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A B S T R A C T   

Backgrounds: The prognostic significance of ferroptosis-related genes is well known. However, survival- and 
ferroptosis-related genes are not currently considered in risk scoring models for diffuse large B-cell lymphoma 
(DLBCL). 
Materials and methods: Ferroptosis regulators and markers were downloaded from the FerrDb database. The 
transcriptome profiling data were collected from the cancer genome atlas (TCGA). Transcriptome data and 
corresponding clinical information of DLBCL were downloaded from the gene expression omnibus (GEO). The 
validation data were downloaded using the UCSC Xena browser. ConsensusClusterPlus was used to categorize 
DLBCL samples according to gene expression profiles. The survival function was plotted with the Kaplan-Meier 
plots. The nomogram was built using multivariate logistic regression analysis and the Cox proportional hazards 
regression model. 
Results: Based on the GSE11318 dataset of 203 samples and 267 ferroptosis-related gene expression profiles, we 
identified four clusters. A total of 19 survival-related genes were found associated with ferroptosis. The prog-
nostic risk scoring model was constructed based on the regression coefficients. The obtained area under the 
receiver operating characteristic curve (AUC) values were 0.769, 0.801, and 0.791 for 1-, 3-, and 5-year survival, 
respectively. DLBCL samples with cluster 2 or cancer stage IV have shorter survival. Correlations between the 
immune infiltration and risk scores of the 12 immune cells were demonstrated. The response of DLBCL to 
doxorubicin was effectively validated by the risk scoring model. 
Conclusions: In this study, a ferroptosis-based risk scoring model for patients with DLBCL was constructed and 
validated in an independent dataset. This risk score model has a better efficacy in predicting survival compared 
to clinical characteristics.   

Introduction 

Diffuse large B-cell lymphoma (DLBCL) is an aggressive lymphoma 
that accounts for approximately 30% of malignant lymphomas [1]. As a 
clinical and genetic heterogeneous lymphoid malignancy, DLBCL 

exhibits a wide range of clinical outcomes and molecular signatures [2]. 
Patients typically display rapidly expanding lymphadenopathy and 
constitutional symptoms that necessitate immediate treatment [3]. 
More than half of DLBCL patients can be cured by current multidrug 
chemotherapy, radiation and immunotherapy regimens combined with 
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autologous stem cell transplantation, which is one of the successes of 
modern cancer treatment [4,5]. Recently, several whole-genome and 
whole-exome sequencing studies have reported more than 200 DLBCL 
genes with recurrent mutation [6–9], likely located in genes functionally 
associated with DLBCL tumors [10,11]. Ferroptosis has been recently 
revealed correlated with resistance to chemotherapeutic drugs and 
associated with the anti-tumor efficacy of immunotherapy [12,13]. 
Hence, therapeutic exploitation based on ferroptosis has shown to be of 
interest for cancer treatment. 

Ferroptosis is an iron-dependent and oxidative form of cell death, 
distinct from autophagy, classic necrosis, apoptosis and other forms of 
cell death [14]. The bluntness of cellular glutathione-dependent anti-
oxidant defenses initiates ferroptosis process, causing the enrichment of 
toxic lipid reactive oxidative species, membrane damage and then cell 
lysis [15]. Different degrees of ferroptosis sensitivity have been observed 
in cancer cells from different tissues [16,17], suggesting a roles of fer-
roptosis in cancer development. Recently, experimental data showed 
that cholesterol uptake-addicted lymphoma cells decrease glutathione 
peroxidase expression, leading to an accumulation of 
membrane-oxidized lipids and cell death by a mechanism consistent 
with ferroptosis [18]. Studies confirmed that imidazole ketone erastin 
used as ferroptosis inducers, causes glutathione depletion and lipid 
peroxidation, exerting an antitumor effect in DLBCL [19]. In Burkitt’s 

lymphoma, artesunate was demonstrated to induce ferroptosis, leading 
to an endoplasmic reticulum stress response [20]. In addition, the 
prognostic significance of ferroptosis-related genes is becoming 
increasingly recognized [21,22]. Of particular interest, survival-related 
ferroptosis factors can be used for DLBCL scoring. Moreover, ferroptosis 
has been recently associated with resistance to chemotherapeutic drugs 
and associated with the anti-tumor efficacy of immunotherapy. There-
fore, using ferroptosis as a therapeutic strategy is of interest for treat-
ment of cancers, including DLBCL. 

Risk score models are statistical tools used to estimate the absolute 
risk of a disease, for instance, DLBCL, in the future for currently healthy 
individuals with specific risk factors [23–25]. With risk assessment 
models, it is possible to predict the distribution of absolute risk in a given 
population and ascertain individuals at high risk, contributing to 
intensive surveillance and chemoprevention [25–27]. Hence, it is 
necessary to improve the accuracy of risk evaluation and prognosis for 
DLBCL. Currently, a number of risk scoring models are available for 
DLBCL. For example, Saez et al. built a biological predictive model using 
eight protein markers to assign patients with DLBCL to different risk 
categories [25]. Schmitz et al. established the risk model for central 
nervous system DLBCL consisting of the international prognostic index 
factors to estimate the risk of relapse, and this model showed a high 
reproduction [23]. In addition, other predictive factors such as immune 

Fig. 1. Consensus clustering analysis obtained 4 clusters of DLBCL based on ferroptosis-related genes expression signature. (A) The consensus clustering heatmap of 
267 ferroptosis-related genes from 203 samples (GSE11318 from GEO); (B) The Kaplan-Meier survival probability of 204 patients with DLBCL categorized into 4 
clusters; (C) The heatmap for the 267 ferroptosis-related gene expression and 203 DLBCL samples. DLBCL, diffuse large B-cell lymphoma. 
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and inflammatory genes and non-coding RNA like long non-coding 
RNAs (lncRNAs) and microRNA (miRNA) have also been used to 
establish risk scoring models [28–30]. Recently, Chen et al. established a 
personalized risk assessment model based on ferroptosis-related gene 

signature for patients with DLBCL [31]. However, whether these 
ferroptosis-related genes are associated with survival remains to be 
investigated. 

Studies have shown that ferroptosis has great potential in the 

Fig. 2. Function and pathway analysis for differentially expressed genes among the four clusters. GO annotation of the enrichment of differentially expressed genes 
in (A) biological process, (B) molecular function, and (C) cellular component; KEGG analysis for the enrichment of differentially expressed genes among the four 
clusters. GO, gene ontology; BP, biological process; MF, molecular function; CC, cellular component; KEGG, Kyoto encyclopedia of genes and genomes. 
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treatment of cancer, and ferroptosis inducers such as sorafenib are 
currently used in the clinic. Studies have shown that ferroptosis shows 
great potential in the treatment of cancer [32,33]. In this study, we first 
obtained disease-related ferroptosis and performed clustering analysis. 
Then, we screened the prognosis-related ferroptosis factors and con-
structed a risk scoring model based on ferroptosis factors, followed by 
validation for its efficacy. The differences in prognosis between high and 
low risk were also analyzed. 

Materials and methods 

Data collection of ferroptosis regulators and markers 

Ferroptosis regulators and markers were downloaded from the 
FerrDb database (URL: http://www.zhounan.org/ferrdb). In summary, 
259 regulators, including 150 drivers (http://www.zhounan.org/ferrd 
b/fordownload/1_info_driver.csv) and 109 suppressors (http://www. 
zhounan.org/ferrdb/fordownload/1_info_suppressor.csv) were gath-
ered, and 123 makers (http://www.zhounan.org/ferrdb/fordownload/ 
1_info_marker.csv) were collected. 

Collection of transcriptome data for DLBCL 

The transcriptome profiling data were collected from the cancer 
genome atlas (TCGA), and the transcriptome data was saved as HiSeqV2 
(https://tcga-xena-hub.s3.us-east-1.amazonaws.com/latest/TCGA. 
DLBC.sampleMap%2FHiSeqV2.gz), and the corresponding clinical data 
were stored in DLBC_survival.text file (https://tcga-xena-hub.s3.us-east 
-1.amazonaws.com/latest/survival%2FDLBC_survival.txt.gz). Mean-
while, transcriptome data and corresponding clinical information of 
DLBCL were downloaded from the gene expression omnibus (GEO) 
using the University of California Santa Cruz (UCSC) Xena browser. The 
GEO accession NO. was GSE11318, and the clinical information was 
saved in clinical_GPL570.csv. When a gene has multiple expressions in 
the same sample, the expression of the one with the largest mean 
expression is retained. 

Validation data and medicine information for DLBCL 

The validation data were downloaded using the UCSC Xena browser. 
The transcriptome data with a GEO accession NO. GSE10846 and clin-
ical information saved in clinical_GSE10846.csv and clin-
ical_GSE10846_stage.txt were derived from CEO database. The 
treatment and medicine information for DLBCL (saved in 
TCGA_DLBC_drug_clinical.txt) was downloaded using the TCGAbiolinks 
package [34]. 

Bioinformatics analysis 

Clustering analysis 
ConsensusClusterPlus (available through the Bioconductor project: 

http://www.bioconductor.org/) was used to categorize DLBCL samples 
according to gene expression profile [35]. The samples were clustered 
by the pam algorithm generating consensus in unsupervised class dis-
covery. Ultimately, samples can be differentiated into subtypes based on 
transcriptomic data sets, allowing for the discovery of new disease 
subtypes or the comparative analysis of different subtypes. 

Survival analysis 
The relationship between the clustered subtypes and survival time 

and outcome of DLBCL was investigated. The survival function was 
plotted with the Kaplan-Meier plots. Between-group differences in sur-
vival functions were assessed with a weighted log-rank test was done for 
comparing between-group differences in survival functions. Addition-
ally, the association between clinical indicators of DLBCL, including 
stage, lactate dehydrogenase ratio, and risk score and survival outcome, 
was investigated, and the risk and protective factors were filtered with p 
< 0.05. 

Screening of differentially expressed genes 
Differentially expressed genes between the clustering samples were 

screened using analysis of variance, and p < 0.05 was accepted. T-test 
was used for comparisons between the two groups, and p < 0.05 indi-
cated the significance. 

Fig. 3. Expression and survival analysis of ferroptosis-related genes in DLBCL. (A) p-values and hazard ratios of the 19 genes associated with ferroptosis and survival; 
(B) Penalty values obtained by LASSO cross-validation; (C) Ferroptosis factors and regression coefficients after dimensionality reduction of optimal penalty values; 
(D) Expression profiles of 14 genes were compared between cluster 1, cluster 2, cluster 3 and cluster 4 by T-test. Kaplan-Meier survival probabilities were compared 
between the two groups with high and low gene expression. DLBCL, diffuse large B-cell lymphoma. 
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COX-LASSO regression analysis 
Univariable Cox regression analysis was carried out to screen the 

survival- and ferroptosis- related factors. A least absolute shrinkage and 
selection operator (LASSO)-type regularization method was used to 
penalize the factor data. The obtained model shrank the coefficients for 
non-informative factors toward zero, the reduced variance was ac-
quired, and clustering performance was improved. Prognostic risk 
scoring models associated with ferroptosis-related factors in DLBCL 
were constructed based on the regression coefficients of these factors. 

Immune infiltration analysis 
To study the immune cell profile of each sample, the cell-type 

identification by estimating relative subsets of RNA transcripts 
(CIBERSORT) algorithm was used to analyze the abundance of member 
cell types based on gene expression data, and the CIBERSORT R package 
was downloaded for local use (available: http://cibersort.stanford.edu/) 
[36], and the solution of the kernel function is obtained by deconvolu-
tion of the SVM algorithm as the immune cell infiltration label. 

Nomogram establishment for cancer prognosis 
The nomogram was built using multivariate logistic regression 

analysis and the Cox proportional hazards regression model. Each 
influencing factor in the model was assigned a score at different value 
intervals according to the degree of contribution of the influencing 
factor to the outcome, i.e., the magnitude of the regression coefficient. 
The individual scores were then summed and obtained the total score. A 
functional transformation relationship between the total and the 

probability of the outcome was used to calculate the predictive value of 
the outcome for that individual. Ultimately, the complex regression 
equations were transformed into a visual graph, making the results of 
the predictive models more readable and to facilitate disease evaluation. 

Results 

Clustering and gene function analysis 

Based on the GSE11318 dataset of 203 samples and the expression 
profile of 267 ferroptosis-related genes, the consensus clustering anal-
ysis identified four clusters were obtained by the consensus clustering 
analysis (Fig. 1A). The Kaplan-Meier survival analysis indicated that 
cluster 1, cluster 2, and cluster 3 had a significantly different in survival 
probability. Cluster 3 samples had an improved prognosis compared to 
cluster 1, and cluster 1 had a better prognosis compared to cluster 2 
(Fig. 1B). In addition, there was a more significant difference in gene 
expression was found between cluster 1 and cluster 2, with a total of 115 
genes were identified showing interclass differences using ANOVA (p < 
0.05) (Fig. 1C). Next, we performed a functional analysis of the 115 
differentially expressed genes among the four clusters was next per-
formed. The top 9 biological processes corresponded to 33 genes, and 
these processes were related to the ferroptosis procedure, including re-
sponses to oxidative stress, chemical stress, extracellular stimulus, 
external stimulus, nutrient levels, and starvation (Fig. 2A). The 17 
ferroptosis-associated genes mainly possess molecular functions like 
ubiquitin-protein ligase binding, tetrapyrrole binding, ubiquitin-like 

Fig. 4. Validity assessment of prognostic models and risk scores of clinical characteristics for DLBCL. (A) Survival probability of patients with high and low risks; (B) 
The AUC of the model containing risk categories and scores for 1, 2, and 3 -year survival rate; The AUC of the model based on (C) clinical stage, LDH ratio, and risk 
score, as well as (D) age, gender and risk score; (E) Univariate and (F) multivariate cox regression analyses for validation of the effect of clinical characteristics and 
risk scores on patient survival; (G) The heatmap of 16 ferroptosis and survival -related genes; (H) Sample size and survival status of groups with high and low risks; (I) 
Risk scores of 4 clusters (cluster 1–4) and 4 stages (stage 1–4) of diffuse large B-cell lymphoma; (J) Effects of LDH ratio (high and low), age (old and young), and 
gender (female and male) on risk scores. AUC, the area under the receiver operating characteristic curve; LDH, lactic dehydrogenase; DLBCL, diffuse large B- 
cell lymphoma. 
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ligase binding, and heme-binding (Fig. 2B). We observed that 8 protein- 
coding proteins were linked to cellular components like mitochondrial 
outer membrane, organelle outer membrane, and outer cell membrane 
(Fig. 2C). KEGG pathway enrichment analysis indicated that these 
differentially expressed genes mediated the autophagy process, ferrop-
tosis, necroptosis, neurodegeneration-multiple diseases, shigellosis 
infection, and Kaposi sarcoma-associated herpesvirus infection, etc. 
(Fig. 2D). Overall, survival-related ferroptosis factors show biological 
roles like responses to oxidative stress. 

Identification of ferroptosis and survival-related genes and construction of 
prognostic risk scoring model 

Survival-related genes were identified based on ferroptosis-related 
genes with different expression profiles using one-way Cox regression 
analysis. Here, 19 survival-related genes were found associated with 
ferroptosis (p < 0.05) (Fig. 3A). The 19 ferroptosis factors were sub-
jected to LASSO regression analysis for dimensionality reduction. The 
optimal penalty value lambda in the LASSO regression was first obtained 
using cross-validation (Fig. 3B). The regression coefficients of the 16 
ferroptosis factors were obtained based on this value (Fig. 3C). The 
expression differences of the genes among cluster 1, cluster 2, cluster 3, 
and cluster 4 were compared by t-test. The relationship between gene 
expression levels and survival probability was analyzed by the Kaplan- 
Meier survival curves. A total of 16 genes associated with ferroptosis 
and survival in DLBCL (Fig. 3D). Patients with high survival probability 
showed abundance in UBC, CAPG, EPAS1, ACVR1B, GABARAPL1, 
TFAP2C, and AKR1C3. However, MT1G, IREB2, TRIB3, ATF4, ATG3, 

CHAC1, and ULK2 were low expressed in patients with DLBCL, which 
was associated with high survival probability. The prognostic risk 
scoring model was constructed based on the regression coefficients and 
calculated as follows, risk Score = -0.006906*DRD4-0.1427*TFAP2C- 
0.03086*AKR1C3+0.08295*CHAC1+0.2237*ULK2+0.1026*CXCL2- 
0.2478*GABARAPL1+0.07055*TRIB3-0.01005*CYBB+0.4483*IREB2- 
0.02139*EPAS1+0.1521*MT1G+0.2654*ATG3- 
0.06966*CAPG+0.4052*ATF4+0.03599*UBC. 

Validity assessment of prognostic model 

To assess the validity of the prognostic risk score model, we used the 
risk score predicted by the model to classify the 203 DLBCL samples into 
two categories based on the median score (Fig. 4A). We also analyzed 
the predicted results of risk score classification for 1, 3, and 5 -year 
survival, and the obtained area under the receiver operating charac-
teristic curve (AUC) values were 0.769, 0.801, and 0.791, respectively 
(Fig. 4B). Comparing the predictive validity of clinical stages, lactate 
dehydrogenase ratio and risk score for 3-year survivals, the obtained 
AUC value was 0.765 (Fig. 4C). In contrast, the predictive validity of 
age, gender and risk score on 3-year survival of patients was 0.69 
(Fig. 4D). The effect of clinical characteristics and risk score on patient 
survival was verified using univariate and multifactorial Cox regression 
analysis, respectively, and risk score was found to be a more important 
risk factor (Fig. 4E, F). The expression of 16 ferroptosis-related factors 
in samples from high and low risk groups (Fig. 4G), sample size distri-
bution, and patient survival status (Fig. 4H) also demonstrated a 
consistent association between high risk and high mortality. In addition, 

Fig. 5. Verification of the prognostic scoring model for DLBCL and external confirmation of the nomogram based on GSE10846 dataset. (A) Survival probability of 
patients with high and low risks from GSE10846 dataset; (B) The AUC of GSE10846 dataset for 1, 2, and 3 -year survival rate; (C) Clinical characteristics and risk 
score for validating survival status of patients from GSE10846; (D) Univariate and multivariate analysis for testing the validity of the predictive model using 
GSE10846 dataset; (E) Nomogram was used to predict 1-year, 3-year and 5-year survival probability of DLBCL patients according to risk score, age, gender, clinical 
stage, LDH ratio and total points; (F) The predicted percentages and the observed probabilities of 1-year, 3-year and 5-year survival. DLBCL, diffuse large B-cell 
lymphoma; LDH, lactic dehydrogenase. 
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we found significantly different risk scores between cluster 1 and cluster 
2 and between cluster 2 and cluster 3. Among them, cluster 2 had a 
higher risk score than cluster 1 and cluster 3 (Fig. 4I). The risk score of 
cancer stage IV was also found to be significantly higher than that of 
stage I (Fig. 4J). These results suggest that DLBCL samples with cluster 2 
or cancer stage IV are associated with shorter survival. 

Validation of the prognostic scoring model for DLBCL and external 
confirmation of the nomogram 

Gene expression profiles from the GSE10846 dataset and the corre-
sponding clinical phenotypes and survival data were used to validate the 
constructed risk score model. The GSE10846 expression profile was 
input into the model, and the risk scores were obtained. Fig. 5A shows 
that DLBCL patients with low risk had a high survival probability. The 
predictive validity of risk scores for 1, 3, and 5 -year survival probability 
is presented in Fig. 5B, with obtained AUC values of 0.673, 0.708 and 
0.716, respectively. Clinical characteristics (age, gender, stage and lactic 
dehydrogenase ratio) and risk score for the model were found to be 
better predictors of patient survival (Fig. 5C). Univariate and multi-
variate analysis also confirmed the significant effect of risk score on 
patient survival (Fig. 5D). To calculate predictive values for individual 
outcome events, we constructed nomograms based on the effects of risk 
score, age, and gender on patient survival over 1, 3, and 5 years, as well 
as calibration curves for the nomograms (Fig. 5E). Notably, no 

significant difference was observed between the observed probabilities 
and the predicted outcomes for 1-year, 3-year, and 5-year survivals 
(Fig. 5F). The obtained results presented that the prediction based on an 
independent dataset GSE10846 was valid, which meanwhile proved the 
exportability of the risk scoring model for DLBCL disease. 

Association between immune infiltration and risk score for DLBCL 

Infiltration scores were assessed using CIBERSORT based on the 
expression profiles of all genes in 203 samples, and then the differences 
in immune infiltration of 22 immune cells (B cells naive, B cells memory, 
plasma cells, T cells CD8, T cells CD4 naive, T cells CD4 memory resting, 
T cells CD4 memory activated, T cells follicular helper, T cells regulatory 
Tregs, T cells gamma delta, NK cells resting, NK cells activated, mono-
cytes, macrophages M0, macrophages M1, macrophages 2, dendritic 
cells resting, dendritic cells activated, mast cells resting, mast cells 
activated, eosinophils, neutrophils) were compared by t-test (Fig. 6A). It 
was suggested that activated CD4 memory T cells, follicular helper T 
cells, resting natural killer cells, activated natural killer cells, M0 and M2 
macrophages, and neutrophils showed different proportions between 
high-risk and low-risk DLBCL. Additionally, we found that most of the 
ferroptosis-related and survival-related genes were positively correlated 
with tumor-filtrating immune cells, such as ACVR1B, CAPG, and CXCL2. 
A few were bidirectional, such as AKR1C3 and CAPG (Fig. 6B). We 
demonstrated correlations between the immune infiltration and risk 

Fig. 6. Association between the risk score and immune infiltration in DLBC. (A) Proportion of immune cells in DLBCL patients with high and low risk scores; (B) 
Pearson correlation between the 19 ferroptosis- and survival-related genes and the infiltrating immune cells; (C) Correlation analysis for the risk score and the 
infiltrating level of the significantly different immune cells in DLBCL. DLBCL, diffuse large B-cell lymphoma; NK, natural killer cells. 
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scores of the 12 immune cells were demonstrated. In detail, all these 12 
immune cells were associated with risk scores of DLBCL samples 
(Fig. 6C). 

Risk score for predicting the response of chemotherapy dose 

To further determine the clinical usefulness of the risk scores pre-
dicted by our model, clinical data on chemotherapy dosing for DLBCL 
were obtained using the TCGA biolinks tool to predict chemotherapy 
dosing outcomes. However, the data was not unavailable for progressive 
clinical disease, stable disease, and other dosing responses. Finally, we 
used the pRRopheticPredict R package to simulate dosing responses 
based on expression profiles. To simulate the actual dosing response as 
closely as possible, we used the drug most used in DLBCL presented by 
the TCGA database and the drug predicted by the pRRopheticPredict R 
package, i.e., doxorubicin. Then, we calculated the response of DLBCL to 
the drug and subsequently obtained the efficacy of the dosing response 
predicted by the sample risk score. The predicted AUC was found to be 
0.64, indicating that our data are effective predictors of clinical drug 
application (Fig. 7). 

Discussion 

One of the pivotal challenges for killing cancer cells is effectively 
triggering apoptotic cell death and controlling therapy-resistant cells 
[37]. As an iron-catalyzed form of regulated necrosis, ferroptosis is 
involved in the silencing or downregulation of genes initiating or 
executing necroptosis in cancers [38,39]. DLBCL outcome is the result of 
interactions between the genetic abnormalities of ferroptosis-related 
factors and the clinical status of the patients [31,40]. Identification of 
clinical risk is helpful to better design the therapeutic intervention in 
different DLBCL patients [41,42]. Here, we report a ferroptosis-based 
risk scoring model for patients with DLBCL, and tits validation in an 
independent dataset. This risk score model has a better efficacy in pre-
dicting survival compared to clinical characteristics. Additionally, the 
risk score suggested the consistency with immune cell infiltration in 
DLBCL. Of note, this model can predict the medical response of DLBCL 
patients to doxorubicin. 

Ferroptosis is characterized by the excessive peroxidation of 

polyunsaturated fatty acids containing phospholipids catalyzed by iron 
in cell membranes [14]. Ferroptosis is being studied as preventive 
strategy in several cancers, including fibrosarcoma, melanoma, ovarian 
cancer [17], mesothelioma [16], gastric cancer [43] and liver cancer 
[44]. In terms of DLBCL, imidazole ketone erastin, artesunate, and 
cholesterol cause lipid peroxidation, induce ferroptosis biomarkers, and 
result in an endoplasmic reticulum stress response in vivo and in vitro, 
showing a therapeutic mechanism consistent with ferroptosis [45–47]. 
Recently, Zhou et al. linked the ferroptosis process to metabolites and 
biomolecules, annotating several regulators and markers of ferroptosis, 
which is meaningful to linking ferroptotic process to metabolites and 
biomolecules in cancers [48]. According to the ferroptotic signature of 
cancers, we performed the consensus clustering analysis and obtained 4 
clusters with different survivalprobabilities. The results suggested that 
cluster 3 and cluster 4 showed an improved prognosis compared with 
cluster 1 and cluster 2. These ferroptosis-related and survival-related 
molecules participate in stimulus-response, membrane composition, 
lipid oxidation, regulation of autophagy, and mitophagy, as shown in 
previous studies [49,50]. 

Furthermore, we identified 16 ferroptosis- and survival-related genes 
after LASSO regression analysis. A risk scoring model was developed 
based on 16 genes, followed by validating the discriminatory accuracy 
of the model by the AUC method using an independent dataset. The 
discriminatory accuracy was obviously improved compared with the 
model that only included risk factors like the clinical stage, LDH ratio, 
age and gender. Beside, the metabolic prognostic model has been 
generated to assign patients with DLBCL into high-or low-risk clusters, 
which shows a superiority in aspect of a short-term [51]. Other prog-
nostic scoring models for DLBCL have been reported based on infil-
trating immune cells [52] and tumor microenvironment [53]. All these 
models have effectively and independently determined the prognosis of 
patients with DLBCL. Similarly, Chen et al. reported a risk assessment 
model for patients with DLBCL, and this personalized model was con-
structed based on ferroptosis-related gene signature [31]. They estab-
lished a reliable prognostic prediction for subgroup analysis using the 
8-gene associated with ferroptosis [31]. Here, our study integrated 16 
ferroptosis-related gene signatures and clinical factors, which showing 
an improved prognostic value in classifying patients with DLBCL into 
high-or low-risk groups. 

Fig. 7. External validation of the nomogram for predicting chemotherapy response of patients with DLBC. The obtained AUC is 0.64. AUC, the area under the 
receiver operating characteristic curve; ROC, the receiver operating characteristic; DLBCL, diffuse large B-cell lymphoma. 
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Malignant cells change the generation of cytokines that typically 
govern proliferation, and consequently participate as part of a dysre-
gulated immune environment [54,55]. Hence, understanding the types 
and roles of immune cells is critical to develop strategies to target tumors 
and improve patient prognosis. The participation of ferroptosis in T cell 
immunity has been confirmed by Wang et al., [17]. They reported that 
immunotherapy induces the activation of CD8+ T cells, which fortifies 
ferroptosis-specific lipid peroxidation [17]. Furthermore, the genes 
associated with survival and ferroptosis were correlated with immune 
infiltration. It has been proved that ferroptosis-related genes affect im-
mune infiltration and invasion in ovarian cancer [56] and breast cancer 
[57]. However, it remains unclear whether ferroptosis shows effects on 
immune infiltration in DLBCL. Here, we noticed that patients with high 
and low risk showed differences in the proportions of activated CD4 
memory T cells, follicular helper T cells, resting natural killer cells, 
activated natural killer cells, M0 and M2 macrophages, and neutrophils. 
To estimate the risk of relapse and progression in patients with DLBCL 
treated with doxorubicin, the efficacy of the dosing response was pre-
dicted. The predicted AUC was 0.64, suggesting an effective predictor 
for clinical drug application. 

Conclusions 

In conclusion, our study established a ferroptosis-based risk scoring 
model for patients with DLBCL, and this model was validated in an in-
dependent dataset. The risk scoring model showed improved efficacy in 
predicting survival compared to clinical characteristics. In addition, the 
risk score showed consistency with immune cell infiltration in DLBCL. 
This model implemented stratification of DLBCL patients into low- and 
high-risk cohorts. 
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