Short Palindromic

Repeats Activation
CV Cardiovascular
DCM Dilated cardiomyopathy
EGFR Epithelial growth factor receptor
EHT Engineered heart tissue
ENDS Electronic nicotine delivery systems
EVALI e-cigarette or vaping use associated lung injury
FDA Food and Drug Administration
GABA c-aminobutyric-acid
GDNF Glial cell-derived neurotrophic factor
GPCR G-protein coupled receptor
HCM Hypertrophic cardiomyopathy

hERG Human Ether-�a-go-go-Related Gene
iKR Inward-rectifier potassium channels
iPSC Induced pluripotent stem cell
iPSC-CM iPSC-derived cardiomyocyte
iPSC-EC iPSC-derived endothelial cell
iPSC-NC iPSC-derived neuronal cell
iPSC-SN iPSC-derived sensory neuron
HTS High-throughput screening
KLF4 Kr€uppel-like factor 4
MEA Multi-electrode array
c-MYC Myc proto-oncogene protein
OSKM Oct2/4, Sox2, Klf4, c-Myc
PBMC Peripheral blood mononuclear cells
PDCD4 Programmed cell death protein 4
PGC-1 Peroxisome proliferator-activated receptor c-

coactivator-1
SCD Sudden cardiac death
scRNA-seq Single-cell RNA sequencing
SRY sex determining region Y
SOX2 TALEN sex determining region Y box 2
TRP Transcription Activator-Like Effector Nucleases
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Patient-specific iPSCs are a limitless source of cardiovascular tis-

sue that have been instrumental in breakthrough studies on the

mechanisms of cardiovascular disease such as dilated cardiomyopa-

thy (DCM; Sun et al, 2012), hypertrophic cardiomyopathy (HCM;

Lan et al, 2013), arrhythmogenic right ventricular cardiomyopathy

(ARVC; Kim et al, 2013; Asimaki et al, 2014), left ventricular non-

compaction (LVNC; Kodo et al, 2016), and LEOPARD syndrome

(Carvajal-Vergara et al, 2010). Imbued with an individual’s genetic

information, iPSCs are ideally suited for precision medicine

(Grskovic et al, 2011) and will usher in a new era of biomarkers and

therapies for cardiovascular disease. Simultaneously, iPSC-derived

tissues are an excellent platform to evaluate the effects of drugs, tox-

ins, and environmental exposures (Sayed et al, 2016; Lee

et al, 2019). Advances in tissue engineering have allowed for the

use of more complex iPSC models such as organoids or engineered

heart tissue, which are expected to elucidate interactions between

different tissues and cells that contribute to disease pathophysiology

(Kim et al, 2022).

Besides these applications, a central question is whether iPSCs

can be used to study the impact of the environment on cardiovascu-

lar disease in this model. Murine embryonic stem cells have been

used to study the effects of environmental toxins (Czyz et al, 2004a;

Czyz et al, 2004b; Nikolova et al, 2005). The present review exami-

nes the advantages and challenges associated with the use of IPSCs

in environmental cardiology.

Environmental cardiology

The environment is emerging as a significant risk factor for cardio-

vascular disease (Bhatnagar, 2017). However, the effects of environ-

mental toxins from natural or man-made sources remain unclear
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Figure 1. Applications for induced pluripotent stem cells (iPSCs) include disease modeling, drug screening, regenerative medicine, and toxicity profiling.

(A) From a single blood draw, peripheral blood mononuclear cells (PBMCs) are isolated and reprogrammed into iPSCs via viral transduction and overexpression of the
Yamanaka factors (octamer-binding protein 3/4 (OCT 3/4; also known as POU5F1), SRY (sex determining region Y)-box 2 (SOX2), Kr€uppel-like factor 4 (KLF4), and Myc
proto-oncogene protein (c-MYC); Takahashi & Yamanaka, 2006; Takahashi et al, 2007; Yu et al, 2007). (B) iPSCs contain an individual’s genetic information, and disease
modeling offers the unique opportunity to understand patient-specific disease mechanisms that might lead to novel biomarkers and therapies. (C) Drug screening tradi-
tionally has difficulty translating from small animal and cell culture models to the clinic. iPSCs contain the genetic code of individuals and can be differentiated into any
cell type allowing the determination of safety, efficacy, and possibly patient-specific responses in a dish. (D) Regenerative medicine involves iPSCs and cell-free therapy
with exosomes derived from iPSCs. (E) iPSCs are also ideally suited to testing for the effects of toxins on the different tissue beds and identifying patient-specific factors
that predispose to toxicity.
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especially in the long term. Despite attempts to curb global warm-

ing, industrial pollution, and encroachment into natural habitats,

humans are continuously exposed to environmental toxins such as

particulate matter less than 2.5 micrometers in size (PM2.5; Rajago-

palan et al, 2020). After years of declining tobacco use, the rise of e-

cigarettes threatens to renew cardiopulmonary disease. The legaliza-

tion of marijuana has made cannabinoids more accessible around

the world, but the long-term effects of marijuana on the cardiovas-

cular system remain unclear. A recent study revealed that the psy-

choactive component of marijuana delta9-tetrahydrocannabinol (D9-

THC) causes vascular inflammation, oxidative stress in iPSC-derived

endothelial cells, and atherosclerosis in mouse models (Wei

et al, 2022). Once mislabeled as being non-addictive, the conse-

quences of chronic marijuana and opioid consumption are now

manifesting in adverse cardiovascular outcomes (Jalali et al, 2021;

Rohani et al, 2021). The haphazard use of opioids revealed that a

class of medications thought to be powerful tools in preventing pain

rapidly became a new environmental hazard affecting some 4% of

the U.S. population (Skolnick, 2018). Human iPSCs are a powerful

model system to study the toxic effects of these different compounds

on the human body (Fig 2).

Air pollution

The link between air pollution and cardiovascular disease has been

described in epidemiological research (Brook et al, 2004; Kim

et al, 2020a; Kim et al, 2020b; Kim et al, 2020c). About 91% of the

world’s population inhabits areas with poor air quality that exceeds

the World Health Organization (WHO) safety limits, and air pollu-

tion is estimated to contribute to over 7 million deaths per year, or 1

in 9 deaths worldwide (Seaton et al, 1995; Stieb et al, 2002;

Venkatesan, 2016). Fossil fuels are an abundant source of not only

particulate matter but also carbon dioxide. Climate change mediated

by carbon dioxide can lead to drought and wildfires that also exacer-

bate human exposure to particulate matter. The mega-fire event

experienced in California culminated in a giga-fire in the fall of 2020

and led to vast amounts of particulate matter transforming the sky

into a Mars-like landscape, a spectacle that is now repeated world-

wide. The long-term effects of this exposure might not be evident in

epidemiological studies for decades.

PM2.5 are capable of traversing through the lungs and entering

the circulatory system. Thus, PM2.5 is thought to have adverse

effects on the cardiovascular system. Studies in animal models and

cell culture suggest that PM2.5 can enter the circulation and has the

potential to cause adverse effects on the cardiovascular system

(Hoek et al, 2013; Feng et al, 2016). iPSC disease modeling can be

used to uncover the toxicities of particulate matter on the body and

elucidate the mechanisms of their effects. After exposure to PM2.5,

iPSC-CMs were found to have increased arrhythmias due to upregu-

lation of TRM3 (Cai et al, 2020). This may account for the increased

incidence of sudden cardiac death associated with wildfires (Jones

et al, 2020). Using iPSC-derived tissue, investigators may be able to

assess the effects of particulate matter on different tissues. The dis-

coveries may inform policymakers and regulatory agencies to craft

decisions and laws limiting exposure to PM2.5. The continuing

advances in iPSC-based drug discovery promise to an era of novel

therapies for cardiovascular disease.

E-cigarettes

Smoking has long been associated with lung disease and cancer,

and is also a major cause of the cardiovascular disease (CVD), the

leading cause of death worldwide (Ambrose & Barua, 2004; Munzel

et al, 2020). Despite its deleterious effects, tobacco is consumed by

933 million people worldwide (Collaborators, 2017). While tobacco

use in developed nations has dramatically improved over the past

50 years, new tobacco products, such as e-cigarettes, have created a

new generation of tobacco users. Since its introduction in 2007, e-

cigarette use among high school students in the U.S. has prolifer-

ated, with a more than 900% increase from 2011 to 2018. The latest

National Health Interview Survey (NHIS) estimates that 5.5 million

(3.8%) US adults were using e-cigarettes in 2014. Strikingly, over

26.5% of high school students and 15.2% of middle school students

were e-cigarette users (Wang et al, 2021).

The toxicity and mechanisms of traditional cigarette smoke on

the vascular system are well documented, but the effects of e-

cigarettes on the cardiovascular system have not been systemati-

cally studied thus far (Ambrose & Barua, 2004; Johnson et al, 2010;

Polosa & Caponnetto, 2016; Benowitz & Fraiman, 2017). E-cigarettes

are liquid solutions containing propylene glycol, vegetable glycerin,

nicotine, tetrahydrocannabinol (THC), vitamin E acetate, and other

components that are vaporized by heating and inhaled as an

aerosol. As e-cigarettes do not involve combustion, they do not pro-

duce carbon monoxide or some of the other toxins associated with

traditional cigarettes. Initially marketed as a smoking cessation aid,

first-generation e-cigarettes had a low dose of nicotine and fewer

adverse effects, but now e-cigarette and electronic nicotine delivery

systems (ENDS) have evolved to have much higher doses of nico-

tine. For example, a single pod of JuulTM has the equivalent of 20

cigarettes (one pack) worth of nicotine (Wu et al, 2019). The debate

about whether e-cigarettes will provide long-term benefit or harm is

ongoing, with little data on the cardiac and pulmonary effects

(Drummond & Upson, 2014). The emergence of e-cigarette or vaping

use-associated lung injury (EVALI) has further uncovered the

adverse pulmonary effects of e-cigarettes.

Epidemiology studies will likely take years to fully expose the

potential adverse effects of e-cigarettes on the cardiopulmonary sys-

tem, and in the meantime, e-cigarette use has grown dramatically

without rigorous toxicology assessment. While studies in small ani-

mals and in vitro cell culture suggested adverse effects of e-

cigarettes on the cardiopulmonary system, iPSC disease modeling

was the first to identify that e-cigarette flavorants had deleterious

effects on iPSC-derived endothelial cells in vitro (Lee et al, 2019),

helping to steer policymakers in the Food and Drug Administration

(FDA) to recommend a ban on flavorings.

The effects of e-cigarettes on embryonic development remain

unclear. iPSC-derived embryoid bodies contain immature cells and

tissues that are an ideal platform to screen for environmental toxici-

ties. When combined with single-cell sequencing, embryoid bodies

revealed potentially toxic effects of nicotine on embryonic develop-

ment (Guo et al, 2019). A more rigorous and systematic analysis of

the effects of e-cigarettes on the development is needed.

E-cigarettes include many hazardous and potentially hazardous

compounds affecting the cardiopulmonary system. Nicotine has

known adverse cardiovascular effects. Even without combus-

tion, these compounds are toxic but need to be evaluated with a
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high-throughput model that provides information on the toxicology

of these compounds on human tissue. Genetic polymorphisms con-

tribute to the development of vascular disease with traditional cigar-

ette smoking. Investigators from the CARDIoGRAMplusC4D meta-

analysis found that genetic polymorphisms make certain individuals

more susceptible to cardiovascular events (van der Harst & Ver-

weij, 2018; Larsson et al, 2020). iPSC disease modeling and

transcriptomics can be used to uncover single-nucleotide polymor-

phisms (SNPs) that exacerbate cardiovascular disease in the setting

of e-cigarette exposure (Hindy et al, 2018; Levin et al, 2021). In

addition to vascular disease, iPSC disease modeling may provide

insights into gene and environment interactions with e-cigarette

components that cause arrhythmias. Toxicity studies in iPSC-CMs

have revealed that cinnamaldehyde is associated with cardiotoxicity
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Figure 2. iPSCs offer a unique patient-specific model to study the effect of the environment on the human body.

New or unrecognized environmental toxins such as particulate matter 2.5 (PM2.5) from forest fires and industrial pollution, marijuana, e-cigarette, radiation, or toxic
waste exposure might cause adverse effects on the human body. iPSC disease modeling is an opportunity to study the effects of environmental toxins before they result
in end-organ damage or organ failure. iPSCs can be differentiated into organ-specific cells and assembled into fabricated tissues such as engineered heart tissue or differ-
entiated into organoids comprised of organ-specific tissue. Using single-cell RNA sequencing (scRNA-seq), mass spectrometry, and other -omic analysis, iPSC disease
modeling could be leveraged to discover harmful effects of environmental factors before epidemiology studies are available and prevent significant morbidity and mor-
tality. The discovery of druggable targets and pathways might lead to the development of new biomarkers and therapies for disease.
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and altered cardiomyocyte excitability (Nystoriak et al, 2019). More

recently, smoking and e-cigarette exposures were linked to ventricu-

lar repolarization and sudden cardiac death (SCD; Ip et al, 2020).

The cardiotoxic effects of e-cigarettes on channels could increase the

likelihood of sudden cardiac death in individuals with mutations in

ion channels. iPSC disease modeling in conjunction with novel

gene-editing technologies (Nishiga et al, 2022) are being deployed to

uncover the possible causal link and identify individuals who may

be at a greater risk of SCD after e-cigarette exposure, as well as pos-

sibly identify novel antiarrhythmic agents that might prevent these

adverse outcomes.

EVALI underscores the importance of testing e-cigarette devices

before marketing the products to the public. Clinical investigations

using bronchoalveolar lavages indicated that nicotine, D9-

tetrahydrocannabinol (D9-THC), the psychedelic component of mari-

juana, and vitamin E acetate, a component used to emulsify D9-

THC, were linked to EVALI. Studies in mouse models have found

conflicting results, with one study suggesting vitamin E acetate is

the causative agent. A more recent study indicates that the vehicle

vegetable glycerol and propylene glycol might be sufficient to cause

injury (Blount et al, 2019). iPSC-derived lung tissue may be used to

provide a more exhaustive study of the components of e-cigarettes

that cause EVALI.

Marijuana

Associated with EVALI, marijuana is emerging as a new potential

and growing threat to cardiopulmonary health. The most popular

illicit drug in the world is becoming legalized for medicinal and

recreational uses, with rapidly growing rates of marijuana use being

reported with legalization (Cerda et al, 2020). The long-term effects

of marijuana remain unclear because of years of restrictions on

research, but it is implicated in cardiomyopathy, arrhythmias, and

vascular disease from case reports and case series (Pacher

et al, 2018). A recent large epidemiological study suggests that the

odds ratio of marijuana is greater than traditional cigarettes and can

predispose younger patients to premature cardiovascular disease

(DeFilippis et al, 2018; Wei et al, 2022).

With legalization, the use of marijuana will increase and expose

larger segments of the population to its potentially adverse effects

(Pacher & Gao, 2008). Marijuana affects the body via the cannabi-

noid receptor 1 (CB1) and cannabinoid receptor 2 (CB2; Pacher

et al, 2018). CB1 activation is associated with endothelial dysfunc-

tion and atherosclerosis (El-Remessy et al, 2011; Rajesh et al, 2012),

whereas CB2 activation is related to vascular quiescence (Pacher &

Mackie, 2012; Pacher et al, 2018). Marijuana is composed of over a

hundred different cannabinoids. The psychedelic component of mar-

ijuana, D9-THC, is an agonist of the CB1 receptor and causes inflam-

mation and oxidative stress (El-Remessy et al, 2011; Pacher

et al, 2018). iPSC disease modeling and CRISPR-Cas9 gene editing

were used to elucidate the mechanisms D9-THC-mediated vascular

dysfunction (Wei et al, 2022).

D9-THC promotes inflammation and oxidative stress via the CB1

receptor, and the mechanisms have been previously described for

MAP kinase activation and NF-kb pathways. Briefly, CB1 mediates

increased oxidative stress and inflammation implicated in dia-

betic retinopathy, cardiomyopathy, and endothelial dysfunction

(Mukhopadhyay et al, 2010; Rajesh et al, 2010a; El-Remessy

et al, 2011; Rajesh et al, 2012). CB1 activation occurs via the MAP

kinase pathway, which causes oxidative stress, inflammation, and

cell death in human coronary artery endothelial cells (Liu

et al, 2000; Pertwee et al, 2010; Rajesh et al, 2010b). iPSC disease

modeling could elucidate the mechanisms accounting for why some

individuals are more likely to develop cardiovascular disease or

arrhythmias after using cannabinoids. While these studies in pri-

mary cells are important for understanding mechanisms of cardio-

vascular disease, iPSC disease modeling with vascular cells can also

be used to reveal novel mechanisms that might serve as biomarkers

and lead to novel therapies for the disease. Moreover, patient-

specific polymorphisms may help predict which individuals are

more susceptible to adverse effects of marijuana or smoking or vap-

ing. iPSC disease modeling could uncover polymorphisms that make

an individual more likely to develop cardiovascular disease with

cannabis exposure.

Some recent studies in iPSC-derived neurons suggest that THC

exposure perturbs gene expression profiles and is linked to neuropsy-

chiatric disorders such as schizophrenia (Noh et al, 2017; Guennewig

et al, 2018). iPSC-embryoid body toxicity profiling is likely to reveal

more global adverse effects of cannabinoids with the use of transcrip-

tional profiling. Because it is considered an herbal remedy for nausea

and vomiting, cannabis is often used by pregnant women, and epi-

demiological studies on prenatal exposure to cannabis indicated that

it is associated with psychiatric disorders of offspring (Roncero

et al, 2020). Recent investigations in iPSC-derived neurons have

described neurotoxicity caused by physiologic doses of THC exposure

(10 lM) and perturbations in the expression of voltage-gated calcium

channels (Miranda et al, 2020). Indeed, marijuana is associated with

cardiac arrhythmias, and iPSC disease modeling can be used to eluci-

date the molecular mechanisms of how cannabinoids might cause

arrhythmias. The long-term effects of marijuana on the cardiovascular

system are not completely understood. However, a recent study

showed using UK Biobank data that marijuana was a risk factor for

cardiovascular disease (Wei et al, 2022). Here Wei et al (2022) used

iPSC disease modeling and small animal models to investigate the

mechanisms of D9-THC-mediated vascular dysfunction via the CB1

receptor. The prevalence of marijuana use is expected to increase with

its growing legalization, and is likely to cause additional unantici-

pated, adverse health effects such as EVALI. Therefore, there is an

urgent need to study the impact of marijuana in a pre-clinical model

that is more translatable and relevant to the human body than existing

cell culture and animal studies.

Opioids

The current opioid epidemic in the United States has developed in

three phases. In the 1990s, most of the opioid-related deaths were

caused by increased prescriptions of natural and semi-synthetic opi-

oids. A second wave began in 2010 with high usage of heroin (Rudd

et al, 2016). The latest wave of opioid-related deaths is associated

with the significant increase in use of illicitly manufactured fen-

tanyl. Overdose-related deaths are mainly caused by bradycardia

and respiratory depression. While recently oxycodone and hydroco-

done have been the most commonly used opioids involved in over-

dose deaths (Mattson et al, 2021), more recently fentanyl and its
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derivatives are involved in more cardiovascular complications and

malignant arrhythmias. Methadone has been well described to

inhibit human cardiac ether-a-go-go-related gene (hERG)-associated

K+ current, the rapid component of the delayed rectifier current

(IKr), which determines the duration of the resting QT interval

(Katchman et al, 2002). Inhibition of this current results in a pro-

longed cardiac repolarization phase of the action potential, extend-

ing the QT interval and increasing the vulnerability to arrhythmias

(Roden, 2004). Nevertheless, the ambulatory data on methadone-

induced cardiac arrests are limited, and perioperative data on QTc

prolongation in patients undergoing non-cardiac surgery suggest

that even after administration of more than nine QTc-prolonging

drugs, opioids do not significantly contribute to clinically relevant

QTc prolongation (Roden, 2004; Obal et al, 2014).

A more subtle effect may be occurring on the cardiovascular sys-

tem. Epidemiological data suggest that chronic opioid administra-

tion is associated with a higher incidence of myocardial infarction

and stroke (Chen & Ashburn, 2015). The American Heart Associa-

tion (AHA) recently advised on the effect of chronic exposure to

synthetic opioid analogs on cardiovascular (CV) function underscor-

ing their potential detrimental impact on CV function and health

(Chow et al, 2021; Dezfulian et al, 2021). Surprisingly, little is

known about how chronic opioids affect endothelial and cardiomy-

ocyte function. Distracted by the apparent short-term effects of opi-

oids (i.e., respiratory depression and bowel obstruction), long-term

effects have been lurking in the shadows and unrecognized. Recent

insights into opioid receptor function and binding of different

ligands have provided a broader understanding on the complex reg-

ulation of opioid signaling within the cardiovascular system (Glad-

den et al, 2016; O’Donnell & Jackson, 2017).

Microplastics

The widespread use of plastics and microplastics is a potentially novel

hazard (Matthews et al, 2021). A recent study revealed that the abun-

dance of microplastics may be vastly underestimated, with over 5 tril-

lion pieces of plastic in the world’s oceans that have a combined mass

of 250,000 tons (Eriksen et al, 2014). The United Nations Environment

Assembly (UNEP) has estimated that 4.8–12.7 million tons of plastic

are introduced into oceans annually (Haward, 2018). The long-term

consequences of such ubiquitous pollution with plastics on the body

are unknown but increasingly found in all elements of the aquatic

food chain (Lehel & Murphy, 2021).

By studying the effects of microplastics in vitro, iPSCs might

provide a window into the effects of plastics. Microplastics are con-

sumed by plankton and are found in all aquatic species (Lehel & Mur-

phy, 2021). The largest source of protein for humans is fish, and the

microplastics do not simply transit through the gastrointestinal system

but instead accumulate in the circulatory and adipose tissues (Lehel &

Murphy, 2021). iPSC disease modeling can be used to understand

how microplastics affect the gastrointestinal system, central nervous

system, and the cardiovascular system. For example, epigenetic

changes and the introduction on mutations in the genetic code may

herald the initiation and progression of carcinogenesis. Initial studies

with iPSCs have only revealed growth inhibition (Jeong et al, 2018).

More recent studies have employed organoid models to understand

how microplastics affect the body (Miloradovic et al, 2021; Winkler

et al, 2022). Indeed, plastics are likely to modify gene expression and

cause disease. More worrisome, plastics may alter epigenetic expres-

sion and be transmitted to future generations.

Summary and conclusion

iPSC disease modeling is emerging as a powerful paradigm for

understanding the patient-specific disease mechanisms. The inter-

face with gene-editing tools and iPSCs allows investigators to eluci-

date the underlying molecular mechanisms that cause disease.

iPSCs, gene-editing tools, and transcriptomics have the potential to

revolutionize toxicology and rapidly advance our understanding of

the adverse effects of environmental toxins. Because they contain

the genetic code unique to each person, the use of iPSCs promises

the discovery of new gene–environment interactions that can deci-

pher why some individuals are more susceptible to environmental

factors that exacerbate diseases such as cardiovascular disease.
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Pending issues

iPSCs are a powerful model system to investigate the adverse effects
of these compounds on the body and avoid animal testing. However,
2D iPSC-derived tissues are immature and may not fully recapitulate
the cellular physiology of somatic cells. With the development of 3D
models such as organoids and EHT, and advances in single-cell RNA
sequencing, iPSC disease modeling has improved significantly. 3D
models provide a better environment that promotes cellular matura-
tion and development. More importantly, single-cell RNA sequencing
can provide spatial transcriptomics of complex cell–cell interactions.
With ongoing advancements in biomaterials, biomedical engineering,
and next-generation sequencing, iPSC disease modeling is continuing
to evolve into a high-throughput screening platform for environmen-
tal exposures.
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For more information
For additional information on iPSC Biobanking, cell culture protocols, publica-

tions, and contact information to request iPSC lines, please visit the Stanford

Cardiovascular Institute (SCVI) Biobank website: https://med.stanford.edu/

scvibiobank.html.
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