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Abstract

An increasing number of studies across many research fields from biomedical engineering

to finance are employing measures of entropy to quantify the regularity, variability or ran-

domness of time series and image data. Entropy, as it relates to information theory and

dynamical systems theory, can be estimated in many ways, with newly developed methods

being continuously introduced in the scientific literature. Despite the growing interest in

entropic time series and image analysis, there is a shortage of validated, open-source soft-

ware tools that enable researchers to apply these methods. To date, packages for perform-

ing entropy analysis are often run using graphical user interfaces, lack the necessary

supporting documentation, or do not include functions for more advanced entropy methods,

such as cross-entropy, multiscale cross-entropy or bidimensional entropy. In light of this,

this paper introduces EntropyHub, an open-source toolkit for performing entropic time series

analysis in MATLAB, Python and Julia. EntropyHub (version 0.1) provides an extensive

range of more than forty functions for estimating cross-, multiscale, multiscale cross-, and

bidimensional entropy, each including a number of keyword arguments that allows the user

to specify multiple parameters in the entropy calculation. Instructions for installation,

descriptions of function syntax, and examples of use are fully detailed in the supporting doc-

umentation, available on the EntropyHub website– www.EntropyHub.xyz. Compatible with

Windows, Mac and Linux operating systems, EntropyHub is hosted on GitHub, as well as

the native package repository for MATLAB, Python and Julia, respectively. The goal of

EntropyHub is to integrate the many established entropy methods into one complete

resource, providing tools that make advanced entropic time series analysis straightforward

and reproducible.

Introduction

Through the lens of probability, information and uncertainty can be viewed as conversely

related—the more uncertainty there is, the more information we gain by removing that uncer-

tainty. This is the principle behind Shannon’s formulation of entropy (1) which quantifies

uncertainty as it pertains to random processes [1]:

HðXÞ ¼ �
Pn
i¼1
pðxiÞlogb pðxiÞ ð1Þ
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whereH(X) is the entropy (H) of a sequence (X) given the probabilities (p) of states (xi). An

extension of Shannon’s entropy, conditional entropy (2) measures the information gained

about a process (X) conditional on prior information given by a process Y,

HðXjYÞ ¼ �
Pn
i¼1
pðxijY ¼ yÞlogb pðxijY ¼ yÞ ð2Þ

where ymay represent states of a separate system or previous states of the same system.

Numerous variants have since been derived from conditional entropy, and to a lesser extent

Shannon’s entropy, to estimate the information content of time series data across various sci-

entific domains [2], resulting in what has recently been termed “the entropy universe” [3].

This universe of entropies continues to expand as more and more methods are derived with

improved statistical properties over their precursors, such as robustness to short signal lengths

[4–7], resilience to noise [8–10], insensitivity to amplitude fluctuations [11–13]. Furthermore,

new entropy variants are being identified which quantify the variability of time series data in

specific applications, including assessments of cardiac disease from electrocardiograms [14–

16], and examinations of machine failure from vibration signals [17, 18].

As the popularity of entropy spreads beyond the field of mathematics to subjects ranging

from neurophysiology [19–23] to finance [24–27], there is an emerging demand for software

packages with which to perform entropic time series analysis. Open-source software plays a

critical role in tackling the replication crisis in science by providing validated algorithmic tools

that are available to all researchers [28, 29]. Without access to these software tools, researchers

lacking computer programming literacy may resort to borrowing algorithms from unverified

sources which could be vulnerable to coding errors. Furthermore, software packages often

serve as entry points for researchers unfamiliar with a subject to develop an understanding of

the most commonly used methods and how they are applied. This point is particularly relevant

in the context of entropy, a concept that is often misinterpreted [3, 30, 31], and where the

name and number variant methods may be difficult to follow. For example, derivatives of the

original sample entropy algorithm [32], already an improvement on approximate entropy

[33], include modified sample entropy (fuzzy entropy) [34], multiscale (sample) entropy [15],

composite multiscale entropy [35], refined multiscale entropy [14], and refined-composite

multiscale entropy [36].

Several packages offering entropy-related functions have been released in recent years [37–

39], intended primarily for the analysis of physiological data, Table 1. Although these packages

offer some useful tools, they lack the capacity to perform extensive data analysis with multiple

methods from the cross-entropy [40], bidimensional entropy [41], and multiscale entropy [42]

families of algorithms. Additionally, the utility of these packages is also limited for several rea-

sons. The CEPS [38], EZ Entropy [37] and PyBioS [39] packages all operate through graphical

user interfaces (GUIs) with facilities to plot and process data interactively. The interactive

nature of GUIs can be beneficial when analysing small datasets but becomes burdensome

when analysing large datasets where automated processing tasks are advantageous. Both the

CEPS [38] and EZ Entropy [37] are designed for the MATLAB programming environment

(MathWorks, MA, USA) which requires a purchased license in order to use. This paywall pre-

vents many users from accessing the software and consequently impedes the replication of

results achieved by using these packages. Neither PyBioS nor EZ Entropy have accompanying

documentation to describe how to use the software, and neither toolbox is hosted on the native

package repository for MATLAB (MathWorks File Exchange) or Python (PyPi), which facili-

tate direct and simplified installation and updating.

Against this background, this paper introduces EntropyHub, an open-source toolkit for

entropic time series analysis in the MATLAB, Python [44] and Julia [45] programming
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environments. Incorporating entropy estimators from information theory, probability theory

and dynamical systems theory, EntropyHub features a wide range of functions to calculate the

entropy of, and the cross-entropy between, univariate time series data. In contrast to other

entropy-focused toolboxes, EntropyHub runs from the command line without the use of a

GUI and provides many new benefits, including:

■ Functions to perform refined, composite, refined-composite and hierarchical multiscale

entropy analysis using more than twenty-five different entropy and cross-entropy estima-

tors (approximate entropy, cross-sample entropy, etc).

■ Functions to calculate bidimensional entropies from two-dimensional (image) data.

■ An extensive range of function arguments to specify additional parameter values in the

entropy calculation, including options for time-delayed state-space reconstruction and

entropy value normalisation where possible.

■ Availability in multiple programming languages–MATLAB, Python, Julia–to enable open-

source access and provide cross-platform translation of methods through consistent func-

tion syntax. To the best of the Authors’ knowledge, this is the first entropy-specific toolkit

for the Julia language.

■ Compatible with both Windows, Mac and Linux operating systems.

■ Comprehensive documentation describing installation, function syntax, examples of use,

and references to source literature. Documentation is available online at www.EntropyHub.

xyz (or at MattWillFlood.github.io/EntropyHub), where it can also be downloaded as a

booklet (EntropyHub Guide.pdf). Documentation specific to the MATLAB edition can also

be found in the ‘supplemental software’ section of the MATLAB help browser after installa-

tion. Documentation specific to the Julia edition can also be found at MattWillFlood.

github.io/EntropyHub.jl/stable.

Table 1. A list of resources providing entropy analysis tools.

Name Language Interface Access Links Details

EntropyHub MATLAB Command

Line

• MATLAB Add-On

Explorer

• Python Package

Index (PyPi)

• JuliaHub

• GitHub

• Julia GitHub Repo

• www.EntropyHub.

xyz

See Table 2 for full list of functions in version 0.1. EntropyHub provides 18 Base entropy

methods for univariate data analysis (e.g. sample entropy, fuzzy entropy, etc.), and 8 Cross-
entropy methods (e.g. cross-permutation entropy, cross-distribution entropy). There are also 4

bidimensional entropy methods for 2D/image analysis (e.g. bidimensional dispersion entropy,

bidimensional sample entropy). There are also several multiscale entropy variants available

which can utilise each of the Base and Cross-entropy methods.

Python

Julia

CEPS [38] MATLAB GUI BitBucket Includes Shannon, Rényi, minimum, Tsallis, Kolmogorov-Sinai, conditional, corrected-

conditional, approximate, sample, fuzzy, permutation, distribution, dispersion, phase, slope,

bubble, spectral, differential, diffusion, and multiscale entropy methods.

PyBios [39] Python GUI Contact Author Includes sample, fuzzy, permutation, distribution, dispersion, phase, multiscale entropy

methods.

EZ Entropy

[37]

MATLAB GUI GitHub Includes approximate, sample, fuzzy, permutation, distribution and conditional entropy

methods.

PhysioNet

[43]

MATLAB

C�
Command

Line

www.PhysioNet.org Provides standalone functions for sample, multiscale and transfer entropies�.

Listed next to each tool are the programming languages they support, the interface through which they operate, links to access the software, and a brief outline of the

entropy analysis tools they provide.

� A C-programming implementation of transfer entropy is currently not available on PhysioNet.

https://doi.org/10.1371/journal.pone.0259448.t001
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■ Hosting on the native package repositories for MATLAB (MathWorks File Exchange),

Python (PyPi) and Julia (Julia General Registry), to facilitate straightforward downloading,

installation and updating. The latest development releases can also be downloaded from the

EntropyHub GitHub repository - www.github.com/MattWillFlood/EntropyHub.

As new measures enter the ever-growing entropy universe, EntropyHub aims to incorpo-

rate these measures accordingly. EntropyHub is licensed under the Apache license (version 2.

0) and is available for use by all on condition that the present paper by cited on any scientific

outputs realised using the EntropyHub toolkit.

The following sections of the paper outline the toolkit contents, steps for installing and

accessing documentation.

Toolkit contents and functionality

Functions in the EntropyHub toolkit fall into five categories. The first three categories—Base,
Cross and Bidimensional—refer to standalone entropy estimators distinguished according to

the type of input data they analyse.

■ Base functions return the entropy of a single univariate time series, e.g. sample entropy

(SampEn), bubble entropy (BubbEn), phase entropy (PhasEn), etc.

■ Cross functions return the cross-entropy between two univariate time series, e.g. cross-fuzzy

entropy (XFuzzEn), cross-permutation entropy (XPermEn), etc.

■ Bidimensional functions return the entropy from a univariate, two-dimensional data matrix,

e.g. bidimensional distribution entropy (DistEn2D), etc.

The remaining two categories–Multiscale andMultiscale Cross–relate to multiscale entropy

methods using the entropy estimators from the Base and Cross categories, respectively.

■Multiscale functions return the multiscale entropy of a single univariate time series, calcu-

lated using any of the Base entropy estimators,

■ e.g. multiscale entropy (MSEn), composite multiscale entropy (cMSEn), etc.

■Multiscale Cross functions return the multiscale cross-entropy between two univariate time

series calculated using any of the Cross entropy estimators,

■ e.g. cross-multiscale entropy (XMSEn), refined multiscale cross-entropy (rXMSEn), etc.

A list of all functions available in version 0.1 of the EntropyHub toolkit is provided in Table 2.

As more entropy methods are identified, these will be added to newer versions of the toolkit.

One of the main advantages of EntropyHub is the ability to specify numerous parameters

used in the entropy calculation by entering optional keyword function arguments. The default

value of each keyword argument is based on the value proposed in the original source litera-

ture for that method. However, blindly analysing time series data using these arguments is

strongly discouraged. Drawing conclusions about data based on entropy values is only valid

when the parameters used to calculate those values accurately capture the underlying dynamics

of the data.

With certain Base and Cross functions, it is possible to calculate entropy using variant meth-

ods of the main estimator. For example, with the function for permutation entropy (PermEn)

one can calculate the edge [65], weighted [70], amplitude-aware [11], modified [68], fine-

grained [67], and uniform-quantization [71] permutation entropy variants, in addition to the

original method introduced by Bandt and Pompe [66]. It is important to note that while the

primary variable returned by each function is the estimated entropy value, most functions pro-

vide secondary and tertiary variables that may be of additional interest to the user. Some
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Table 2. List of base, cross, bidimensional, multiscale and multiscale cross-entropy functions available in version 0.1 of the EntropyHub toolkit.

Entropy Method Function Name References

Base Entropy Functions Approximate Entropy ApEn [33]

Attention Entropy AttnEn [46]

Bubble Entropy BubbEn [47]

(corrected) Conditional Entropy CondEn [48]

Cosine Similarity Entropy CoSiEn [49]

Dispersion Entropy DispEn [8, 50–52]

Distribution Entropy DistEn [6]

Entropy of Entropy EnofEn [53]

Fuzzy Entropy FuzzEn [13, 34]

Gridded Distribution Entropy GridEn [54–58]

Increment Entropy IncrEn [59–61]

Kolmogorov Entropy K2En [62–64]

Permutation Entropy PermEn [11, 12, 65–71]

Phase Entropy PhasEn [72]

Sample Entropy SampEn [32]

Slope Entropy SlopEn [73]

Spectral Entropy † SpecEn [74, 75]

Symbolic Dynamic Entropy SyDyEn [76–78]

Cross-Entropy Functions Cross-Approximate Entropy XApEn [33]

(corrected) Cross-Conditional Entropy XCondEn [48]

Cross-Distribution Entropy XDistEn [6, 79]

Cross-Fuzzy Entropy XFuzzEn [80]

Cross-Kolmogorov Entropy § XK2En

Cross-Permutation Entropy XPermEn [81]

Cross-Sample Entropy XSampEn [32]

Cross-Spectral Entropy § XSpecEn

Bidimensional Entropy Functions Bidimensional Distribution Entropy DistEn2D [82]

Bidimensional Dispersion Entropy DispEn2D [83]

Bidimensional Fuzzy Entropy FuzzEn2D [84, 85]

Bidimensional Sample Entropy SampEn2D [86]

Multiscale Entropy Functions Multiscale Entropy MSEn [15, 22, 87–94]

Composite Multiscale Entropy cMSEn [5, 35, 36]

(+ Refined-Composite Multiscale Entropy)

Refined Multiscale Entropy rMSEn [14, 95]

Hierarchical Multiscale Entropy hMSEn [96]

Multiscale Cross-Entropy Functions Multiscale Cross-Entropy XMSEn [15, 40, 97–100]

Composite Multiscale Cross-Entropy cXMSEn [101]

(+ Refined-Composite Multiscale Cross-Entropy)

Refined Multiscale Cross-Entropy rXMSEn [14, 101]

Hierarchical Multiscale Cross-Entropy hXMSEn [96]

Other Multiscale Entropy Object � MSobject

Example Data Importer �� ExampleData

� The multiscale entropy object returned by MSobject function is a required argument forMultiscale andMultiscale Cross functions.
�� Sample time series and image data can be imported using the ExampleData function. Use of this function requires an internet connection. The imported data are

the same as those used in the examples provided in the EntropyHub documentation.
† In contrast to other Base entropies, spectral entropy (SpecEn) is not derived from information theory or dynamical systems theory, and instead measures the entropy

of the frequency spectrum.
§ Cross-Kolmogorov and cross-spectral entropies, while included in the toolkit, have yet to be verified in the scientific literature.

https://doi.org/10.1371/journal.pone.0259448.t002
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examples include the dispersion entropy function (DispEn) [8] which also returns the reverse

dispersion entropy [50], the spectral entropy function (SpecEn) [74] which also returns the

band-spectral entropy [102], and the Kolmogorov entropy function (K2En) [63] which also

returns the correlation sum estimate. Furthermore, everyMultiscale andMultiscale Cross func-

tion has the option to plot the multiscale (cross) entropy curve (Fig 1), as well as some Base func-

tions which allow one to plot spatial representations of the original time series (Figs 2 and 3).

Installation and dependencies

Major version releases of the EntropyHub toolkit can be directly installed through the native

package repository for the MATLAB, Python and Julia programming environments. Beta

development versions can be downloaded and installed from the directories of each program-

ming language hosted on the EntropyHub GitHub repository– github.com/MattWillFlood/

EntropyHub. EntropyHub is compatible with Windows, Mac and Linux operating systems.

MATLAB

There are two additional toolboxes from the MATLAB product family that are required to

experience the full functionality of the EntropyHub toolkit—the Signal Processing Toolbox and

the Statistics and Machine Learning Toolbox. However, most functions will work without these

Fig 1. Representative plot of the multiscale entropy curve returned by any Multiscale or Multiscale Cross entropy function. The curve shown

corresponds to multiscale bubble entropy of a Gaussian white noise signal (N = 5000, μ = 0, σ = 1), calculated over 5 coarse-grained time scales, with

estimator parameters: embedding dimension (m) = 2, time delay (τ) = 1.

https://doi.org/10.1371/journal.pone.0259448.g001
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toolboxes. EntropyHub is intended for use with MATLAB versions� 2016a. In some cases,

the toolkit may work on versions 2015a & 2015b, although it is not recommended to install on

MATLAB versions older than 2016.

There are two ways to install EntropyHub in MATLAB.

Option 1. Note: Option 1 requires the user to be logged in to their MathWorks account.

1. In the MATLAB application, open the Add-Ons browser under the ‘Home’ tab by clicking

‘Get Add-Ons’ (S1A Fig).

2. In the search bar, search for “EntroypHub” (S1b Fig).

3. Open the resulting link and click ‘add’ in the top-right corner (S1c Fig).

4. Follow the instructions to install the toolbox (S1D Fig).

Option 2.

1. Go to the ‘EntropyHub–MatLab’ directory in the EntropyHub repository on GitHub (S1E Fig):

https://github.com/MattWillFlood/EntropyHub/tree/main/EntropyHub%20-%20MatLab

Fig 2. Second-order difference plot returned by the phase entropy function (PhasEn). Representative second-order

difference plot of the x-component of the Henon set of equations (α = 1.4, β = 0.3), calculated with a time-delay (τ) = 2

and partitions (K) = 9.

https://doi.org/10.1371/journal.pone.0259448.g002
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2. Download the MATLAB toolbox file (EntropyHub.mltbx) file (S1F Fig).

3. Open the MATLAB application and change the current folder to the directory where the

EntropyHub.mltbx file is saved (S1G Fig).

4. Double-click the EntropyHub.mltbx file to open it and click install (S1H Fig).

To check that EntropyHub has been correctly installed, enter “EntropyHub” at the com-

mand line and the EntropyHub logo should be displayed (S1I Fig).

Python

There are several modules required to use EntropyHub in Python—NumPy [103], SciPy [104],

Matplotlib [105], PyEMD [106], and Requests. These modules will be automatically installed

alongside EntropyHub if not already installed. EntropyHub was designed using Python3 and

thus is not intended for use with Python2 or Python versions < 3.6. EntropyHub Python func-

tions are primarily built on top of the NumPymodule for mathematical computation [103], so

vector or matrix variables are returned as NumPy array objects.

There are 2 ways to install EntropyHub in Python. Option 1 is strongly recommended.

Option 1. Note: Option 1 requires the ‘pip’ Python package installer.

■ Using pip, enter the following at the command line (S2A Fig):

pip install EntropyHub
�Note: this command is case sensitive

Option 2.

Fig 3. Poincaré plot and bivariate histogram returned by the gridded distribution entropy function (GridEn). Representative Pioncaré plot and bivariate histogram

of the x-component of the Lorenz system of equations (σ = 10, β = 8/3, ρ = 28), calculated with grid partitions (m) = 5 and a time-delay (τ) = 2.

https://doi.org/10.1371/journal.pone.0259448.g003
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1. Go to the ‘EntropyHub–Python’ directory in the EntropyHub repository on GitHub (S2B Fig):

https://github.com/MattWillFlood/EntropyHub/tree/main/EntropyHub%20-%20Python

2. Download the EntropyHub.x.x.x.tar.gz folder and unzip it (S2C and S2D Fig).

3. Open a command prompt (cmd on Windows, terminal on Mac) or the Anaconda prompt

if Anaconda is the user’s python package distribution (S2E Fig).

4. In the command prompt/terminal, navigate to the directory where the EntropyHub.x.x.x.
tar.gz folder was saved and extracted (S2F Fig).

5. Enter the following in the command line (S2G Fig):

python setup.py install

6. Ensure that an up-to-date version of the setuptools module is installed:

python -m pip install—upgrade setuptools

To use EntropyHub, import the module with the following command (S2H Fig):

import EntropyHub as EH

To check that EntropyHub has been correctly installed and loaded, enter (S2H Fig):

EH.greet()

Julia

There are a number of modules required to use EntropyHub in Julia—DSP, FFTW,HTTP,

DelimitedFiles, Random, Plots, StatsBase, StatsFuns, Statistics, GroupSlices, Combinatorics,
Clustering, LinearAlgebra, and Dierckx [45]. These modules will be automatically installed

alongside EntropyHub if not already installed. EntropyHub was designed using Julia 1.5 and is

intended for use with Julia versions� 1.2.

To install EntropyHub in Julia,

1. In the Julia programming environment, open the package REPL by typing ‘]’ (S3A Fig).

2. At the command line, enter (S3B Fig):

add EntropyHub
�Note: this command is case sensitive.

Alternatively, one can install EntropyHub from the EntropyHub.jl GitHub repository:

add https://github.com/MattWillFlood/EntropyHub.jl

To use EntropyHub, import the module with the following command (S3C Fig):

using EntropyHub

To check that EntropyHub has been correctly installed and loaded, type (S3D Fig):

EntropyHub.greet()

Supporting documentation and help

To help users to get the most out of EntropyHub, extensive documentation has been developed

to cover all aspects of the toolkit, www.EntropyHub.xyz/#documentation-help. Included in the

documentation are:

■ Instructions for installation.

■ Thorough descriptions of the application programming interface (API) syntax–function

names, keyword arguments, output values, etc.

■ References to the original source literature for each method.
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■ Licensing and terms of use.

■ Examples of use.

Supporting documentation is available in various formats from the following sources.

www.EntropyHub.xyz

The EntropyHub website, www.EntropyHub.xyz (also available at MattWillFlood.github.io/

EntropyHub) is the primary source of information on the toolkit with dedicated sections to

MATLAB, Python and Julia, as well as release updates and links to helpful internet resources.

EntropyHub guide

The EntropyHub Guide.pdf is the toolkit user manual and can be downloaded from the

documentation section of the EntropyHub website or from the EntropyHub GitHub

repository. In addition to the information given on the website, the EntropyHub Guide.pdf
document provides some extra material, such as plots of fuzzy functions used for fuzzy entropy

(FuzzEn) calculation, or plots of symbolic mapping procedures used in dispersion (DispEn) or

symbolic-dynamic entropy (SyDyEn).

MATLAB help browser

Custom built documentation for the MATLAB edition of the toolkit is accessible through the

MATLAB help browser after installation. Every function has its own help page featuring sev-

eral examples of use ranging from basic to advanced. To access this documentation, open the

help browser in the MATLAB application and at the bottom of the contents menu on the main

page, under ‘Supplemental Software’, click on the link ‘EntropyHub Toolbox’.

EntropyHub.jl

Custom documentation for the Julia edition of the toolkit can also be found at MattWillFlood.

github.io/EntropyHub.jl (linked to the EntropyHub website). Following Julia package conven-

tion, the Julia edition is given the suffix ‘.jl’ and is hosted in a standalone GitHub repository

linked to the main EntropyHub repository.

Seeking further help

Within each programming environment, information about a specific function can be dis-

played in the command prompt by accessing the function docstrings. For example, to display

information about the approximate entropy function (ApEn), type:

MATLAB: help ApEn

Python: help(EntropyHub.ApEn) (if imported as EntropyHub)

Julia: julia>? (to open help mode in the REPL)

help?> ApEn

Contact. For help with topics not addressed in the documentation, users can seek help by

contacting the toolkit developers at help@entropyhub.xyz. Every effort will be made to

promptly respond to all queries received.

To ensure that EntropyHub works as intended, with accurate and robust algorithms at its

core, users are encouraged to report any potential bugs or errors discovered. The
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recommended way to report issues is to place an issue post under the ‘Issues’ tab on the Entro-

pyHub GitHub repository. Doing so allows other users to find answers to common issues and

contribute their own solutions. Alternatively, one can notify the package developers of any

issues via email to fix@entropyhub.xyz.

Continuous integration of new and improved entropy methods into the toolkit is a core

principle of the EntropyHub project. Thus, requests and suggestions for new features are wel-

comed, as are contributions and offers for collaboration. EntropyHub developers will work

with collaborators to ensure that contributions are valid, translated into MATLAB, Python

and Julia, and follow the formatting adopted throughout the toolkit. Please contact info@en-

tropyhub.xyz regarding any proposals that wish to be made.

Validation

Included in EntropyHub are a number of sample time series and image datasets which can be

used to test the validity of the toolkit functions (Fig 4). Included in these datasets are random

number sequences (gaussian, uniform, random integers), chaotic attractors (Lorenz, Hénon),

and matrix representations of images (Mandelbrot fractal, random numbers, etc.). Importing

these datasets into the programming environment is done using the ExampleData function

(Table 2), which requires an internet connection. Every example presented in the supporting

documentation on the EntropyHub website, in the MATLAB help browser, or in the Entropy-
Hub Guide.pdf, employs the same sample datasets provided by the ExampleData function.

Therefore, users can replicate these examples verbatim to verify that the toolkit functions prop-

erly on their computer system. The following subsections demonstrate the implementation of

several Base, Cross-, Bidimensional,Multiscale andMultiscale Cross-entropy methods as a

proof-of-principle validation. Note: the examples in the following subsections use MATLAB

syntax, but the implementation of these functions and the values they return are the same

when using Python and Julia.

Base entropy

A sequence of normally distributed random numbers (Fig 4A; N = 5000, mean = 0, SD = 1) is

imported and approximate entropy is estimated using the default parameters (embedding

dimension = 2, time delay = 1, threshold = 0.2�SD[X]).
>> X = ExampleData(‘gaussian’);
>> ApEn(X)
2.33505 2.29926 2.10113

Random number sequences produce high entropy values as such sequences possess maxi-

mum uncertainty or unpredicatbility. The high approximate entropy values (> 2) returned in

this example, corresponding to estimates for embedding dimensions of 0, 1 and 2, are in the

expected range for such time series.

Cross-entropy

The x, y and z components of the Lorenz system of equations (Fig 4B; N = 5917, σ = 10, β = 8/

3, ρ = 28, x0 = 10, y0 = 20, z0 = 10) are imported and cross-permutation entropy is estimated

using the x and y components with the default parameters (embedding dimension = 3, time

delay = 1).
>> X = ExampleData(‘lorenz’);
>> XPermEn(X(:,1:2))
0.17771

The Lorenz system is commonly employed in nonlinear dynamics as its attractor exhibits

chaotic behaviour. Thus, the low cross-permutation entropy estimate returned here (0.1771)
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Fig 4. Sample datasets available with the EntropyHub toolkit through the ExampleData function. (a) A gaussian white noise time series, (b) the

Lorenz system of equations, (c) a Mandelbrot fractal.

https://doi.org/10.1371/journal.pone.0259448.g004
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reflects the high degree of deterministic structure shared between the x and y components of

the Lorenz system.

Bidimensional entropy

A matrix of normally distributed (Gaussian) random numbers is imported (Fig 4C;

N = 60x120, mean = 0, SD = 1) and bidimensional dispersion entropy is estimated with a tem-

plate submatrix size of 5 and all other parameters set to default values (time delay = 1, number

of symbols = 3, symbolic mapping transform = normal cumulative distribution function).
>> X = ExampleData(‘gaussian_Mat’);
>> DispEn2D(X, ‘m’, 5)
8.77894

The high value of the bidimensional dispersion entropy estimate corresponds to those pre-

viously reported for Gaussian white noise [83].

Multiscale entropy

A chirp signal (N = 5000, t0 = 1, t0 = 4000, normalised instantaneous frequency at t0 = 0.01Hz,

instantaneous frequency at t1 = 0.025Hz) is imported and multiscale sample entropy is esti-

mated over 5 coarse-grained temporal scale using the default parameters (embedding dimen-

sion = 2, time delay = 1, threshold = 0.2�SD[X]). Note: a multiscale entropy object (Mobj)
must be used with multiscale entropy functions.
>> X = ExampleData(‘chirp’);
>> Mobj = MSobject(‘SampEn’);
>> MSEn(X, Mobj, ’Scales’, 5)
0.2738 0.3412 0.4257 0.5452 0.6759

The chirp signal imported in this example represents a swept-frequency cosine with a line-

arly decreasing period length. The coarse-graining procedure of multiscale entropy [15] func-

tions as a low-pass filter of the original time series, with a lower cut-off frequency at each

increasing time scale. Therefore, the coarse-graining procedure increasingly diminishes the

localised auto-correlation of the chirp signal at each temporal scale, increasing the entropy.

This reflects the increasing sample entropy values from low (0.2738) to moderate (0.6759)

returned by theMSEn function.

Multiscale cross-entropy

Two sequences of uniformly distributed random numbers (N = 4096, range = [0, 1]) are

imported and multiscale cross-distribution entropy is estimated over 7 coarse-grained tempo-

ral scales with the default parameters (embedding dimension = 2, time delay = 1, histogram

binning method = ‘sturges’, normalisation with respect to number of histogram bins = true).
>> X = ExampleData(‘uniform2’);
>> Mobj = MSobject(‘XDistEn’);
>> XMSEn(X, Mobj)
0.95735 0.86769 0.83544 0.80433 0.82617 0.77619 0.78893

As expected, the normalisedmultiscale cross-distribution entropy values remain relatively

constant over multiple time scales as no information can be gained about one sequence from

the other at any time scale.

Discussion

The growing number of entropy methods reported in the scientific literature for time series

and image analysis warrants new software tools that enable researchers to apply such methods

[2, 3, 38]. Currently, there is a dearth of validated, open-source tools that implement a
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comprehensive array of entropy methods at the command-line with options to modify multi-

ple parameter values. EntropyHub is the first toolkit to provide this functionality in a package

that is available in three programming languages (MATLAB, Python, and Julia) with consis-

tent syntax, and is supported by extensive documentation (Table 3). To the best of the Authors

knowledge, EntropyHub is also the first toolkit to provide multiple functions for bidimen-

sional entropy [82–86], multiscale entropy [14, 15, 35, 90, 96] and multiscale cross-entropy

analyses [40, 97, 98] all in one package. Specific programming language editions of the Entro-

pyHub toolkit are hosted on the native package repositories for MATLAB, Python and Julia

(Table 3), facilitating straightforward installation and version updates. EntropyHub is compat-

ible with both Windows, Mac and Linux operating systems, and is open for use under the

Apache License (Version 2.0) on condition that the present manuscript be cited in any outputs

achieved through the use of the toolkit.

The application of entropy in the study of time series data is becoming more common in all

manner of research fields such as engineering [17, 18], medicine [19–23] and finance [24–27].

The broad range of entropy functions provided by EntropyHub in multiple programming lan-

guages can serve to support researchers in these fields by characterising the uncertainty and

complexity of time series data with various stochastic, time-frequency and chaotic properties.

Additionally, this is the first toolkit to provide several functions for performing bidimensional

(2D) entropy analysis, which can enable users to estimate the entropy of images and matrix

data.

The goal of EntropyHub is to continually integrate newly developed entropy methods and

serve as a cohesive computing resource for all entropy-based analysis, independent of the

application or research field. To achieve this goal, suggestions for new features and contribu-

tions from other researchers are welcomed.

Supporting information

S1 Fig. Instructions for installing EntropyHub in MATLAB.

(TIF)

S2 Fig. Instructions for installing EntropyHub in Python.

(TIF)

Table 3. List of resources for the EntropyHub toolkit.

Online Resources

EntropyHub Website www.EntropyHub.xyz

MattWillFlood.github.io/EntropyHub

GitHub Repository www.github.com/MattWillFlood/EntropyHub

www.github.com/MattWillFlood/EntropyHub.jl (Julia only repository)
MATLAB Package www.mathworks.com/matlabcentral/fileexchange/94185-entropyhub

Python Package pypi.org/project/EntropyHub/

Julia Package juliahub.com/ui/Packages/EntropyHub/npy5E/0.1.0

Contact Details

General Inquiries info@entropyhub.xyz

Help and Support help@entropyhub.xyz

Reporting Bugs fix@entropyhub.xyz

All information about the toolkit, including installations instructions, documentation, and release updates can be

found on the main EntropyHub website. Users can get in touch directly with the package developers by contacting

the email addresses provided.

https://doi.org/10.1371/journal.pone.0259448.t003
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S3 Fig. Instructions for installing EntropyHub in Julia.

(TIF)
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