
Data and text mining

aCLImatise: automated generation of tool definitions for

bioinformatics workflows

Michael Milton 1,2,* and Natalie Thorne1,2,3,4

1Melbourne Genomics Health Alliance, Parkville, VIC 3052, Australia, 2Walter and Eliza Hall Institute of Medical Research, Parkville,

VIC 3052, Australia, 3Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia and 4Department

of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on October 2, 2020; revised on November 25, 2020; editorial decision on November 30, 2020; accepted on December 3, 2020

Abstract

Summary: aCLImatise is a utility for automatically generating tool definitions compatible with bioinformatics work-
flow languages, by parsing command-line help output. aCLImatise also has an associated database called the
aCLImatise Base Camp, which provides thousands of pre-computed tool definitions.

Availability and implementation: The latest aCLImatise source code is available within a GitHub organisation, under
the GPL-3.0 license: https://github.com/aCLImatise. In particular, documentation for the aCLImatise Python package
is available at https://aclimatise.github.io/CliHelpParser/, and the aCLImatise Base Camp is available at https://aclima
tise.github.io/BaseCamp/.

Contact: michael.milton@melbournegenomics.org.au

Supplementary information: Supplementary data are available at Bioinformatics online.

Bioinformatics workflow languages are domain-specific languages
which aim to simplify the process of writing workflows for bioinfor-
matics analysis (Larsonneur et al., 2018). Four popular workflow
languages in bioinformatics are Nextflow, Snakemake, Workflow
Definition Language (WDL) and Common Workflow Language
(CWL) (Bed}o, 2019). In each of these languages the author defines
‘tool definitions’ (variously referred to as ‘command line tool
descriptions’, ‘task definitions’, ‘process definitions’ or ‘wrappers’),
which are then composed together using a separate ‘workflow’ def-
inition (Chapman et al., 2016; Di Tommaso et al., 2017; Köster and
Rahmann, 2012).

Tool definitions describe the interface to a piece of software,
generally a command-line interface, including all of its inputs, out-
puts and execution requirements. While workflow definitions must
be customized according to the use-case, tool definitions simply de-
scribe a piece of software, and are therefore not coupled to a single
workflow or context (Chapman et al., 2016). For this reason, it is
common to collect tool definitions in online tool repositories that
can be used by workflow designers, reducing the work involved in
constructing a workflow. Such repositories exist for WDL (https://
github.com/biowdl/tasks), Snakemake (https://snakemake-wrappers.
readthedocs.io/en/stable/), Nextflow (https://github.com/nf-core/
modules) and CWL (https://github.com/common-workflow-library/
bio-cwl-tools), while registries such as Dockstore cater to multiple
workflow languages simultaneously (O’Connor et al., 2017).
Despite these initiatives, most tool repositories are incomplete or
out-of-date. Maintaining up-to-date tool definitions would require
frequent updates to describe new software and accommodate

updates to existing software, which is not feasible to perform manu-
ally. However, some automated techniques have been developed for
generating these tool definitions, most notably argparse2tool
(https://github.com/hexylena/argparse2tool). This approach has
shown further promise when enhanced with metadata from the
bio.tools registry, but as argparse2tool is only compatible with
software written in the Python language, it does not provide a gen-
eral solution to this problem (Hillion et al., 2017).

Fortunately, all command-line software provides documentation
in the form of the help output. This is the output that is generally
printed by an application when invoked using the – help flag, as
encouraged by Stallman (2015). Furthermore, this help is generally
kept up-to-date, as it is the first point of reference for most users of
the software, and in many cases is generated automatically by the ar-
gument parsing library (e.g. the argparse library for Python; https://
docs.python.org/3/library/argparse.html). In addition, help output
often follows a semi-formalised series of conventions, most notably
the POSIX Utility Convention (IEEE, 2018) and more rigorously the
docopt language (http://docopt.org/), making it a viable target for
automated parsing.

aCLImatise is a new contribution to the bioinformatics work-
flow ecosystem designed to streamline the creation of new portable
workflows by providing automatically generated tool definitions for
any tool with a conventional command-line interface. aCLImatise is
itself a command-line application written in the Python program-
ming language. To produce a tool definition, aCLImatise first exe-
cutes the command of interest by trying a variety of help flags and
storing the standard output from each. The resulting help text is

VC The Author(s) 2020. Published by Oxford University Press. 5556

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 36(22-23), 2020, 5556–5557

doi: 10.1093/bioinformatics/btaa1033

Advance Access Publication Date: 16 December 2020

Applications Note

http://orcid.org/0000-0002-8965-2595
https://github.com/aCLImatise
https://aclimatise.github.io/CliHelpParser/
https://aclimatise.github.io/BaseCamp/
https://aclimatise.github.io/BaseCamp/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1033#supplementary-data
https://github.com/biowdl/tasks
https://github.com/biowdl/tasks
https://snakemake-wrappers.readthedocs.io/en/stable/
https://snakemake-wrappers.readthedocs.io/en/stable/
https://github.com/nf-core/modules
https://github.com/nf-core/modules
https://github.com/common-workflow-library/bio-cwl-tools
https://github.com/common-workflow-library/bio-cwl-tools
https://github.com/hexylena/argparse2tool
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
http://docopt.org/
https://academic.oup.com/


then parsed with a Parsing Expression Grammar (PEG) defined
using the powerful PyParsing library (McGuire, 2007). This parsing
process, and the internal data format are briefly illustrated in
Figure 1. Finally, the best intermediate data model is output as a
YAML data structure, or translated into workflow formats such as
CWL or WDL. Workflow designers are able to download the
Python package from the PyPI, and then run aCLImatise on the soft-
ware they intend to use in their workflow. To evaluate this ap-
proach, a detailed comparison between an automated tool definition
generated by aCLImatise, and manually authored tool definition is
available in Supplementary Appendix SA.

To simplify the writing of workflows even further, a large data-
base of approximately 20 000 tool definitions called the aCLImatise
Base Camp has been generated by running aCLImatise on the
Bioconda database of bioinformatics software (Grüning et al.,
2018), facilitated by BioContainers Docker images (da Veiga
Leprevost et al., 2017). This database will be periodically and auto-
matically regenerated from the latest version of Bioconda, limiting
the need for manual curation and reducing the risk of outdated tool
definitions being used in workflows. It is intended that workflow
authors first refer to the Base Camp for up-to-date tool definitions,
and only resort to installing aCLImatise when using a tool that is
not available in Bioconda.

There are numerous potential directions for aCLImatise in the
future. Firstly, we hope to expand the parser to support more un-
usual help formats that depart further from help text conventions.
Secondly, there is the potential to add manual curation to the Base
Camp database, allowing authors to refine the generated tool defini-
tions and provide simple test suites. Finally, there has already been

some effort made to expand the number of supported workflow lan-
guages from the initial two. We envisage that Galaxy (Afgan et al.,
2018), Nextflow and Snakemake could be supported in the future.

Funding

This work was supported by the State Government of Victoria and the 10

member organisations of the Melbourne Genomics Health Alliance.

Conflict of Interest: none declared.

Acknowledgements

The authors thank Sarah Payton and Edmund Lau for editorial assistance,

and the Melbourne Genomics Bioinformatics Working Group for guidance

and review.

Data Availability

The tool definitions produced by aCLImatise are available in
Zenodo, at https://doi.org/10.5281/zenodo.4312329.

References

Afgan,E. et al. (2018) The Galaxy platform for accessible, reproducible and

collaborative biomedical analyses: 2018 update. Nucleic Acids Res., 46,

W537–W544.

Bed}o,J. (2019) BioShake: a Haskell EDSL for bioinformatics workflows.

PeerJ, 7, e7223.

Chapman,B. et al. (2016) Common Workflow Language, v1.0. figshare.

United States.

da Veiga Leprevost,F. et al. (2017) BioContainers: an open-source and

community-driven framework for software standardization.

Bioinformatics, 33, 2580–2582.

Di Tommaso,P. et al. (2017) Nextflow enables reproducible computational

workflows. Nat. Biotechnol., 35, 316–319.

Grüning,B., The Bioconda Team. et al. (2018) Bioconda: sustainable and com-

prehensive software distribution for the life sciences. Nat. Methods, 15,

475–476.

Hillion,K.-H. et al. (2017) Using bio.tools to generate and annotate work-

bench tool descriptions. F1000Research, 6, 2074.

IEEE. (2018) IEEE Standard for Information Technology–Portable Operating

System Interface (POSIX(TM)) Base Specifications, Issue 7. IEEE Std

1003.1-2017, 1–3951.

Köster,J. and Rahmann,S. (2012) Snakemake—a scalable bioinformatics

workflow engine. Bioinformatics, 28, 2520–2522.

Larsonneur,E. et al. (2018) Evaluating Workflow Management Systems: A

Bioinformatics Use Case. 2018 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), 2773–2775.

Li,H. et al.; 1000 Genome Project Data Processing Subgroup. (2009) The

Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford,

England), 25, 2078–2079.

McGuire,P. (2007) Getting Started with Pyparsing. United States: O’Reilly

Media, Inc.

O’Connor,B.D. et al. (2017) The Dockstore: enabling modular,

community-focused sharing of Docker-based genomics tools and work-

flows. F1000Research, 6, 52.

Rumbaugh,J. et al. (2004) Unified Modeling Language Reference Manual,

2nd edn. United Kingdom: Pearson Higher Education.

Stallman,R. (2015) GNU Coding Standards. Hong Kong: Samurai Media

Limited.

Fig. 1. The help text produced by the command-line tool SAMtools dict (surrounded

by a dotted line), annotated with a subset of the aCLImatise object model (the four

surrounding boxes), illustrating how the source text is mapped into Python classes

via the parser (coloured arrows). SAMtools dict is a subcommand of the popular

SAMtools suite of bioinformatics utilities (Li et al., 2009). The object model is an

adapted version of a Unified Modelling Language (UML) object diagram

(Rumbaugh et al., 2004), where each box represents the instance of an internal

class, and each arrow represents an association between objects that is navigable in

the direction of the arrow. The coloured arrows indicate an association with a

String or array of Strings originally sourced from the help text. The Command class

represents an entire command-line tool or subcommand, which has many inputs:

Positionals (aka arguments) and Flags (aka options), each of which has an argument

specification, such as SimpleFlagArg

aCLImatise 5557

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1033#supplementary-data

