
Frontiers in Immunology | www.frontiersin.

Edited by:
Qihui Shi,

Fudan University, China

Reviewed by:
Shengzhe Zhang,

University of Texas MD Anderson
Cancer Center, United States

Zhuo Wang,
Fudan University, China

*Correspondence:
Wei Zhai

jacky_zw2002@hotmail.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Immunology

Received: 22 March 2022
Accepted: 04 April 2022
Published: 03 May 2022

Citation:
Wang B, Xue Y and Zhai W (2022)

Integration of Tumor
Microenvironment in Patient-

Derived Organoid Models Help
Define Precision Medicine of

Renal Cell Carcinoma.
Front. Immunol. 13:902060.

doi: 10.3389/fimmu.2022.902060

MINI REVIEW
published: 03 May 2022

doi: 10.3389/fimmu.2022.902060
Integration of Tumor
Microenvironment in Patient-
Derived Organoid Models Help
Define Precision Medicine of
Renal Cell Carcinoma
Bingran Wang†, Yizheng Xue† and Wei Zhai*

Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Renal cell carcinoma (RCC) is a common urological tumor, with a poor prognosis, as the
result of insensitivity to chemotherapy and radiotherapy. About 20%–30% of patients with
RCC have metastasis at the first diagnosis, so only systemic treatment is possible. Due to
the heterogeneity of renal tumors, responses to drugs differ from person to person.
Consequently, patient-derived organoid, highly recapitulating tumor heterogeneity,
becomes a promising model for high-throughput ex vivo drug screening and thus
guides the drug choice of patients with RCC. Systemic treatment of RCC mainly
targets the tumor microenvironment, including neovasculature and immune cells. We
reviewed several methods with which patient-derived organoid models mimic the
heterogeneity of not only tumor epithelium but also the tumor microenvironment. We
further discuss some new aspects of the development of patient-derived organoids,
preserving in vivo conditions in patients with RCC.

Keywords: patient-derived organoids, renal cell carcinoma, tumor microenvironment, precision
medicine, immunotherapy
INTRODUCTION

In recent years, with the advanced knowledge of tumor biological behaviors, especially in the aspect
of tumor heterogeneity, tumor treatment became personalized under the guidance of molecular
classification (1–3). To further investigate the mechanisms of oncogenesis, tumor invasion, and
metastasis and its translation to novel therapies, in vitro models such as cell lines are fundamental.
However, a significant gap exists between the modeling system and in vivo conditions of patients,
resulting in the inaccuracy of the predictive ability of several preclinical models. To shorten the gap,
patient-derived models, including patient-derived primary tumor cells (PDTCs), patient-derived
organoids (PDOs), and patient-derived xenograft (PDX) have been developed as a preclinical model
for nearly all kinds of solid tumors (4).

Renal cell carcinoma (RCC) ranks the 6th most commonly diagnosed cancer in men and 10th in
women (5). RCC can be majorly divided into three subtypes, including chromophobe (chRCC),
papillary (pRCC), and a most common type clear cell RCC (ccRCC), accounting for 75% of cases of
RCC (6). In addition, a large number of patients present with metastatic RCC at the time of the first
org May 2022 | Volume 13 | Article 9020601
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diagnosis, which makes radical surgery infeasible (7).
Consequently, here we represent the current knowledge of
PDO establishment in patients with RCC and its significance
in personalized medicine.
EVOLUTION OF PATIENT-DERIVED
ORGANOID MODEL IN RENAL
CELL CARCINOMA

Organoids are 3D cultured cell models that partially preserve the
characteristic architecture of organs, for example, crypt structure in
intestinal organoids (8) and tubule structure in kidney organoids
(9). PDO models are organoids established from tumor tissues
resected from patients, which recapitulate hallmarks of parental
tumors both histologically and genetically. Immunohistochemistry,
whole-exosome sequencing, and RNA sequencing are routinely
used to validate that PDO models are highly consistent with
parental tumors and retain inter-tumor heterogeneity (10–12).
Moreover, single-cell RNA sequencing (scRNA-seq) technology is
expected to provide us with a more comprehensive genetic
landscape of PDOs to reveal intra-tumor heterogeneity. Kumar
et al. applied scRNA-seq to show the transcriptome profiles of PDO
models and validate the preservation of intra-tumor sublineage
heterogeneity and transcriptional plasticity of parental gastric cancer
tissue (13). In addition, the spatial transcriptome platform has the
ability to preserve the spatial architecture of PDOs in the process of
scRNA-seq, allowing the investigation of interactions between
tumor and microenvironment (14). In the future, more detailed
validation of PDO models via the latest technologies should be
emphasized. As a result, biobanks of PDOs with comprehensive
multi-omics information will be established, and researchers will
benefit from such a database unprecedentedly.
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In comparison to PDX, PDO models take less time to cultivate
and have a higher success rate, which is feasible for high-throughput
drug screening (15). When compared with PDTC, PDO models
show the ability to preserve tumor heterogeneity. Consequently,
PDO is a precisely predictive model for drug screening, which
mirrors the heterogeneity of drug efficacy. In several cancer types,
including lung cancer (16), colorectal cancer (CRC) (17), prostate
cancer (12), and glioblastoma (18), PDO models have become a
drug screening platform. PDO models also function as valuable
models to study tumor evolution. Lee and colleagues have
established a PDO bank for bladder cancer and revealed that
generally constant truncal mutations with variation in subclonal
mutations appear during passaging (19).

In RCC, PDO functions as a model for drug screening and
thus guides the selection of effective therapeutic agents. Bolck
and colleagues established a biobank of patient-derived 3D
ccRCC model, showing a high correspondence to parental
tumor and recapitulation of intra- and inter-tumoral
heterogeneity, determined by extensive DNA sequencing (20).
Furthermore, Fendler et al. characterized and isolated cancer
stem cells (CSCs) in ccRCC, which determine the
progressiveness of the tumor, and applied CSCs to cultivate
ccRCC PDO models. They also validated the significance of the
WNT and NOTCH signaling pathways mediating the growth of
PDO (21). Na et al. established a concrete protocol of PDO
culture directly from surgical resected ccRCC sample. Such PDO
preserves the morphology and biomarker expression of parental
tumors (22). Grassi et al. also reported an approach to
establishing and passaging normal kidney organoids and RCC
PDO from surgically resected tissues. They also achieved the
transformation between PDO and PDX, which not only
guaranteed the long-term establishment of PDO but also paved
the way for investigating tumor evolution in RCC (23) (Table 1).
TABLE 1 | Published articles on establishment of patient-derived organoids of renal cell carcinoma.

Histological type Tissue collection Establishment Success rate Maximum passage Drug screening panel Reference

ccRCC Surgical specimen 3D patient-derived cells 26/35 (74%) N/A N/A (20)
ccRCC Surgical specimen Cancer stem cells 41/55 (74%) N/A N/A (21)
ccRCC Surgical specimen Matrigel submerged tumor cells N/A N/A N/A (22)
Normal tissue
ccRCC Surgical specimen Matrigel submerged tumor cells 10/15 (67%) 15 Sunitinib (23)
Normal tissue 13/13 (100%) 15 Temsirolimus
ccRCC Surgical specimen Matrigel submerged tumor cells 15/20 (75%) 15 Sunitinib (24)

Axitinib
Pazopanib
Sorafenib
Cabozantinib

ccRCC Surgical specimen Minced tissue in type I collagen matrix ALI
system

15/26 (57%) 4 Nivolumab (25)
pRCC 3/3 (100%)
chRCC 1/1 (100%)
Wilms’ tumor 1/1 (100%)
ccRCC Surgical specimen Minced tissue in type I collagen matrix ALI

system
20/26 (77%) 3 Nivolumab (26)

pRCC 4/5 (80%) Cabozantinib
chRCC 0/1 (0%)
UC 7/8 (88%)
Oncocytoma 1/3 (33%)
Ma
y 2022 | Volume 13 | Art
ccRCC, clear cell renal cell carcinoma; pRCC, papillary renal cell carcinoma; chRCC, chromophobe renal cell carcinoma; UC, urothelial carcinoma; ALI, air–liquid interface.
N/A, Not applicable.
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TUMOR MICROENVIRONMENT IN RENAL
CELL CARCINOMA TREATMENT

In patients with advanced RCC, systemic therapy should be
initiated. However, RCC does not show a favorable response to
chemotherapies. Recent advances in the molecular mechanism of
RCC, especially the inactivation of von Hippel–Lindau (VHL),
paved the way for the identification of systemic treatment
targeting the tumor microenvironment (TME) (27). Research
revealed that the inactivation of VHL contributes to decreased
ubiquitin-mediated degradation of a subunit of heterodimeric
hypoxia-inducible factor (HIF) transcriptional factor (28).
Constitutively accumulated HIF complex enhances the
expression of downstream genes, especially vascular endothelial
growth factors (VEGF), which leads to the angiogenesis of RCC.
Consequently, a specific HIF-2a inhibitor MK-6482 had
favorable performance in a recent phase I/II clinical trial (29).
Multitargeted, small molecular tyrosine kinase inhibitor (TKI)
targeted VEGF, and platelet-derived growth factor (PDGF) such
as pazopanib and sunitinib has been proven effective as adjuvant
therapy in several clinical trials (30–32). Also, bevacizumab, a
monoclonal antibody for VEGF, showed clinical efficacy in
metastatic RCC (32). Upon understanding the role of immune
escape mechanisms in tumor proliferation and invasion since
2013, several immune checkpoints such as PD-1, PD-L1, and
CTLA-4 have emerged as targets to reverse immune exhaustion
in TME and counteract negative consequences (34). Such
immune checkpoint blockades (ICBs) also benefit patients with
advanced RCC. Nivolumab, like a monoclonal antibody for PD-
1, has demonstrated a survival benefit in randomized controlled
clinical trials (RCTs) (35). Another PD-1 antibody,
pembrolizumab, also improves progression-free survival (PFS)
of patients with advanced RCC in combination with axitinib
compared with sunitinib as a single drug (36).

As illustrated above, unlike a range of solid tumors, systemic
therapies of RCC mainly target TME, rather than the malignant
epithelium. Consequently, it is necessary to review the
mechanisms of TME mediating proliferation and invasion of
RCC, which provides precision medicine with targets. Finally, we
can work out the importance of integrating TME in PDO as
prognostic models and tools for drug screening.

Hypoxia
HIF is composed of one a subunit with three isoforms (HIF-1a,
HIF-2a, and HIF-3a) and one b subunit with two isoforms (HIF-
1b and HIF-2b). The b subunit of HIF is constitutively expressed,
while the a subunit is induced under hypoxia and dimerizes with
the b subunit to form a complex, promoting the transcription of
target genes (37). However, the isoforms of the a subunit play
distinct but also overlapping roles during hypoxia response. HIF-
1a preferentially induces apoptotic and glycolytic pathways, while
HIF-2a promotes growth, cell proliferation, and angiogenesis. In
many types of solid tumors, both HIF-1a and HIF-2a mediate
tumorigenesis and are associated with poor prognosis (38).
However, in ccRCC, HIF-2a has tumorigenic activity, whereas
HIF-1a functions as a tumor suppressor (39). HIF-2a is also
proven as a potential therapeutic target for ccRCC (40).
Frontiers in Immunology | www.frontiersin.org 3
Angiogenesis
VHL gene was originally described as the gene responsible for
VHL syndrome, a condition associated with an increased risk of
retinal angiomas, hemangioblastomas, and ccRCC (41). Based on
advanced knowledge of molecular pathways, genetic alterations
in VHL were identified as an essential initiator of the
tumorigenesis of ccRCC via promoting angiogenesis. Actually,
it has been reviewed that up to 90% of sporadic ccRCC have the
presence of abnormal VHL function (42). VHL proteins complex
with Elongin B, Elongin C, and Cul2, which are components of
an E3-ubiquitin ligase complex responsible for the proteasome
degradation of two subunits of HIF: HIF-1a and HIF-1b. As the
result of insufficient degradation, impaired function of VHL will
lead to the accumulation of HIF and upregulated transcription of
downstream effector genes , such as VEGF, PDGF,
erythropoietin, and transforming growth factor (TGF), which
play a crucial role in angiogenesis and tumorigenesis (43).

Immune Cell Infiltration
Historically, the systemic therapy of RCC is initiated by cytokine-
based immunotherapy. Interleukin-2 (IL-2) and interferon-a (IFN-
a) were considered standard therapy for advanced RCC for a long
time (44); even a very small number of patients with advanced RCC
have complete responses (CRs) under high-dose IL-2, which is
attributed to the mobilization of immune effector cells and the
relatively increased number of natural killer cells and CD8+ T cells
(45). Among solid tumors, RCC ranks among the highest
infiltration of immune cells, with predominantly T cells (50%),
followed by tumor-associated macrophages (TAMs, 25%), natural
killer (9%), B cells (4%), and other cells (46). However, tumor-
infiltrating T cells, different from T cells in normal kidney tissue, are
mainly composed of CD8+ T cells with high expression of co-
inhibitory receptors such as PD-1 and low levels of proliferation
marker Ki-67, which indicate an immune exhaustion state.
Moreover, CD8+ T cells in RCC prove to be in a metabolic
impaired state with reduced glucose uptake and mitochondrial
function, worsening the immune exhaustion state of RCC (47).
The immune checkpoint signaling pathway physiologically
expressed in normal tissues functions as an inhibitory or
stimulatory signaling transducer to protect tissue from
autoimmune attack. However, cancer cells evade the immune
system and enhance the immune exhaustion state of TME via
overexpression ligands or receptors of the immune checkpoint.
Consequently, ICBs targeting PD-1, PD-L1, and CTLA-4 have
shown great effect in reversing immune exhaustion and
modulating the metabolism state of immune cells in RCC.
PATIENT-DERIVED ORGANOIDS
RECAPITULATE TUMOR
MICROENVIRONMENT

RCC is a complex and highly heterogeneous cancer. As a result,
treatment responses vary from patient to patient. Nowadays,
systemic treatment choices are largely dependent on Memorial
Sloan Kettering Cancer Center (MSKCC) scoring (48), suggested
May 2022 | Volume 13 | Article 902060

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. PDO and Precision Medicine in RCC
by guidelines while lacking biomarkers or prognostic models to
tailor treatment plans to individual patients. However, the
advances in PDO during the last two decades shed light on the
precision medicine of RCC. PDO as a model preserving majority
of the characteristic of patients’ tumors is promising in
predicting the drug response of individuals. Kazama and
colleagues found that RCC PDO models exhibited different
responses to TKIs, including sunitinib, pazopanib,
cabozantinib, axitinib, and sorafenib. However, responses to
PDO require further validation of clinical data (24). A recent
prospective clinical study demonstrated the predictive value of
PDOs for irinotecan-based chemotherapy in metastatic CRC
(49). Wang et al. verified that the drug screening test in PDO
models was consistent with clinical efficacy in patients with
intrahepatic cholangiocarcinoma (50).

Recent guidelines of RCC stress systemic treatment
manipulating TME (51). As illustrated above, multiple targets
TKIs inhibit angiogenesis by disturbing the signaling
transduction of VEGFR or PDGFR, while ICBs target tumor-
infiltrating CD8+ T cells and reverse the immune exhaustion
state, both of which modulate TME of RCC instead of tumor
epithelium. However, the first-generation PDOs contain
exclusively malignant epithelium but impaired TME, thus
exhibiting poor performance in predicting clinical outcomes,
which hinders the identification of treatment-sensitive patients
via drug screening based on PDO models and the discovery of
predictive biomarkers of drug response (52). Consequently, it is
necessary to establish novel PDO models that robustly
recapitulate the TME, including immune cell infiltration and
interaction with tumor cells, cancer-associated fibroblast (CAF)
infiltration, angiogenesis, and extracellular matrix.

Co-Culture
To overcome the lack of immune cell infiltration in first-
generation PDOs, thus establishing a drug screening model of
ICB and investigating the interactions between immune cells and
tumor epithelium, co-culture with immune cells was developed.
A few studies have shown promising results. Dijkstra and
colleagues obtained tumor-reactive T cells from the co-culture
of PDOs from CRC and non-small cell lung cancer (NSCLC)
with peripheral blood lymphocytes (PBLs) (53), indicating that
the co-culture system can be used to establish individualized
PDO models to study immune therapy and interactions between
tumor-infiltrating lymphocytes (TILs) and tumor epithelium. In
other cancer types, such as melanoma, breast cancer, pancreatic
cancer, and lung cancer, PDO co-culture with PBLs or peripheral
blood mononuclear cells (PBMCs) has been a feasible platform
to study personalized immune therapy responses (54–57).
However, the co-culture system has not been widely applied in
the establishment of RCC PDOs. Since RCC presents high
immune infiltration, and immune therapy is an essential
component of systemic treatment of RCC, it is worthwhile to
develop a co-culture system in RCC PDO as a model for drug
screening or as a model for investigating the interaction between
tumor epithelium and infiltrated immune cells. Recently, Rausch
et al. developed a 3D spheroid co-culture system of RCC cell lines
Frontiers in Immunology | www.frontiersin.org 4
and immune cells isolated from PBMCs and recapitulated the
responses of drug combinations (58). However, the RCC cell
lines are homologous, without the representation of inter-tumor
heterogeneity. Grassi et al. successfully established PDO in
patients with RCC, which preserved the expression of PD-L1
and PD-L2, suggesting a promising application in a co-culture
system (23). Consequently, generating PDO models of RCC co-
culture with immune cells is substantial and possible in the
near future.

Air–Liquid Interface
As illustrated above, RCCs have high immune infiltration and
present substantial heterogeneity, which contributes to the
difficulty in the prediction of drug responses and creates
exigency for establishing PDO models recapitulating the
patients ’ situation as closely as possible for studying
personalized medicine. However, co-culture with PBMCs or
TILs, albeit preserving immune cells in TME, fails to preserve
the diversity of immune cell types in TME, which proves
essential in drug responses. Moreover, the physical architecture
of TME is also disturbed in the process of co-culture.
Consequently, a novel generation of organoids based on the
air–liquid interface (ALI), which closely resembles the in vivo
situation, has been developed and applied as a preclinical tool for
the investigation of several diseases (25, 59, 60). ALI-PDO
method successfully preserves the complex histological TME
architectures via mechanically mincing, rather than
dissociating tissue with collagenase, which is commonly
applied in the first generation. The addition of IL-2 in the
medium also plays a central role in preserving the viability of
CD3+ TILs (25). The ALI methodology was initially introduced
into the culture of murine intestinal organoids to maintain
mesenchymal cells and supply paracrine signaling (61–63).
Until 2018, Neal and colleagues optimized protocols for
establishing the ALI-PDO model in a series of surgically
resected tumors, including colon adenocarcinoma, bile duct
ampulla adenocarcinoma, lung adenoma, and renal clear cell
carcinoma. At the histological level, ALI-PDO accurately
presents the heterogeneity and architecture of primary tumor
with retention of stromal, CAFs, and diversity of immune cell
population. At the gene level, scRNA-seq shows a high
concordance in TCR between ALI-PDO and RCC tumors.
Moreover, ALI-PDO has been proved to confidently
recapitulate the effect of PD-1/PD-L1-dependent immune
checkpoint (25). The team of Neal also developed a method
for determining the responsiveness of ALI-PDO to
immunotherapeutic agents by measuring mRNA or protein
markers associated with immune activation, which paved the
way for utilizing ALI-PDO as an immunotherapeutic drug
screening model (25). Two years later, Esser and colleagues
applied the protocols of Neal et al. to cultivate ALI-PDOs from
renal tumors and test drug efficacy. ALI-PDOs from RCC
showed heterogenic responses to target therapy (TKI) and ICB,
which is in line with the clinical situation. By applying this
model, researchers also recapitulated that responses of
nivolumab are dependent on CD8+ T-cell infiltration, rather
May 2022 | Volume 13 | Article 902060
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than the expression level of PD-L1 in tissue (26, 64). This study
provides the perspective of ALI-PDO in functioning as a
preclinical model for tailoring RCC treatment plans. Moreover,
Vilgelm and colleagues reported a protocol of PDO cultivation
based on fine-needle aspiration (FNA), which is adapted to drug
screening. They applied Wnt3A and IL-2-containing medium to
effectively preserve the viability of immune cells in RCC PDO
(65). Vilgelm et al. demonstrated the ability of predicting clinical
outcomes before initiating systemic treatment of RCC patients
by cultivating PDOs from diagnostic FNA (65). All of these
studies show that ALI-PDO is a promising preclinical model,
reliably recapitulating both heterogeneity and architecture of
TME, which has the ability to predict responses of first-line
treatment of RCC, including TKIs and ICBs, and in turn guide
personalized medicine.

Tissue Slice Culture
To retain the heterogeneity and architecture of TME in RCC
individualized models, patient-derived tissue slice culture
(PDTSC) has been promoted. The first PDTSC for RCC was
prompted by Weissinger and colleagues in 2013, functioning as a
model to study the oncogenic signaling pathway of RCC (66).
Martin and colleagues refined ex vivo cultivation procedures of
PDTSC for hepatic metastatic CRC (67), which was utilized by
Stenzel et al. to examine the effect of nivolumab in RCC by
monitoring TILs. Investigators revealed that nivolumab-
mediated reduction in PD-1 expression and altered activation
status of TILs, especially CD8+ T cells, are indicators for
responses to ICBs (68). Roelants et al. also developed a PDTSC
model for RCC to evaluate treatment responses (69). Slice culture
from RCC showed perfect consistency with parental tumor both
histologically and genetically, which had the ability to evaluate
the cytotoxic effect of targeted therapies. By applying PDTSC
models, CD8+ T cells were predicted as markers indicating
immunotherapy responses, which is in line with contemporary
research (70).

Here, we concluded the characteristics of PDO models and
differences between novel generation PDO models in Table 2.
Frontiers in Immunology | www.frontiersin.org 5
DISCUSSION

PDO is a reliable and economical model for drug screening for
various cancer types. The results of drug screening not only
indicate clinical treatment choice but also can be used to explore
predictive biomarkers of drug responses. In this review, we
summarized recent advances in the establishment of PDO
models in patients with RCC. Unfortunately, the majority of
reported culture methods remain the first generation PDO,
which lacks the infiltration of the TME. However, the main
targets of systemic treatment in RCC are neo-vasculature and
infiltrating immune cells. Consequently, it is urgent to develop
PDO models with preserved TME in patients with RCC. In other
cancer types, co-culture, ALI, and TSC have been extensively
applied to recapitulate the microenvironment. In the future,
more effort should be put into the integration of such methods
in RCC PDO. Moreover, the peripheral immune system, such as
circulating immune cells and peripheral lymph nodes,
contributes to the responses of immune therapy (71). Chimeric
antigen receptor redirected T (CAR-T) cells also show effects on
solid tumors (72). Consequently, in the near future, the
interaction between cancer epithelium and peripheral immune
system cannot be ignored, especially in RCC, a tumor with highly
infiltrated immune cells, which means more holistic models, and
integrating systemic conditions in PDO will attract more
interest. For example, organ-on-a-chip models highly mimic
the physical condition by seeding multiple cell types of the
human organ into engineered chambers with perfusion, which
provides new perspectives for the investigation of a holistic
response to the drug (73). Recently, organ-on-a-chip models
are mainly based on microfluidic devices (74). With the
development of organoids, “organoids-on-chip” will also
appear to recapitulate in vivo environment more exactly.

In conclusion, PDO as an essential tool for personalized
medicine goes through an evolution during the past few years,
with a more accurate recapitulation of in vivo conditions. As a result
of highly infiltrated immune cells in RCC, progress in mimicking
the RCC TME is still needed in the development of PDO.
TABLE 2 | Comparisons between conventional and next-generation patient-derived models of renal cell carcinoma.

First-generation PDO PDO plus

Co-culture ALI TSC

Histological characteristics Preserved Preserved Preserved Preserved
Genetic alteration Preserved Preserved Preserved Preserved
Component of TME ECM − − + +

Immune cells − + + +
CAFs − − + +

Architecture of TME − − + −

Availability of live cell analysis + + + −

Testable drug classes TKIs TKIs; immunotherapy TKIs; immunotherapy TKIs; immunotherapy
Reliability as preclinical model + ++ +++ ++
May 2022 | Volum
PDO, patient-derived organoid; ALI, air–liquid interface; TSC, tissue slice culture; TME, tumor microenvironment; ECM, extracellular matrix; CAFs, cancer-associated fibroblasts; TKI,
tyrosine kinase inhibitors.
#-, does not have or not available; +, perform fine; ++: perform very well; +++: perform excellent.
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